1
|
Porter D, Peggs D, McGurk C, Martin SAM. Immune responses to prebiotics in farmed salmonid fish: How transcriptomic approaches help interpret responses. FISH & SHELLFISH IMMUNOLOGY 2022; 127:35-47. [PMID: 35667538 DOI: 10.1016/j.fsi.2022.05.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/24/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Within aquaculture, prebiotics are composed of complex carbohydrate molecules that cannot be digested by the fish directly but are metabolised by the microbial communities within the host gut, with the desire that "healthy" bacterial species are promoted with subsequently improved performance of the fish, there are likely some direct responses of intestinal cells to these dietary components. The sources and processing of prebiotics, which fall under the overarching theme of "functional feeds" are highly varied between species and types of prebiotics administered. How these feeds exert their effect, and the host responses are hard to determine, but new technologies and the development of high-throughput technologies (omics) are enabling the mechanisms and methods of action to be further understood. The recent advances in the availability of 'omics' technologies with the transition from single gene assays to microarray and RNA-seq in fish health have enabled novel functional ingredients to be analysed. This review will focus on recent studies on targeted gene expression and 'omics' technologies to characterize immune responses. Comparisons between the immunomodulatory effect of different prebiotics have been made and specific examples of how transcriptomics techniques have been used to identify immune responses to prebiotics are given.
Collapse
Affiliation(s)
- D Porter
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24, 2TZ, UK
| | - D Peggs
- Skretting ARC, Sjøhagen 15, 4016 Stavanger, Norway
| | - C McGurk
- Skretting ARC, Sjøhagen 15, 4016 Stavanger, Norway
| | - S A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24, 2TZ, UK.
| |
Collapse
|
2
|
Samsing F, Wynne JW, Valenzuela-Muñoz V, Valenzuela-Miranda D, Gallardo-Escárate C, Alexandre PA. Competing endogenous RNA-networks reveal key regulatory microRNAs involved in the response of Atlantic salmon to a novel orthomyxovirus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104396. [PMID: 35304180 DOI: 10.1016/j.dci.2022.104396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
One of the most intriguing discoveries of the genomic era is that only a small fraction of the genome is dedicated to protein coding. The remaining fraction of the genome contains, amongst other elements, a number of non-coding transcripts that regulate the transcription of protein coding genes. Here we used transcriptome sequencing data to explore these gene regulatory networks using RNA derived from gill tissue of Atlantic salmon (Salmo salar) infected with Pilchard orthomyxovirus (POMV), but showing no clinical signs of disease. We examined fish sampled early during the challenge trial (8-12 days after infection) to uncover potential biomarkers of early infection and innate immunity, and fish sampled late during the challenge trial (19 dpi) to elucidate potential markers of resistance to POMV. We analysed total RNA-sequencing data to find differentially expressed messenger RNAs (mRNA) and identify new long-noncoding RNAs (lncRNAs). We also evaluated small RNA sequencing data to find differentially transcribed microRNAs (miRNAs) and explore their role in gene regulatory networks. Whole-genome expression data (both coding and non-coding transcripts) were used to explore the crosstalk between RNA molecules by constructing competing endogenous RNA networks (ceRNA). The teleost specific miR-462/miR-731 cluster was strongly induced in POMV infected fish and deemed a potential biomarker of early infection. Gene networks also identified a selenoprotein (selja), downregulated in fish sampled late during the challenge, which may be associated to viral clearance and the return to homeostasis after infection. This study provides the basis for further investigations using molecular tools to overexpress or inhibit miRNAs to confirm the functional impact of the interactions presented here on gene expression and their potential application at commercial level.
Collapse
Affiliation(s)
- Francisca Samsing
- CSIRO Agriculture and Food, Livestock and Aquaculture, Hobart, TAS, Australia
| | - James W Wynne
- CSIRO Agriculture and Food, Livestock and Aquaculture, Hobart, TAS, Australia.
| | | | - Diego Valenzuela-Miranda
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
| | | | - Pâmela A Alexandre
- CSIRO Agriculture and Food, Livestock and Aquaculture, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Hu Y, Alnabulsi A, Alnabulsi A, Scott C, Tafalla C, Secombes CJ, Wang T. Characterisation and analysis of IFN-gamma producing cells in rainbow trout Oncorhynchus mykiss. FISH & SHELLFISH IMMUNOLOGY 2021; 117:328-338. [PMID: 34343543 DOI: 10.1016/j.fsi.2021.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
IFN-γ is one of the key cytokines involved in Th1 immune responses. It is produced mainly by T cells and NK cells, which drive both innate and adaptive responses to promote protection against infections. IFN-γ orthologues have been discovered to be functionally conserved in fish, suggesting that type I immunity is present in early vertebrates. However, few studies have looked at IFN-γ protein expression in fish and its role in cell mediated immunity due to a lack of relevant tools. In this study, four monoclonal antibodies (mAbs) V27, N2, VAB3 and V91 raised against short salmonid IFN-γ peptides were developed and characterised to monitor IFN-γ expression. The results show that the IFN-γ mAbs specifically react to their peptide immunogens, recognise E. coli produced recombinant IFN-γ protein and rainbow trout IFN-γ produced in transfected HEK 293 cells. The mAb VAB3 was used further, to detect IFN-γ at the cellular level after in vitro and in vivo stimulation. In flow cytometry, a basal level of 3-5% IFN-γ secreting cells were detected in peripheral blood leucocytes (PBL), which increased significantly when stimulated in vitro with PAMPs (Aeromonas salmonicida bacterin), a mitogen (PHA) and recombinant cytokine (IL-2). Similarly, after injection of live bacteria (Aeromonas salmonicida) or poly I:C the number of IFN-γ+ cells increased in the lymphoid population of PBL, as well as in the myeloid population after infection, with the myeloid cells increasing substantially after both treatments. Immunohistochemistry was used to visualise the IFN-γ+ cells in spleen and head kidney following vaccination, which increased in intensity of staining and number relative to tissue from saline-injected control fish. These results show that several types of cells can produce IFN-γ in trout, and that they increase following infection or vaccination, and likely contribute to immune protection. Hence monitoring IFN-γ producing cells/protein secretion may be an important means to assess the effectiveness of Th1 responses and cell mediated immunity in fish.
Collapse
Affiliation(s)
- Yehfang Hu
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, UK
| | | | | | - Callum Scott
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, UK
| | | | | | - Tiehui Wang
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
4
|
Radomska D, Czarnomysy R, Radomski D, Bielawska A, Bielawski K. Selenium as a Bioactive Micronutrient in the Human Diet and Its Cancer Chemopreventive Activity. Nutrients 2021; 13:1649. [PMID: 34068374 PMCID: PMC8153312 DOI: 10.3390/nu13051649] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
This review answers the question of why selenium is such an important trace element in the human diet. Daily dietary intake of selenium and its content in various food products is discussed in this paper, as well as the effects of its deficiency and excess in the body. Moreover, the biological activity of selenium, which it performs mainly through selenoproteins, is discussed. These specific proteins are responsible for thyroid hormone management, fertility, the aging process, and immunity, but their key role is to maintain a redox balance in cells. Furthermore, taking into account world news and the current SARS-CoV-2 virus pandemic, the impact of selenium on the course of COVID-19 is also discussed. Another worldwide problem is the number of new cancer cases and cancer-related mortality. Thus, the last part of the article discusses the impact of selenium on cancer risk based on clinical trials (including NPC and SELECT), systematic reviews, and meta-analyses. Additionally, this review discusses the possible mechanisms of selenium action that prevent cancer development.
Collapse
Affiliation(s)
- Dominika Radomska
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (D.R.); (D.R.); (K.B.)
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (D.R.); (D.R.); (K.B.)
| | - Dominik Radomski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (D.R.); (D.R.); (K.B.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (D.R.); (D.R.); (K.B.)
| |
Collapse
|
5
|
Wischhusen P, Arnaudguilhem C, Bueno M, Vallverdu G, Bouyssiere B, Briens M, Antony Jesu Prabhu P, Geraert PA, Kaushik SJ, Fauconneau B, Fontagné-Dicharry S, Mounicou S. Tissue localization of selenium of parental or dietary origin in rainbow trout (Oncorhynchus mykiss) fry using LA-ICP MS bioimaging. Metallomics 2020; 13:6054542. [PMID: 33595655 DOI: 10.1093/mtomcs/mfaa008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/30/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
In relation to the decrease of selenium (Se) content in aquafeeds, the impact of level and form of parental and dietary Se supplementation was investigated in rainbow trout fry using laser ablation-inductively coupled plasma mass spectrometry (LA-ICP MS) bioimaging. The offspring of rainbow trout broodstock, fed either a control diet without any Se supplementation (0.3 mg Se/kg diet) or a diet supplemented with Se (0.6 mg Se/kg diet) either as sodium selenite or hydroxy-selenomethionine, were sampled at swim-up fry stage or after 11 weeks of cross-feeding. Total body Se levels were influenced by parental Se nutrition in swim-up fry and by direct Se feeding in 11-week fry with higher levels in the Se-supplemented groups compared with the control and the highest levels in the hydroxy-selenomethionine treatment. The Se retention was lower for dietary sodium selenite. Selenomethionine levels increased when Se was provided as hydroxy-selenomethionine. LA-ICP MS maps revealed yolk in swim-up fry and intestine, liver, and kidney in 11-week fed fry as tissues with high Se abundance. In swim-up fry, muscle Se was the highest abundant when parents were fed hydroxy-selenomethionine. In 11-week fed fry, muscle Se abundance was higher in the head part of fry fed both Se-supplemented diets, but only in the tail part of fry fed hydroxy-selenomethionine. Liver Se abundance was higher in fry fed sodium selenite compared with the control diet supporting the hypothesis that tissue Se distribution can be influenced by parental and dietary Se forms and levels.
Collapse
Affiliation(s)
- Pauline Wischhusen
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, 64310 Saint Pée sur Nivelle, France
| | - Carine Arnaudguilhem
- CNRS, Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, UMR5254, 64000 Pau, France
| | - Maïté Bueno
- CNRS, Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, UMR5254, 64000 Pau, France
| | - Germain Vallverdu
- CNRS, Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, UMR5254, 64000 Pau, France
| | - Brice Bouyssiere
- CNRS, Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, UMR5254, 64000 Pau, France
| | - Mickael Briens
- ADISSEO, 10 Place du Général de Gaulle, 92160 Antony, France
| | | | | | - Sadasivam J Kaushik
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, 64310 Saint Pée sur Nivelle, France
| | - Benoit Fauconneau
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, 64310 Saint Pée sur Nivelle, France
| | | | - Sandra Mounicou
- CNRS, Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, UMR5254, 64000 Pau, France
| |
Collapse
|
6
|
Hu Y, Carpio Y, Scott C, Alnabulsi A, Alnabulsi A, Wang T, Liu F, Monte M, Wang T, Secombes CJ. Induction of IL-22 protein and IL-22-producing cells in rainbow trout Oncorhynchus mykiss. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 101:103449. [PMID: 31306696 PMCID: PMC6873780 DOI: 10.1016/j.dci.2019.103449] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 05/11/2023]
Abstract
IL-22 is a critical cytokine which is involved in modulating tissue responses during inflammation, and is produced mainly by T cells and innate leucocytes. In mammals, IL-22 is a key component in mucosal defences, tissue repair, epithelial cell survival and proliferation. In teleosts, IL-22 has been cloned and studied in several species, and the transcript is highly expressed in mucosal tissues and induced by pathogen associated molecular patterns (PAMPs), suggesting IL-22 also functions as an important component of the innate immune response in fish. To investigate these immune responses further, we have validated and characterised two monoclonal antibodies (mAbs) which were raised against two different peptide immunogens of salmonid IL-22. Our results show that both mAbs specifically react to their own peptide immunogens and recombinant IL-22, and are able to detect the induction of native protein expression after stimulation. In flow cytometry, an increase in IL-22 positive cells was detected after stimulation in vitro with cytokines and PAMPs and in vivo after bacterial challenge. The immunohistochemistry results showed that IL-22 is highly upregulated in the gills after challenge, both in cells within the gill filaments and in the interbranchial lymphoid tissue. Such results suggest IL-22 may have a role in triggering local antimicrobial defences in fish that may facilitate efficient microbial clearance. Hence monitoring IL-22 producing cells/protein secretion may provide an alternative mean to assess the effectiveness of mucosal vaccines.
Collapse
Affiliation(s)
- Yehfang Hu
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, UK
| | - Yamila Carpio
- Centre of Genetic Engineering and Biotechnology, Havana, Cuba
| | - Callum Scott
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, UK
| | | | - Abdo Alnabulsi
- Vertebrate Antibodies Limited, Aberdeen, UK; Department of Pathology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK
| | - Tingyu Wang
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, UK
| | - Fuguo Liu
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, UK
| | - Milena Monte
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, UK
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, UK.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, UK.
| |
Collapse
|