1
|
Montazeri-Najafabady N, Dabbaghmanesh MH. The Association Between CYP2R1 rs10741657 Polymorphisms and Bone Variables, Vitamin D, and Calcium in Iranian Children and Adolescents: A Cross-Sectional Study. Biochem Genet 2024:10.1007/s10528-024-10826-1. [PMID: 38834820 DOI: 10.1007/s10528-024-10826-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024]
Abstract
Osteoporosis is a common disorder with a strong genetic component. Bone mineral density (BMD), vitamin D, and calcium levels declining are a main contributor of osteoporosis and fragility fractures. This cross-sectional study designed to explore the possible link between CYP2R1 rs10741657 polymorphism and BMD of the total hip, lumbar spine and femoral neck, vitamin D, and calcium in Iranian children and adolescents. 247 children and adolescents (127 girls and 120 boys) between 9 and 18 years old from Kawar (an urban area located 50 km east of Shiraz, the capital city of the Fars province in the south of Iran) were randomly selected based on age-stratified systematic sampling and recruited for genetic analysis. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used for genotyping CYP2R1 rs10741657. Anthropometric, biochemical, and bone mineral density (BMD) parameters were also measured. The results specified that in the dominant [P < 0.0001, - 2.943 (- 4.357-1.529)] and over-dominant [P < 0.0001, 2.789 (1.369-4.209)] models, vitamin D concentration significantly differed between genotypes. The highest vitamin D levels were displayed for participants carrying the rs10741657 AG genotype (16.47 ng/ml). In regard to calcium, in a dominant model [P = 0.012, 0.194 (0.043-0.345)] and over-dominant model [P = 0.008, 0.206 (- 0.357-0.055), there was a significant association. AG genotype displayed the highest (9.96 mg/dl) and GG genotype the lowest (9.75 mg/dl) calcium values. This study reported the association of CYP2R1 rs10741657 polymorphisms with calcium and vitamin D levels in Iranian children and adolescents.
Collapse
|
2
|
Fernández-Araque A, Giaquinta-Aranda A, Moreno-Sainz C, Martínez-Martínez MC, Velasco-González V, Sainz-Gil M, Martín-Arias LH, Carretero-Molinero S, García-Hidalgo M, Verde Z. Haplotypes in the GC, CYP2R1 and CYP24A1 Genes and Biomarkers of Bone Mineral Metabolism in Older Adults. Nutrients 2022; 14:259. [PMID: 35057442 PMCID: PMC8778395 DOI: 10.3390/nu14020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/07/2022] Open
Abstract
Candidate gene studies have analyzed the effect of specific vitamin D pathway genes on vitamin D availability; however, it is not clear whether genetic variants also affect overall bone metabolism. This study evaluated the association between genetic polymorphisms in GC, CYP2R1 and CYP24A1 and serum levels of total 25(OH)D, iPTH and other mineral metabolism biomarkers (albumin, total calcium and phosphorus) in a sample of 273 older Spanish adults. We observed a significant difference between CYP2R1 rs10741657 codominant model and total 25(OH)D levels after adjusting them by gender (p = 0.024). In addition, the two SNPs in the GC gene (rs4588 and rs2282679) were identified significantly associated with iPTH and creatinine serum levels. In the case of phosphorus, we observed an association with GC SNPs in dominant model. We found a relationship between haplotype 2 and 25(OH)D levels, haplotype 4 and iPTH serum levels and haplotype 7 and phosphorus levels. In conclusion, genetic variants in CYP2R1 and GC could be predictive of 25(OH)D and iPTH serum levels, respectively, in older Caucasian adults. The current study confirmed the role of iPTH as one of the most sensitive biomarkers of vitamin D activity in vivo.
Collapse
Affiliation(s)
- Ana Fernández-Araque
- Department of Nursery, Campus Duques de Soria, University of Valladolid, 42004 Soria, Spain; (A.F.-A.); (A.G.-A.); (S.C.-M.)
- Grupo de Investigación Reconocido “Pharmacogenetics, Cancer Genetics, Genetic, Polymorphisms and Pharmacoepidemiology”, University of Valladolid, 47005 Valladolid, Spain; (V.V.-G.); (M.S.-G.); (L.H.M.-A.)
| | - Andrea Giaquinta-Aranda
- Department of Nursery, Campus Duques de Soria, University of Valladolid, 42004 Soria, Spain; (A.F.-A.); (A.G.-A.); (S.C.-M.)
- Department of Hemodialysis, Hospital Santa Bárbara, 42005 Soria, Spain
| | - Carmelo Moreno-Sainz
- Department of Clinic Biochemistry, Hospital Santa Bárbara, 42005 Soria, Spain; (C.M.-S.); (M.C.M.-M.)
| | | | - Verónica Velasco-González
- Grupo de Investigación Reconocido “Pharmacogenetics, Cancer Genetics, Genetic, Polymorphisms and Pharmacoepidemiology”, University of Valladolid, 47005 Valladolid, Spain; (V.V.-G.); (M.S.-G.); (L.H.M.-A.)
- Department of Nursery, University of Valladolid, 47005 Valladolid, Spain
- Centro de Farmacovigilancia de Castilla y León, University of Valladolid, 47005 Valladolid, Spain
| | - María Sainz-Gil
- Grupo de Investigación Reconocido “Pharmacogenetics, Cancer Genetics, Genetic, Polymorphisms and Pharmacoepidemiology”, University of Valladolid, 47005 Valladolid, Spain; (V.V.-G.); (M.S.-G.); (L.H.M.-A.)
- Centro de Farmacovigilancia de Castilla y León, University of Valladolid, 47005 Valladolid, Spain
- Centro de Estudios sobre la Seguridad de los Medicamentos (CESME), University of Valladolid, 47005 Valladolid, Spain
| | - Luis H. Martín-Arias
- Grupo de Investigación Reconocido “Pharmacogenetics, Cancer Genetics, Genetic, Polymorphisms and Pharmacoepidemiology”, University of Valladolid, 47005 Valladolid, Spain; (V.V.-G.); (M.S.-G.); (L.H.M.-A.)
- Centro de Farmacovigilancia de Castilla y León, University of Valladolid, 47005 Valladolid, Spain
- Centro de Estudios sobre la Seguridad de los Medicamentos (CESME), University of Valladolid, 47005 Valladolid, Spain
| | - Silvia Carretero-Molinero
- Department of Nursery, Campus Duques de Soria, University of Valladolid, 42004 Soria, Spain; (A.F.-A.); (A.G.-A.); (S.C.-M.)
| | | | - Zoraida Verde
- Grupo de Investigación Reconocido “Pharmacogenetics, Cancer Genetics, Genetic, Polymorphisms and Pharmacoepidemiology”, University of Valladolid, 47005 Valladolid, Spain; (V.V.-G.); (M.S.-G.); (L.H.M.-A.)
- Centro de Farmacovigilancia de Castilla y León, University of Valladolid, 47005 Valladolid, Spain
- Departamento de Bioquímica, Biología Molecular y Fisiología, Campus Duques de Soria, University of Valladolid, 42004 Soria, Spain
| |
Collapse
|
3
|
Krasniqi E, Boshnjaku A, Wagner KH, Wessner B. Association between Polymorphisms in Vitamin D Pathway-Related Genes, Vitamin D Status, Muscle Mass and Function: A Systematic Review. Nutrients 2021; 13:3109. [PMID: 34578986 PMCID: PMC8465200 DOI: 10.3390/nu13093109] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
An association between vitamin D level and muscle-related traits has been frequently reported. Vitamin D level is dependent on various factors such as sunlight exposure and nutrition. But also on genetic factors. We, therefore, hypothesize that single nucleotide polymorphisms (SNPs) within the vitamin D pathway-related genes could contribute to muscle mass and function via an impact on vitamin D level. However, the integration of studies investigating these issues is still missing. Therefore, this review aimed to systematically identify and summarize the available evidence on the association between SNPs within vitamin D pathway-related genes and vitamin D status as well as various muscle traits in healthy adults. The review has been registered on PROSPERO and was conducted following PRISMA guidelines. In total, 77 studies investigating 497 SNPs in 13 different genes were included, with significant associations being reported for 59 different SNPs. Variations in GC, CYP2R1, VDR, and CYP24A1 genes were reported most frequently, whereby especially SNPs in the GC (rs2282679, rs4588, rs1155563, rs7041) and CYP2R1 genes (rs10741657, rs10766197, rs2060793) were confirmed to be associated with vitamin D level in more than 50% of the respective studies. Various muscle traits have been investigated only in relation to four different vitamin D receptor (VDR) polymorphisms (rs7975232, rs2228570, rs1544410, and rs731236). Interestingly, all of them showed only very low confirmation rates (6-17% of the studies). In conclusion, this systematic review presents one of the most comprehensive updates of the association of SNPs in vitamin D pathway-related genes with vitamin D status and muscle traits in healthy adults. It might be used for selecting candidate SNPs for further studies, but also for personalized strategies in identifying individuals at risk for vitamin D deficiency and eventually for determining a potential response to vitamin D supplementation.
Collapse
Affiliation(s)
- Ermira Krasniqi
- Research Platform Active Ageing, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (E.K.); (K.-H.W.)
- Centre for Sport Science and University Sports, University of Vienna, Auf der Schmelz 6, 1150 Vienna, Austria;
- Department of Nutritional Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Arben Boshnjaku
- Centre for Sport Science and University Sports, University of Vienna, Auf der Schmelz 6, 1150 Vienna, Austria;
- Faculty of Medicine, University “Fehmi Agani” in Gjakova, Ismail Qemali n.n., 50000 Gjakovë, Kosovo
| | - Karl-Heinz Wagner
- Research Platform Active Ageing, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (E.K.); (K.-H.W.)
- Department of Nutritional Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Barbara Wessner
- Research Platform Active Ageing, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (E.K.); (K.-H.W.)
- Centre for Sport Science and University Sports, University of Vienna, Auf der Schmelz 6, 1150 Vienna, Austria;
| |
Collapse
|
4
|
Yu H, Zhang Z, Liu J, Hu P, Liu Z. Association study between genetic variants in vitamin D metabolism related genes and childhood autism spectrum disorder. Metab Brain Dis 2020; 35:971-978. [PMID: 32297168 DOI: 10.1007/s11011-020-00570-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022]
Abstract
Vitamin D deficiency has been implicated as a risk factor for autism spectrum disorder (ASD). This case-controlled study was to determine the association between single nucleotide polymorphisms (SNPs) in genes encoding vitamin D metabolism related enzymes and childhood ASD in a Chinese Han population. Both autistic children and age-and gender-matched healthy controls were recruited from September 2012-November 2017. The severity of ASD was evaluated by the childhood autism rating scale (CARS). Taqman probe based real-time PCR was applied to examine genotypes. The association between SNPs and the risk of ASD or the disease severity was examined through the logistic regression. This study recruited 249 children with ASD and 353 healthy controls. The G/A genotype (P = 0.0112) or the G allele (P = 0.0117) of CYP24A1 rs17219315, and the G/A genotype of CYP27B1 rs4646536 (P = 0.0341) were significantly associated with an increased risk of ASD. In addition, multivariate analysis found that A allele of both CYP2R1 rs12794714 (P = 0.0159) and CYP27B1 rs4646536 (P = 0.0268) were significantly associated with the severity of ASD. Genetic polymorphisms in vitamin D metabolism related enzymes are associated with the risk of childhood ASD and the severity of the disease.
Collapse
Affiliation(s)
- Hong Yu
- Department of Clinical Psychology, Xiaoshan First Affiliated Hospital of Hangzhou Normal University, 311201, Hangzhou, Zhejiang, China
| | - Zengyu Zhang
- Department of Pediatrics, Xiaoshan First Affiliated Hospital of Hangzhou Normal University, 311201, Hangzhou, Zhejiang, China
| | - Jun Liu
- Department of Clinical Laboratory, Zhejiang Xiaoshan Hospital, 311202, Hangzhou, Zhejiang, China.
| | - Pingfang Hu
- Department of Clinical Laboratory, Zhejiang Xiaoshan Hospital, 311202, Hangzhou, Zhejiang, China
| | - Zhuo Liu
- Department of Internal Medicine, Zhejiang Xiaoshan Hospital, 311202, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Jo S, Yoon S, Lee SY, Kim SY, Park H, Han J, Choi SH, Han JS, Yang JH, Kim TH. DKK1 Induced by 1,25D3 Is Required for the Mineralization of Osteoblasts. Cells 2020; 9:cells9010236. [PMID: 31963554 PMCID: PMC7017072 DOI: 10.3390/cells9010236] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
1α,25-dihydroxyvitamin D3 (1,25D3), the most popular drug for osteoporosis treatment, drives osteoblast differentiation and bone mineralization. Wnt/β-catenin signaling is involved in commitment and differentiation of osteoblasts, but the role of the Dickkopf-related protein 1 (DKK1), a Wnt antagonist, in osteoblasts remains unknown. Here, we demonstrate the molecular mechanism of DKK1 induction by 1,25D3 and its physiological role during osteoblast differentiation. 1,25D3 markedly promoted the expression of both CCAAT/enhancer binding protein beta (C/EBPβ) and DKK1 at day 7 during osteoblast differentiation. Interestingly, mRNA and protein levels of C/EBPβ and DKK1 in osteoblasts were elevated by 1,25D3. We also found that C/EBPβ, in response to 1,25D3, directly binds to the human DKK1 promoter. Knockdown of C/EBPβ downregulated the expression of DKK1 in osteoblasts, which was partially reversed by 1,25D3. In contrast, overexpression of C/EBPβ upregulated DKK1 expression in osteoblasts, which was enhanced by 1,25D3. Furthermore, 1,25D3 treatment in osteoblasts stimulated secretion of DKK1 protein within the endoplasmic reticulum to extracellular. Intriguingly, blocking DKK1 attenuated calcified nodule formation in mineralized osteoblasts, but not ALP activity or collagen synthesis. Taken together, these observations suggest that 1,25D3 promotes the mineralization of osteoblasts through activation of DKK1 followed by an increase of C/EBPβ.
Collapse
Affiliation(s)
- Sungsin Jo
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
| | - Subin Yoon
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - So Young Lee
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (S.Y.L.); (J.-S.H.)
| | - So Yeon Kim
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
| | - Hyosun Park
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
| | | | - Sung Hoon Choi
- Department of Orthopaedic Surgery, Hanyang University Seoul Hospital, Seoul 04763, Korea;
| | - Joong-Soo Han
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (S.Y.L.); (J.-S.H.)
- Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Jae-Hyuk Yang
- Department of Orthopaedic Surgery, Hanyang University Guri Hospital, Gyeonggi-do 11923, Korea;
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
- Correspondence: ; Tel.: +82-2-2290-9245; Fax: +82-2-2298-8231
| |
Collapse
|
6
|
Zhou W, Liu Y, Guo X, Yang H, Xu Y, Geng D. Effects of zoledronic acid on bone mineral density around prostheses and bone metabolism markers after primary total hip arthroplasty in females with postmenopausal osteoporosis. Osteoporos Int 2019; 30:1581-1589. [PMID: 31115592 DOI: 10.1007/s00198-019-05005-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION To investigate the effect of zoledronic acid on periprosthetic bone mineral density (BMD) and bone metabolism markers after primary total hip arthroplasty in females with postmenopausal osteoporosis. METHODS From November 2015 to April 2016, 40 female patients who met the inclusion criteria were randomized into two groups: a control group (calcium + calcitriol) and a zoledronic acid group (calcium + calcitriol + zoledronic acid). At 1 week and 3, 6, and 12 months after operation, BMD was obtained through dual-energy X-ray absorptiometry (DEXA). At pre-operation and at 3, 6, and 12 months after the operation, levels of bone metabolism markers were obtained by serum examination. RESULTS Loss of BMD was significantly more pronounced in the control group than in the ZOL group in zones 1, 4, 6, and 7 at 6 months and in zones 1, 2, 4, 6, and 7 at 12 months after the operation. The levels of bone-resorption marker (β-CTX) were significantly lower in the ZOL group than in the control group at 3, 6, and 12 months after operation. The levels of bone-formation marker (TP1NP) performed statistically differences only at 12 months after the operation in these two groups. CONCLUSIONS Receiving an intravenous infusion of 5 mg zoledronic acid after THA can effectively reduce periprosthetic BMD loss and improve bone remodeling in females with postmenopausal osteoporosis. Zoledronic acid significantly inhibited bone mass loss in zones 1, 2, 4, 6, and 7 after THA and inhibited bone-resorption marker (β-CTX) to improve bone remodeling. Zoledronic acid treatment is potentially important for patients with osteoporosis after THA.
Collapse
Affiliation(s)
- W Zhou
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China, 17, Lu Jiang Road, Hefei, 230001, People's Republic of China
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188, Shi Zi Road, Suzhou, 215006, People's Republic of China
| | - Y Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188, Shi Zi Road, Suzhou, 215006, People's Republic of China
| | - X Guo
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188, Shi Zi Road, Suzhou, 215006, People's Republic of China
| | - H Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188, Shi Zi Road, Suzhou, 215006, People's Republic of China.
| | - Y Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188, Shi Zi Road, Suzhou, 215006, People's Republic of China.
| | - D Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188, Shi Zi Road, Suzhou, 215006, People's Republic of China.
| |
Collapse
|