1
|
Carroll A, Bell MJ, Bleach ECL, Turner D, Williams LK. Impact of dairy calf management practices on the intestinal tract microbiome pre-weaning. J Med Microbiol 2025; 74. [PMID: 39879083 DOI: 10.1099/jmm.0.001957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Introduction. Microbiota in the gastrointestinal tract (GIT) consisting of the rumen and hindgut (the small intestine, cecum and colon) in dairy calves play a vital role in their growth and development. This review discusses the development of dairy calf intestinal microbiomes with an emphasis on the impact that husbandry and rearing management have on microbiome development, health and growth of pre-weaned dairy calves.Discussion. The diversity and composition of the microbes that colonize the lower GIT (small and large intestine) can have a significant impact on the growth and development of the calf, through influence on nutrient metabolism, immune modulation, resistance or susceptibility to infection, production outputs and behaviour modification in adult life. The colonization of the calf intestinal microbiome dynamically changes from birth, increasing microbial richness and diversity until weaning, where further dynamic and drastic microbiome change occurs. In dairy calves, neonatal microbiome development prior to weaning is influenced by direct and indirect factors, some of which could be considered stressors, such as maternal interaction, environment, diet, husbandry and weaning practices. The specific impact of these can dictate intestinal microbial colonization, with potential lifelong consequences.Conclusion. Evidence suggests the potential detrimental effect that sudden changes and stress may have on calf health and growth due to management and husbandry practices, and the importance of establishing a stable yet diverse intestinal microbiome population at an early age is essential for calf success. The possibility of improving the health of calves through intestinal microbiome modulation and using alternative strategies including probiotic use, faecal microbiota transplantation and novel approaches of microbiome tracking should be considered to support animal health and sustainability of dairy production systems.
Collapse
Affiliation(s)
- Aisling Carroll
- Animal and Agriculture Department, Hartpury University, Gloucester, GL19 3BE, UK
| | - Matt J Bell
- Animal and Agriculture Department, Hartpury University, Gloucester, GL19 3BE, UK
| | - Emma C L Bleach
- Animal Science Research Centre, Harper Adams University, Edgmond, Newport, TF10 8NB, Shropshire, UK
| | - Dann Turner
- University of the West of England, Bristol, Coldharbour Lane, BS16 1QY, UK
| | - Lisa K Williams
- Animal and Agriculture Department, Hartpury University, Gloucester, GL19 3BE, UK
| |
Collapse
|
2
|
Vinayamohan PG, Poelstra J, Cheng TY, Goetz H, Renaud DL, Gomez DE, Habing G. Exploring the effects of transport duration on the fecal microbial communities of surplus dairy calves. J Dairy Sci 2024; 107:3863-3884. [PMID: 38216047 DOI: 10.3168/jds.2023-24002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/03/2023] [Indexed: 01/14/2024]
Abstract
Transportation significantly affects the health and welfare of surplus dairy calves, largely due to the various stressors and pathogen exposures encountered during the process. Concurrently, an animal's microbiome is known to correlate with its health status, with stress-induced alterations in the microbiota potentially precipitating various diseases. This study aimed to compare the effects of transportation durations of 6, 12, or 16 h on the fecal microbiota in young surplus dairy calves. We used a randomized controlled design in which surplus dairy calves aged 1 to 19 d from 5 commercial dairy farms in Ontario were allocated into 1 of 3 transportation groups (6, 12, and 16 h of continuous transportation). Health assessments were conducted before, immediately after, and for 2 wk following transportation. Fecal samples were collected before, immediately after, and at 24 and 72 h after transportation and subjected to 16S rRNA sequencing. Alpha diversity metrics showed no significant differences between the 3 transportation groups at any of the sampling time points. Although β diversity metrics revealed no clustering by transportation groups, they indicated significant differences across sampling time points within each group. The overall analysis revealed a total of 22 phyla and 353 genera, with Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Fusobacteria being the most abundant phyla. Bacteroides, Escherichia/Shigella, Lactobacillus, Collinsella, and Bifidobacterium were the most abundant genera. The reduction in Fusobacteria abundance before and after transport was significantly larger in the 16-h transportation group when compared with the 6-h transportation group. We also identified several genus-level and amplicon sequence variation-level taxa that displayed significant differences in their abundances across various transportation groups, observed at all sampling time points investigated. This research identifies microbiota changes due to varying transportation durations in surplus dairy calves, providing a broad understanding of the microbial shifts in surplus dairy calves after transportation across varying durations. Although these variations may not directly correlate with overall calf health or indicate dysbiosis, these results emphasize the importance of further investigating transportation practices to enhance calf health and well-being. Further studies are warranted to elucidate the relationship between microbiota and calf health.
Collapse
Affiliation(s)
| | - Jelmer Poelstra
- Molecular and Cellular Imaging Center (MCIC), The Ohio State University, Wooster, OH 44691
| | - Ting-Yu Cheng
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210
| | - Hanne Goetz
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada, NIG 2W1
| | - David L Renaud
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada, NIG 2W1
| | - Diego E Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada, NIG 2W1
| | - Greg Habing
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210.
| |
Collapse
|
3
|
Li S, Young T, Archer S, Lee K, Alfaro AC. Gut microbiome resilience of green-lipped mussels, Perna canaliculus, to starvation. Int Microbiol 2024; 27:571-580. [PMID: 37523041 PMCID: PMC10991064 DOI: 10.1007/s10123-023-00397-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/14/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023]
Abstract
Host gut microbiomes play an important role in animal health and resilience to conditions, such as malnutrition and starvation. These host-microbiome relationships are poorly understood in the marine mussel Perna canaliculus, which experiences significant variations in food quantity and quality in coastal areas. Prolonged starvation may be a contributory factor towards incidences of mass mortalities in farmed mussel populations, resulting in highly variable production costs and unreliable market supplies. Here, we examine the gut microbiota of P. canaliculus in response to starvation and subsequent re-feeding using high-throughput amplicon sequencing of the 16S rRNA gene. Mussels showed no change in bacterial species richness when subjected to a 14-day starvation, followed by re-feeding/recovery. However, beta bacteria diversity revealed significant shifts (PERMANOVA p-value < 0.001) in community structure in the starvation group and no differences in the subsequent recovery group (compared to the control group) once they were re-fed, highlighting their recovery capability and resilience. Phylum-level community profiles revealed an elevation in dominance of Proteobacteria (ANCOM-BC p-value <0.001) and Bacteroidota (ANCOM-BC p-value = 0.04) and lower relative abundance of Cyanobacteria (ANCOM-BC p-value = 0.01) in the starvation group compared to control and recovery groups. The most abundant genus-level shifts revealed relative increases of the heterotroph Halioglobus (p-value < 0.05) and lowered abundances of the autotroph Synechococcus CC9902 in the starvation group. Furthermore, a SparCC correlation network identified co-occurrence of a cluster of genera with elevated relative abundance in the starved mussels that were positively correlated with Synechococcus CC9902. The findings from this work provide the first insights into the effect of starvation on the resilience capacity of Perna canaliculus gut microbiota, which is of central importance to understanding the effect of food variation and limitation in farmed mussels.
Collapse
Affiliation(s)
- Siming Li
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Tim Young
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Stephen Archer
- Department of Environmental Science, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Kevin Lee
- Department of Environmental Science, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| |
Collapse
|
4
|
Diaz GR, Gaire TN, Ferm P, Case L, Caixeta LS, Goldsmith TJ, Armstrong J, Noyes NR. Effect of castration timing and weaning strategy on the taxonomic and functional profile of ruminal bacteria and archaea of beef calves. Anim Microbiome 2023; 5:61. [PMID: 38041127 PMCID: PMC10691087 DOI: 10.1186/s42523-023-00284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Beef cattle experience several management challenges across their lifecycle. Castration and weaning, two major interventions in the early life of beef cattle, can have a substantial impact on animal performance. Despite the key role of the rumen microbiome on productive traits of beef cattle, the effect of castration timing and weaning strategy on this microbial community has not been formally described. We assessed the effect of four castration time windows (at birth, turnout, pre-weaning and weaning) and two weaning strategies (fence-line and truck transportation) on the rumen microbiome in a randomized controlled study with 32 male calves across 3 collection days (i.e., time points). Ruminal fluid samples were submitted to shotgun metagenomic sequencing and changes in the taxonomic (microbiota) and functional profile (metagenome) of the rumen microbiome were described. RESULTS Using a comprehensive yet stringent taxonomic classification approach, we identified 10,238 unique taxa classified under 40 bacterial and 7 archaeal phyla across all samples. Castration timing had a limited long-term impact on the rumen microbiota and was not associated with changes in alpha and beta diversity. The interaction of collection day and weaning strategy was associated with changes in the rumen microbiota, which experienced a significant decrease in alpha diversity and shifts in beta diversity within 48 h post-weaning, especially in calves abruptly weaned by truck transportation. Calves weaned using a fence-line weaning strategy had lower relative abundance of Bacteroides, Lachnospira, Fibrobacter and Ruminococcus genera compared to calves weaned by truck transportation. Some genes involved in the hydrogenotrophic methanogenesis pathway (fwdB and fwdF) had higher relative abundance in fence-line-weaned calves post-weaning. The antimicrobial resistance gene tetW consistently represented more than 50% of the resistome across time, weaning and castration groups, without significant changes in relative abundance. CONCLUSIONS Within the context of this study, castration timing had limited long-term effects on the rumen microbiota, while weaning strategy had short-term effects on the rumen microbiota and methane-associated metagenome, but not on the rumen resistome.
Collapse
Affiliation(s)
- Gerardo R Diaz
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Tara N Gaire
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Peter Ferm
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Lacey Case
- North Central Research and Outreach Center, Department of Animal Science, University of Minnesota, St. Paul, MN, 55108, USA
| | - Luciano S Caixeta
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Timothy J Goldsmith
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Joe Armstrong
- Agricultural and Natural Resource Systems, University of Minnesota Extension, University of Minnesota, St. Paul, MN, 55108, USA
| | - Noelle R Noyes
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
5
|
Huang G, Mao Y, Zhang W, Luo Q, Xie R, Huang D, Liang Y. Explore the changes of intestinal flora in patients with coronavirus disease 2019 based on bioinformatics. Front Cell Infect Microbiol 2023; 13:1265028. [PMID: 37900316 PMCID: PMC10611479 DOI: 10.3389/fcimb.2023.1265028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Background Studies have revealed that there were significant changes in intestinal flora composition in patients with coronavirus disease 2019 (COVID-19) compared to non-COVID-19 patients, regardless of whether they were treated with medication. Therefore, a comprehensive study of the intestinal flora of COVID-19 patients is needed to further understand the mechanisms of COVID-19 development. Methods In total, 20 healthy samples and 20 COVID-19 samples were collected in this study. Firstly, alpha diversity and beta diversity were analyzed to assess whether there were difference in species richness and diversity as well as species composition between COVID-19 and control groups. The observed features index, Evenness index, PD index, and Shannon index were utilized to measure alpha diversity. The principal coordinates analysis (PCoA) and non-metric multidimensional scaling (NMDS) were performed to analyzed beta diversity. Linear discriminant analysis Effect Size (LEfSe) was utilized to analyze the variability in the abundance of bacterial taxa from different classification levels. The random forest (RF), Least absolute shrinkage and selection operator (LASSO), and univariate logistic regression were utilized to identify key Amplicon Sequence Variant (ASVs). Finally, the relevant networks of bacterial taxa were created in COVID-19 and control groups, separately. Results There were more species in the control group than in COVID-19 group. The observed features index, Shannon index, and Evenness index in the control groups were markedly higher than in the COVID-19 group. Therefore, there were marked variations in bacterial taxa composition between the COVID-19 and control groups. The nine bacterial taxa were significantly more abundant in the COVID-19 group, such as g-Streptococcus, f-Streptococcaceae, o-Lactobacillales, c-Bacilli and so on. In the control group, 26 bacterial taxa were significantly more abundant, such as c-Clostrjdia, o-Oscillospirales, f-Ruminococcaceae, etc. The 5 key ASVs were obtained through taking the intersection of the characteristic ASVs obtained by the three algorithms, namely ASV6, ASV53, ASV92, ASV96, and ASV105, which had diagnostic value for COVID-19. The relevance network in the control group was more complex compared to the COVID-19 group. Conclusion Our findings provide five key ASVs for diagnosis of COVID-19, providing a scientific reference for further studies of COVID-19.
Collapse
Affiliation(s)
- Gangding Huang
- Department of Gastroenterology, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Li L, Renaud DL, Goetz HM, Jessop E, Costa MC, Gamsjäger L, Gomez DE. Effect of time of sample collection after onset of diarrhea on fecal microbiota composition of calves. J Vet Intern Med 2023; 37:1588-1593. [PMID: 37366337 PMCID: PMC10365057 DOI: 10.1111/jvim.16801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND The effect of time of sample collection after onset of diarrhea on the fecal microbiota composition of calves is unknown. OBJECTIVE Compare the fecal microbiota of calves with diarrhea onset on the day of sampling (D <24h), and calves having had diarrhea for >24 to 48 hours (D 24-48h). ANIMALS Thirty-one diarrheic calves (20 D <24h and 11 D 24-48h), 3 to 7 days of age. METHODS Cross-sectional study. Diarrhea was defined as a calf with loose feces or watery feces. Assessment of the fecal microbiota was performed by sequencing of 16S ribosomal RNA gene amplicons. RESULTS Richness and diversity were not statistically different between D <24h and D 24-48h (P > .05), but bacterial membership and structure differed significantly (AMOVA, P < .001 for both comparisons). Linear discriminant analysis effect size (LefSe) showed an enrichment of Faecalibacterium, Phocaeicola, Lachnospiracea, and Lactobacillus in the feces of D <24h calves, whereas Escherichia/Shigella, Ligilactobacillus, Clostridium_Sensu_Stricto, Clostridium_Incerta_Sedis, and Enterococcus were enriched in the D 24-48h calves. CONCLUSION AND CLINICAL IMPORTANCE Rapid changes in fecal microbiota occur during the first 48 hours of diarrhea with an enrichment of lactic acid-producing bacteria in D <24h followed by an enrichment in Escherichia/Shigella and Clostridium spp. in D 24-48h. The time from diarrhea onset to sampling appears to affect the bacterial composition. Researchers should standardize times for fecal collection based on the time of diarrhea.
Collapse
Affiliation(s)
- Lynna Li
- Department of Clinical Studies, Ontario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
- Present address:
College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - David L. Renaud
- Department of Population Medicine, Ontario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | - Hanne M. Goetz
- Department of Population Medicine, Ontario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | - Emma Jessop
- Department of Clinical Studies, Ontario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | - Marcio C. Costa
- Faculté de Médecine Vétérinaire, Département de Biomédecine VétérinaireUniversity of MontrealSaint‐HyacintheQuebecCanada
| | - Lisa Gamsjäger
- Department of Population Health and Pathobiology, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Diego E. Gomez
- Department of Clinical Studies, Ontario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
7
|
Jaśkowski JM, Jaśkowski BM, Herudzińska M, Tul O, Ciorga M. Contemporary Knowledge on the Assessment of Temperament in Cattle and Its Impact on Production and Reproduction Including Some Immunological, Genetic and Metabolic Parameters. Animals (Basel) 2023; 13:1944. [PMID: 37370453 DOI: 10.3390/ani13121944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Temperament is associated with the well-being, health, production and reproduction of cattle. In order to increase the population of individuals with the desired temperament, its evaluation should be standardized and be made one of the obligatory elements of breeding and veterinary examination. A number of different tests are used for temperament assessment. In this article, the importance of temperament correlation with some metabolic, genetic, immunological, production and reproductive parameters have been shown, pointing at its influence on the economy and cattle handling. The most common methods for assessing the temperament of cattle are presented, including long-time scales of temperament assessment. At the same time, the relationship of the temperament of cattle with production efficiency, immunity and reproductive indicators has been shown, indicating that its correct assessment is an important aspect of the proper development of the herd and the associated economic growth.
Collapse
Affiliation(s)
- Jędrzej M Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Bartłomiej M Jaśkowski
- Department of Reproduction and Clinic of Farm Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-366 Wroclaw, Poland
| | - Magdalena Herudzińska
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Oleksandra Tul
- Department of Surgery and Obstetrics, Faculty of Veterinary Medicine, Poltava State Agrarian University, 36003 Poltava, Ukraine
| | - Marcin Ciorga
- Department of Public Health Protection and Animal Welfare, Institute for Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| |
Collapse
|
8
|
Effects of a farm-specific fecal microbial transplant (FMT) product on clinical outcomes and fecal microbiome composition in preweaned dairy calves. PLoS One 2022; 17:e0276638. [PMID: 36269743 PMCID: PMC9586405 DOI: 10.1371/journal.pone.0276638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Gastrointestinal disease (GI) is the most common illness in pre-weaned dairy calves. Therefore, effective strategies to manipulate the microbiome of dairy calves under commercial dairy operations are of great importance to improve animal health and reduce antimicrobial usage. The objective of this study was to develop a farm-specific FMT product and to investigate its effects on clinical outcomes and fecal microbial composition of dairy calves. The FMT product was derived from feces from healthy donors (5–24 days of age) raised in the same calf ranch facility as the FMT recipients. Healthy and diarrheic calves were randomly enrolled to a control (n = 115) or FMT (n = 112) treatment group (~36 g of processed fecal matter once daily for 3 days). Fecal samples were collected at enrollment and again 9 days later after the first FMT dose. Although the FMT product was rich in organisms typically known for their beneficial probiotic properties, the FMT therapy did not prevent or ameliorate GI disease in dairy calves. In fact, calves that received FMT were less likely to recover from GI disease, and more likely to die due to GI disease complications. Fecal microbial community analysis revealed an increase in the alpha-diversity in FMT calves; however, no major differences across treatment groups were observed in the beta-diversity analysis. Calves that received FMT had higher relative abundance of an uncultured organism of the genus Lactobacillus and Lactobacillus reuteri on day 10. Moreover, FMT calves had lower relative abundance of Clostridium nexile and Bacteroides vulgatus on day 10. Our results indicate the need to have an established protocol when developing FMT products, based on rigorous inclusion and exclusion criteria for the selection of FMT donors free of potential pathogens, no history of disease or antibiotic treatment.
Collapse
|
9
|
Temporal Changes in the Faecal Microbiota of Beef Cattle on Feedlot Placement. Animals (Basel) 2022; 12:ani12192500. [PMID: 36230241 PMCID: PMC9559285 DOI: 10.3390/ani12192500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 12/02/2022] Open
Abstract
The microbial communities that inhabit the intestinal tract play an important role in modulating health and productivity. Environmental stressors can impact microbial communities, which can significantly influence host physiology. Cattle are subjected to several environmental stressors when placed on feedlots, such as transportation stress, exposure to feedlot environments and change in diet and management. Exposure to these stressors could influence host gut microbiota, which in turn, could potentially influence host health and performance. The aim of the current study was to characterise the temporal changes that occur in intestinal microbiota as a consequence of feedlot placement by profiling 16s rRNA sequences in rectal faecal samples. When faecal microbiome profiles were compared in terms of relative abundances and alpha diversity metrics, the results showed significant, observable changes in profiles 2 days post-feedlot induction. Furthermore, beta-diversity analysis indicated that the phylogenetic similarity between samples significantly decreased on day 2 (PERMANOVA, p < 0.001). These trends were suggestive of a short-term reduction in microbial diversity coupled with decreased similarity between animals. These changes warrant further investigation and could provide opportunities for improved performance, health and even welfare of feedlot cattle in future.
Collapse
|
10
|
Fu Y, Gao H, Hou X, Chen Y, Xu K. Pretreatment with IPA ameliorates colitis in mice: Colon transcriptome and fecal 16S amplicon profiling. Front Immunol 2022; 13:1014881. [PMID: 36159803 PMCID: PMC9495931 DOI: 10.3389/fimmu.2022.1014881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
3-Indolepropionic acid (IPA) is a tryptophan metabolite that has anti-inflammatory properties. The present study try to investigate the phylactic effects of IPA on dextran sodium sulfate (DSS)-induced colitis mice. The results showed that IPA pretreatment ameliorated the DSS-induced decrease in growth performance, and intestinal damage and enhanced immunity in mice. RNA-seq analysis of mouse colon samples revealed that the differentially expressed genes (DEGs) were mainly enriched in immune-related pathways. 16S rRNA sequencing showed that IPA pretreatment ameliorated DSS-induced colonic microbiota dysbiosis. Moreover, the expression levels of gut immune genes were positively correlated with the relative abundance of several probiotics, such as Alloprevotella and Catenibacterium. In conclusion, IPA alleviates DSS-induced acute colitis in mice by regulating inflammatory cytokines, balancing the colonic microbiota and modulating the expression of genes related to inflammation, which would also provide a theoretical basis for IPA as a strategy to improve intestinal health.
Collapse
Affiliation(s)
- Yawei Fu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Hu Gao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiaohong Hou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yue Chen
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Kang Xu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Kang Xu,
| |
Collapse
|
11
|
Moustafa MAM, Chel HM, Thu MJ, Bawm S, Htun LL, Win MM, Oo ZM, Ohsawa N, Lahdenperä M, Mohamed WMA, Ito K, Nonaka N, Nakao R, Katakura K. Anthropogenic interferences lead to gut microbiome dysbiosis in Asian elephants and may alter adaptation processes to surrounding environments. Sci Rep 2021; 11:741. [PMID: 33436882 PMCID: PMC7803949 DOI: 10.1038/s41598-020-80537-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/16/2020] [Indexed: 01/04/2023] Open
Abstract
Human activities interfere with wild animals and lead to the loss of many animal populations. Therefore, efforts have been made to understand how wildlife can rebound from anthropogenic disturbances. An essential mechanism to adapt to environmental and social changes is the fluctuations in the host gut microbiome. Here we give a comprehensive description of anthropogenically induced microbiome alterations in Asian elephants (n = 30). We detected gut microbial changes due to overseas translocation, captivity and deworming. We found that microbes belonging to Planococcaceae had the highest contribution in the microbiome alterations after translocation, while Clostridiaceae, Spirochaetaceae and Bacteroidia were the most affected after captivity. However, deworming significantly changed the abundance of Flavobacteriaceae, Sphingobacteriaceae, Xanthomonadaceae, Weeksellaceae and Burkholderiaceae. These findings may provide fundamental ideas to help guide the preservation tactics and probiotic replacement therapies of a dysbiosed gut microbiome in Asian elephants. More generally, these results show the severity of anthropogenic activities at the level of gut microbiome, altering the adaptation processes to new environments and the subsequent capability to maintain normal physiological processes in animals.
Collapse
Affiliation(s)
- Mohamed Abdallah Mohamed Moustafa
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Hla Myet Chel
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
- Department of Pharmacology and Parasitology, University of Veterinary Science, Yezin, Nay Pyi Taw, 15013, Myanmar
| | - May June Thu
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
- Department of Food and Drug Administration, Ministry of Health and Sports, Zabu Thiri, Nay Pyi Taw, 15011, Myanmar
| | - Saw Bawm
- Department of Pharmacology and Parasitology, University of Veterinary Science, Yezin, Nay Pyi Taw, 15013, Myanmar
| | - Lat Lat Htun
- Department of Pharmacology and Parasitology, University of Veterinary Science, Yezin, Nay Pyi Taw, 15013, Myanmar
| | - Mar Mar Win
- Rector Office, University of Veterinary Science, Yezin, Nay Pyi Taw, 15013, Myanmar
| | - Zaw Min Oo
- Department of Extraction, Myanma Timber Enterprise, Insein, Yangon, Myanmar
| | | | - Mirkka Lahdenperä
- Department of Public Health, Turku University Hospital, University of Turku, Turku, Finland
| | | | - Kimihito Ito
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Nariaki Nonaka
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Ryo Nakao
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan.
| | - Ken Katakura
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| |
Collapse
|
12
|
Analysis of Hindgut Microbiome of Sheep and Effect of Different Husbandry Conditions. Animals (Basel) 2020; 11:ani11010004. [PMID: 33375098 PMCID: PMC7822195 DOI: 10.3390/ani11010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 11/17/2022] Open
Abstract
The microbiome is now seen as an important resource to understand animal health and welfare in many species. However, there are few studies aiming at identifying the association between fecal microbiome composition and husbandry conditions in sheep. A wide range of stressors associated with management and housing of animals increases the hypothalamic–pituitary axis activity, with growing evidence that the microbiome composition can be modified. Therefore, the purpose of the present study was to describe the core microbiome in sheep, characterized using 16S rRNA gene sequencing, and to explore whether exposure to stressful husbandry conditions changed sheep hindgut microbiome composition. Sheep (n = 10) were divided in two groups: isolated group (individually separated for 3 h/day) and control group (housed in the home pen for the entire trial period). Sheep core microbiome was dominated by Firmicutes (43.6%), Bacteroidetes (30.38%), Proteobacteria (10.14%), and Verrucomicrobia (7.55%). Comparative results revealed few operational taxonomic units (OTUs) with significantly different relative abundance between groups. Chao1, abundance-based coverage estimator (ACE), and Fisher’s alpha indices did not show differences between groups. OTU-based Bray–Curtis distances between groups were not significant (p-value = 0.07). In conclusion, these results describing the core microbiome of sheep do not suggest a strong effect of stressful husbandry conditions on microbial composition.
Collapse
|
13
|
Administering an Appeasing Substance to Gir × Holstein Female Dairy Calves on Pre-Weaning Performance and Disease Incidence. Animals (Basel) 2020; 10:ani10111961. [PMID: 33114453 PMCID: PMC7694030 DOI: 10.3390/ani10111961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Ruminants often face stressful situations throughout their productive lives. More specifically, pre-weaning dairy calves are exposed to novel environments, feedstuffs, and pathogens that affect their health and performance. Hence, alternatives that reduce stress and promote growth of pre-weaning dairy calves are warranted. Therefore, this study evaluated the effects of biweekly bovine appeasing substance (BAS) administration on performance and disease incidence in dairy Gir × Holstein female calves prior to weaning. (2) Methods: At birth, 140 female Gir × Holstein calves were randomly assigned to receive BAS (SecureCattle; (IRSEA Group, Quartier Salignan, France; n = 70) or placebo (BAS carrier, diethylene glycol monoethyl ether; CON; n = 70) biweekly until weaning (70 days of age). Calves were allocated into individual housing at random, with no physical contact between treatments to avoid cross-contamination. Experimental treatments (5 mL) were applied topically to the nuchal skin area of each calf. Throughout the experimental period, all animals were observed daily for medical conditions (diarrhea, pneumonia, and others), medical/pharmacological interventions were recorded, and the costs related to these procedures were analyzed. Concurrently with treatment application, calves were individually weighed, and data were analyzed using animal as the experimental unit. (3) Results: Treatment × day and treatment × period (14-day interval) interactions were observed for body weight (BW) and average daily gain (ADG; p ≤ 0.05), respectively. Calves receiving BAS had greater BW at weaning (p = 0.02) and tended to have a greater BW on day 56 (p = 0.06). Similarly, ADG was greater for BAS from days 42 to 56 (p = 0.04) and tended to be greater from days 56 to weaning (p = 0.10). No differences were observed on the overall occurrence of diseases (p = 0.92), whereas the most common observed diseases were diarrhea and pneumonia. The incidence and mean age at which animals were detected with these diseases did not differ (p ≥ 0.46). Nonetheless, CON calves detected with disease had a reduced ADG vs. BAS-administered counterparts (p < 0.01). No differences were observed between disease-diagnosed BAS vs. healthy CON, but healthy BAS had a greater ADG vs. healthy CON (p = 0.03). A treatment effect was observed for the cost per head of each pharmacological intervention (p = 0.05). (4) Conclusions: In summary, BAS administration at a 14-day interval improved performance and reduced the costs of pharmacological interventions of pre-weaning Gir × Holstein dairy calves.
Collapse
|
14
|
Kretschmann J, Scherf L, Fischer ML, Kaiser M, Müller H, Spilke J, Mielenz N, Möbius G, Bittner L, Steinhöfel I, Baumgartner W, Starke A. [Effect of different pain management protocols on the health status of German Holstein heifer calves undergoing hot iron disbudding]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2020; 48:318-326. [PMID: 33080655 DOI: 10.1055/a-1229-8393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Hot iron disbudding of calves is a stressful and painful procedure. Previous parts of an ongoing comprehensive study on disbudding in dairy calves dealt with various types of pain management and the direct effects of the procedure on physiological, biochemical and behavioral processes. The goal of this study part was to investigate the effects of the disbudding procedure per se, pain management and the age of the calf at the time of disbudding on the health status of the calf. MATERIALS AND METHODS A total of 337 German Holstein heifer calves were used for this prospective, randomized and triple-blinded study. The calves were disbudded at 4-10 days or at 15-28 days of age. Each calf was randomly assigned to one of 9 treatment groups, which differed with respect to pain management (sedation, local anesthesia, nonsteroidal antiinflammatory drugs, placebo). All but the sham-disbudded calves underwent hot iron disbudding and all calves were monitored clinically before and until 4 weeks after the procedure. The findings were analyzed using valuation scores and a threshold model of the SAS software. RESULTS Disbudding exhibited adverse effects on respiratory health. Calves undergoing sham disbudding experienced the lowest incidence of respiratory disease and calves that did not receive any anesthesia or pain medication displayed the highest frequency. All treatments showed mitigating effects on the incidence of respiratory tract diseases, however the effects varied with the type of pain management. Fever was less common in calves that were disbudded early in life than calves that underwent disbudding at an older age. CONCLUSION Disbudding of young calves poses a risk to respiratory health. If breeding of polled offspring is not possible or when farming of horned cattle is not feasible, the risk of respiratory disease induced by disbudding can be minimized by adequate pain management. Disbudding of very young calves is feasible and recommended. CLINICAL RELEVANCE The present study underlines the importance of optimal pain management during disbudding of dairy calves.
Collapse
Affiliation(s)
| | - Lisa Scherf
- Klinik für Klauentiere, Veterinärmedizinische Fakultät, Universität Leipzig
| | - Marie Luise Fischer
- Institut für Tierhygiene und Öffentliches Veterinärwesen, Veterinärmedizinische Fakultät, Universität Leipzig
| | - Matthias Kaiser
- Klinik für Klauentiere, Veterinärmedizinische Fakultät, Universität Leipzig
| | - Hendrik Müller
- Klinik für Klauentiere, Veterinärmedizinische Fakultät, Universität Leipzig
| | - Joachim Spilke
- Institut für Agrar- und Ernährungswissenschaften, Arbeitsgruppe Biometrie und Agrarinformatik, Martin-Luther-Universität Halle-Wittenberg
| | - Norbert Mielenz
- Institut für Agrar- und Ernährungswissenschaften, Arbeitsgruppe Biometrie und Agrarinformatik, Martin-Luther-Universität Halle-Wittenberg
| | - Gerd Möbius
- Institut für Tierhygiene und Öffentliches Veterinärwesen, Veterinärmedizinische Fakultät, Universität Leipzig
| | - Lilli Bittner
- Klinik für Klauentiere, Veterinärmedizinische Fakultät, Universität Leipzig
| | - Ilka Steinhöfel
- Landesamt für Umwelt, Landwirtschaft und Geologie, Abteilung Landwirtschaft
| | - Walter Baumgartner
- Universitätsklinik für Wiederkäuer, Veterinärmedizinische Universität Wien
| | - Alexander Starke
- Klinik für Klauentiere, Veterinärmedizinische Fakultät, Universität Leipzig
| |
Collapse
|