1
|
Svecla M, Li-Gao R, Falck D, Bonacina F. N-glycosylation signature and its relevance in cardiovascular immunometabolism. Vascul Pharmacol 2025; 159:107474. [PMID: 39988310 DOI: 10.1016/j.vph.2025.107474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/21/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Glycosylation is a post-translational modification in which complex, branched carbohydrates (glycans) are covalently attached to proteins or lipids. Asparagine-link protein (N-) glycosylation is among the most common types of glycosylation. This process is essential for many biological and cellular functions, and impaired N-glycosylation has been widely implicated in inflammation and cardiovascular diseases. Different technical approaches have been used to increase the coverage of the N-glycome, revealing a high level of complexity of glycans, regarding their structure and attachment site on a protein. In this context, new insights from genomic studies have revealed a genetic regulation of glycosylation, linking genetic variants to total plasma N-glycosylation and N-glycosylation of immunoglobulin G (IgG). In addition, RNAseq approaches have revealed a degree of transcriptional regulation for the glycoenzymes involved in glycan structure. However, our understanding of the association between cardiovascular risk and glycosylation, determined by a complex overlay of genetic and environmental factors, remains limited. Mostly, plasma N-glycosylation profiling in different human cohorts or experimental investigations of specific enzyme functions in models of atherosclerosis have been reported. Most of the uncovered glycosylation associations with pathological mechanisms revolve around the recruitment of inflammatory cells to the vessel wall and lipoprotein metabolism. This review aims to summarise insights from omics studies into the immune and metabolic regulation of N-glycosylation and its association with cardiovascular and metabolic disease risk and to provide mechanistic insights from experimental models. The combination of emerging techniques for glycomics and glycoproteomics with already achieved omics approaches to map the transcriptomic, epigenomic, and metabolomic profile at single-cell resolution will deepen our understanding of the molecular regulation of glycosylation as well as identify novel biomarkers and targets for cardiovascular disease prevention and treatment.
Collapse
Affiliation(s)
- Monika Svecla
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - David Falck
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Glycomics Group, Leiden, the Netherlands
| | - Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Milan, Italy.
| |
Collapse
|
2
|
Oh MJ, Seo Y, Seo N, An HJ. MS-Based Glycome Characterization of Biotherapeutics With N- and O-Glycosylation. MASS SPECTROMETRY REVIEWS 2025. [PMID: 39871420 DOI: 10.1002/mas.21925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/29/2025]
Abstract
With the increasing FDA approvals of glycoprotein-based biotherapeutics including monoclonal antibodies, cytokines, and enzyme treatments, the significance of glycosylation in modulating drug efficacy and safety becomes central. This review highlights the crucial role of mass spectrometry (MS) in elucidating the glycome of biotherapeutics that feature N- and O-glycosylation, directly addressing the challenges posed by glycosylation complexity and heterogeneity. We have detailed the advancements and application of MS technologies including MALDI-TOF MS, LC-MS, and tandem MS in the precise characterization of glycoprotein therapeutics. Emphasizing MS-based strategies for detecting immunogenic glycans and ensuring batch-to-batch consistency, this review highlights targeted approaches for glycoprotein, glycopeptide, and glycan analysis tailored to meet the stringent analytical and regulatory demands of biopharmaceutical development.
Collapse
Affiliation(s)
- Myung Jin Oh
- Asia-Pacific Glycomics Reference Site, Daejeon, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| | - Youngsuk Seo
- Life Science Institute, Institute for Basic Science, Daejeon, Korea
| | - Nari Seo
- Asia-Pacific Glycomics Reference Site, Daejeon, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| | - Hyun Joo An
- Asia-Pacific Glycomics Reference Site, Daejeon, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| |
Collapse
|
3
|
Hanamatsu H, Yokota I, Kurogochi M, Akasaka-Manya K, Miura N, Manya H, Endo T, Nishikaze T, Furukawa JI, Tanaka K. Direct derivatization of sialic acids and mild β-elimination for linkage-specific sialyl O-glycan analysis. Anal Chim Acta 2024; 1318:342945. [PMID: 39067924 DOI: 10.1016/j.aca.2024.342945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND In sharp contrast with analysis of N-glycan that can be prepared by PNGase F, O-glycan analysis remains challenging due to a lack of versatile and simple procedures, especially those mediating cleavage of O-glycans from proteins. Most N-glycans and O-glycans are modified with sialic acids at the non-reducing end and their glycosidic linkages are labile, making it difficult to measure glycans by mass spectrometric analysis. In addition, sialic acid residues present on glycan chains via α2,3-, α2,6-, and α2,8-linkages as structural isomers. RESULTS In this study, we firstly established a direct and linkage-specific derivatization method for sialylated O-glycans on proteins via linkage-specific lactone-opening aminolysis. In this procedure, labile sialylated glycans were not only stabilized, but also allowed distinguishing between sialyl linkages. Furthermore, we revealed that general reductive β-elimination was not useful for O-glycan cleavages with undesirable degradations of resulting methyl amides. Using β-elimination in the presence of pyrazolone (PMP), with low pH despite alkali base concentration, SALSA-derivatized O-glycans could be cleaved with minimal degradations. Cleaved and PMP-labeled O-glycans could be efficiently prepared in an open reaction system at high temperature (evaporative BEP reaction) and detected by simple liquid-phase extraction. Moreover, in the evaporative BEP reaction by changing the alkali solution with LiOH, the lithiated O-glycans could be observed and provided a lot of fragment information reflecting the complex structure of the O-glycans. SIGNIFICANCE Direct sialic acid linkage-specific derivatization of O-glycans on glycoproteins is simple protocol containing in-solution aminolysis-SALSA and acetonitrile precipitation for removal of excess reagents. Evaporative β-elimination with pyrazolone makes possible intact O-linked glycan analysis just by liquid-phase extraction. These analytical methods established by the appropriate combination of direct-SALSA and evaporative β-elimination will facilitate O-glycomic studies in various biological samples.
Collapse
Affiliation(s)
- Hisatoshi Hanamatsu
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8601, Japan
| | - Ikuko Yokota
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8601, Japan
| | - Masaki Kurogochi
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8601, Japan; Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, Tokyo, 173-0003, Japan
| | - Keiko Akasaka-Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Nobuaki Miura
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8601, Japan
| | - Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Takashi Nishikaze
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, 604-8511, Japan.
| | - Jun-Ichi Furukawa
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8601, Japan; Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan.
| | - Koichi Tanaka
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, 604-8511, Japan
| |
Collapse
|
4
|
de Ram C, van der Lugt B, Elzinga J, Geerlings S, Steegenga WT, Belzer C, Schols HA. Revealing Glycosylation Patterns in In Vitro-Produced Mucus Exposed to Pasteurized Mucus-Associated Intestinal Microbes by MALDI-TOF-MS and PGC-LC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15345-15356. [PMID: 38932522 PMCID: PMC11247495 DOI: 10.1021/acs.jafc.4c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/28/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
The human intestinal mucus layer protects against pathogenic microorganisms and harmful substances, whereas it also provides an important colonization niche for mutualistic microbes. The main functional components of mucus are heavily glycosylated proteins, called mucins. Mucins can be cleaved and utilized by intestinal microbes. The mechanisms between intestinal microbes and the regulation of mucin glycosylation are still poorly understood. In this study, in vitro mucus was produced by HT29-MTX-E12 cells under Semi-Wet interface with Mechanical Stimulation. Cells were exposed to pasteurized nonpathogenic bacteria Akkermansia muciniphila, Ruminococcus gnavus, and Bacteroides fragilis to evaluate influence on glycosylation patterns. Following an optimized protocol, O- and N-glycans were efficiently and reproducibly released, identified, and semiquantified using MALDI-TOF-MS and PGC-LC-MS/MS. Exposure of cells to bacteria demonstrated increased diversity of sialylated O-glycans and increased abundance of high mannose N-glycans in in vitro produced mucus. Furthermore, changes in glycan ratios were observed. It is speculated that bacterial components interact with the enzymatic processes in glycan production and that pasteurized bacteria influence glycosyltransferases or genes involved. These results highlight the influence of pasteurized bacteria on glycosylation patterns, stress the intrinsic relationship between glycosylation and microbiota, and show the potential of using in vitro produced mucus to study glycosylation behavior.
Collapse
Affiliation(s)
- Carol de Ram
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Benthe van der Lugt
- Human
Nutrition and Health, Wageningen University
& Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | - Janneke Elzinga
- Laboratory
of Microbiology, Wageningen University &
Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | - Sharon Geerlings
- Laboratory
of Microbiology, Wageningen University &
Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | - Wilma T. Steegenga
- Human
Nutrition and Health, Wageningen University
& Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | - Clara Belzer
- Laboratory
of Microbiology, Wageningen University &
Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | - Henk A. Schols
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
5
|
Safferthal M, Bechtella L, Zappe A, Vos GM, Pagel K. Labeling of Mucin-Type O-Glycans for Quantification Using Liquid Chromatography and Fluorescence Detection. ACS MEASUREMENT SCIENCE AU 2024; 4:223-230. [PMID: 38645579 PMCID: PMC11027200 DOI: 10.1021/acsmeasuresciau.3c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 04/23/2024]
Abstract
O-glycosylation is a common post-translational modification that is essential for the defensive properties of mucus barriers. Incomplete and altered O-glycosylation is often linked to severe diseases, such as cancer, cystic fibrosis, and chronic obstructive pulmonary disease. Originating from a nontemplate-driven biosynthesis, mucin-type O-glycan structures are very complex. They are often present as heterogeneous mixtures containing multiple isomers. Therefore, the analysis of complex O-glycan mixtures usually requires hyphenation of orthogonal techniques such as liquid chromatography (LC), ion mobility spectrometry, and mass spectrometry (MS). However, MS-based techniques are mainly qualitative. Moreover, LC separation of O-glycans often lacks reproducibility and requires sophisticated data treatment and analysis. Here we present a mucin-type O-glycomics analysis workflow that utilizes hydrophilic interaction liquid chromatography for separation and fluorescence labeling for detection and quantification. In combination with mass spectrometry, a detailed analysis on the relative abundance of specific mucin-type O-glycan compositions and features, such as fucose, sialic acids, and sulfates, is performed. Furthermore, the average number of monosaccharide units of O-glycans in different samples was determined. To demonstrate universal applicability, the method was tested on mucins from different tissue types and mammals, such as bovine submaxillary mucins, porcine gastric mucins, and human milk mucins. To account for day-to-day retention time shifts in O-glycan separations and increase the comparability between different instruments and laboratories, we included fluorescently labeled dextran ladders in our workflow. In addition, we set up a library of glucose unit values for all identified O-glycans, which can be used to simplify the identification process of glycans in future analyses.
Collapse
Affiliation(s)
- Marc Safferthal
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Department
of Biology, Chemistry, Pharmacy, Freie Universität
Berlin, Altensteinstraße
23a, 14195 Berlin, Germany
| | - Leïla Bechtella
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Department
of Biology, Chemistry, Pharmacy, Freie Universität
Berlin, Altensteinstraße
23a, 14195 Berlin, Germany
| | - Andreas Zappe
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Department
of Biology, Chemistry, Pharmacy, Freie Universität
Berlin, Altensteinstraße
23a, 14195 Berlin, Germany
| | - Gaël M. Vos
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Department
of Biology, Chemistry, Pharmacy, Freie Universität
Berlin, Altensteinstraße
23a, 14195 Berlin, Germany
| | - Kevin Pagel
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Department
of Biology, Chemistry, Pharmacy, Freie Universität
Berlin, Altensteinstraße
23a, 14195 Berlin, Germany
| |
Collapse
|
6
|
Helms A, Brodbelt JS. Mass Spectrometry Strategies for O-Glycoproteomics. Cells 2024; 13:394. [PMID: 38474358 PMCID: PMC10930906 DOI: 10.3390/cells13050394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Glycoproteomics has accelerated in recent decades owing to numerous innovations in the analytical workflow. In particular, new mass spectrometry strategies have contributed to inroads in O-glycoproteomics, a field that lags behind N-glycoproteomics due to several unique challenges associated with the complexity of O-glycosylation. This review will focus on progress in sample preparation, enrichment strategies, and MS/MS techniques for the identification and characterization of O-glycoproteins.
Collapse
Affiliation(s)
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA;
| |
Collapse
|
7
|
Kameyama A. Eliminative Oximation of O-Glycans from Mucins. Methods Mol Biol 2024; 2763:151-158. [PMID: 38347408 DOI: 10.1007/978-1-0716-3670-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The large variety and high concentration of O-glycans are characteristic properties of mucins and play a crucial role in their unique functions. Analyzing the O-glycans of mucins is essential for investigating the functions of mucins. Eliminative oximation is an aqueous reaction that can be used to obtain O-glycan oximes from mucins. Using diazabicyclo undec-7ene (DBU) as a base, an organic superbase that can be removed with an organic solvent during solid-phase extraction, and adding hydroxylamine to the reaction mixture in advance, the O-glycans released from the mucin are immediately converted to the corresponding glycan oximes. The glycan oxime can then be fluorescently labeled with a fluorescent labeling reagent and 2-picoline borane via reductive amination. O-glycans that have been fluorescently labeled can be analyzed using conventional HPLC techniques.
Collapse
Affiliation(s)
- Akihiko Kameyama
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| |
Collapse
|
8
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
9
|
King CD, Kapp KL, Arul AB, Choi MJ, Robinson RAS. Advancements in automation for plasma proteomics sample preparation. Mol Omics 2022; 18:828-839. [PMID: 36048090 PMCID: PMC9879274 DOI: 10.1039/d2mo00122e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Automation is necessary to increase sample processing throughput for large-scale clinical analyses. Replacement of manual pipettes with robotic liquid handler systems is especially helpful in processing blood-based samples, such as plasma and serum. These samples are very heterogenous, and protein expression can vary greatly from sample-to-sample, even for healthy controls. Detection of true biological changes requires that variation from sample preparation steps and downstream analytical detection methods, such as mass spectrometry, remains low. In this mini-review, we discuss plasma proteomics protocols and the benefits of automation towards enabling detection of low abundant proteins and providing low sample error and increased sample throughput. This discussion includes considerations for automation of major sample depletion and/or enrichment strategies for plasma toward mass spectrometry detection.
Collapse
Affiliation(s)
- Christina D King
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Kathryn L Kapp
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Albert B Arul
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Min Ji Choi
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Renã A S Robinson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37212, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232, USA
| |
Collapse
|
10
|
A semi-automated, high throughput approach for O-glycosylation profiling of in vitro established cancer cell lines by MALDI-FT-ICR MS. Glycoconj J 2021; 38:747-756. [PMID: 34283362 PMCID: PMC8821499 DOI: 10.1007/s10719-021-10003-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/04/2021] [Accepted: 06/02/2021] [Indexed: 12/30/2022]
Abstract
The study of protein O-glycosylation is important in biological research as O-glycans have been reported to regulate a multitude of molecular and cell biology processes occurring in cancer. It is known that alterations in O-glycosylation are involved in the development and progression of cancer. Their easy accessibility makes in vitro established cell lines suitable and useful models for studying biological mechanisms in disease. However, the O-glycosylation analysis of large numbers of samples, as required in systems biology and biomarker discovery studies, is often challenging. In the present study, O-glycans from three human colorectal cancer cell lines and two human pancreatic cancer cell lines were released by semi-automated, high throughput reductive β-elimination and analysed using ultrahigh resolution MALDI-FT-ICR MS. Automated data integration and processing was performed using MassyTools, where the analyte was automatically included for relative quantitation based on a range of selection criteria including signal-to-noise ratio, mass error and isotopic pattern quality scores. A total of 126 O-glycan compositions, ranging from a single monosaccharide to large oligosaccharides exhibiting complex glycan motifs, were detected. The use of ultrahigh resolution MALDI-FTICR MS enabled glycan identification and quantitation in the matrix region of the spectrum. This approach has the potential to be used for O-glycosylation analysis of large numbers of samples, such as patient sample cohorts.
Collapse
|
11
|
Towards a more complete glycome: Advances in ion chromatography-mass spectrometry (IC-MS) for improved separation and analysis of carbohydrates. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1175:122719. [PMID: 34020151 DOI: 10.1016/j.jchromb.2021.122719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 11/23/2022]
Abstract
To date, few tools are available for the analysis of the glycome without derivatization, a process which is known to introduce issues such as differential loss of sialic acid and incomplete labeling. We have previously reported the use of ion chromatography-mass spectrometry (IC-MS) to analyze native sialylated and sulfated glycans. Here, we introduce improvements to IC column technology, enabling the separation of neutral glycans while maintaining charge separation capabilities. When implemented in an IC-MS workflow, this enables the structural characterization of a broad array of chemically distinct glycans. With the newly developed IC column and modified IC-MS instrumentation configuration, we qualitatively investigated O-glycome profiles in bovine fetuin and porcine gastric mucins. The improved chromatographic resolution in combination with high-resolution MS data present a powerful tool for glycan structural identification.
Collapse
|
12
|
Čaval T, de Haan N, Konstantinidi A, Vakhrushev SY. Quantitative characterization of O-GalNAc glycosylation. Curr Opin Struct Biol 2021; 68:135-141. [PMID: 33508547 DOI: 10.1016/j.sbi.2020.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022]
Abstract
O-GalNAc type glycosylation is an abundant and complex protein modification. Recent developments in mass spectrometry resulted in significant success in quantitative analysis of O-GalNAc glycosylation. The analysis of released O-GalNAc type glycans expanded our horizons of understanding the glycome of various biological models. The site-specific analysis of glycosylation micro-heterogeneity of purified proteins opened perspectives for the improved design of glycoprotein therapeutics. Advanced gene editing and chemical technologies applied to O-glycoproteomics enabled to identify O-GalNAc glycosylation at unprecedented depth. Progress in the analysis of intact glycoproteins under native and reduced conditions enabled the monitoring of glycosylation proteoform variants. Despite of the astonishing results in quantitative O-GalNAc glycoproteomics, site-specific mapping of the full O-GalNAc structural repertoire in complex samples is yet a long way off. Here, we summarize the most common quantitative strategies in O-GalNAc glycoproteomics, review recent progress and discuss benefits and limitations of the various approaches in the field.
Collapse
Affiliation(s)
- Tomislav Čaval
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Noortje de Haan
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Andriana Konstantinidi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
13
|
Sjögren J, Lood R, Nägeli A. On enzymatic remodeling of IgG glycosylation; unique tools with broad applications. Glycobiology 2020; 30:254-267. [PMID: 31616919 PMCID: PMC7109354 DOI: 10.1093/glycob/cwz085] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/05/2019] [Accepted: 09/30/2019] [Indexed: 01/14/2023] Open
Abstract
The importance of IgG glycosylation has been known for many years not only by scientists in glycobiology but also by human pathogens that have evolved specific enzymes to modify these glycans with fundamental impact on IgG function. The rise of IgG as a major therapeutic scaffold for many cancer and immunological indications combined with the availability of unique enzymes acting specifically on IgG Fc-glycans have spurred a range of applications to study this important post-translational modification on IgG. This review article introduces why the IgG glycans are of distinguished interest, gives a background on the unique enzymatic tools available to study the IgG glycans and finally presents an overview of applications utilizing these enzymes for various modifications of the IgG glycans. The applications covered include site-specific glycan transglycosylation and conjugation, analytical workflows for monoclonal antibodies and serum diagnostics. Additionally, the review looks ahead and discusses the importance of O-glycosylation for IgG3, Fc-fusion proteins and other new formats of biopharmaceuticals.
Collapse
Affiliation(s)
| | - Rolf Lood
- Genovis AB, Scheelevägen 2, 223 63 Lund, Sweden
| | | |
Collapse
|
14
|
Heijs B, Potthoff A, Soltwisch J, Dreisewerd K. MALDI-2 for the Enhanced Analysis of N-Linked Glycans by Mass Spectrometry Imaging. Anal Chem 2020; 92:13904-13911. [PMID: 32975931 PMCID: PMC7581013 DOI: 10.1021/acs.analchem.0c02732] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
N-glycans are important players in a variety of
pathologies including different types of cancer, (auto)immune diseases,
and also viral infections. Matrix-assisted laser desorption/ionization
mass spectrometry (MALDI-MS) is an important tool for high-throughput N-glycan profiling and, upon use of tandem MS, for structure
determination. By use of MALDI-MS imaging (MSI) in combination with
PNGase F treatment, also spatially correlated N-glycan
profiling from tissue sections becomes possible. Here we coupled laser-induced
postionization, or MALDI-2, to a trapped ion mobility quadrupole time-of-flight
mass spectrometer (timsTOF fleX MALDI-2, Bruker Daltonics). We demonstrate
that with MALDI-2 the sensitivity for the detection of molecular [M
– H]− species of N-glycans
increased by about 3 orders of magnitude. Compared to the current
gold standard, the positive ion mode analysis of [M + Na]+ adducts, a sensitivity increase by about a factor of 10 is achieved.
By exploiting the advantageous fragmentation behavior of [M –
H]− ions, exceedingly rich structural information
on the composition of complex N-glycans was moreover
obtained directly from thin tissue sections of human cerebellum and
upon use of low-energy collision-induced dissociation tandem MS. In
another set of experiments, in this case by use of a modified Synapt
G2-S QTOF mass spectrometer (Waters), we investigated the influence
of relevant input parameters, in particular pressure of the N2 cooling gas in the ion source, delay between the two laser
pulses, and that of their pulse energies. In this way, analytical
conditions were identified at which molecular ion abundances were
maximized and fragmentation reactions minimized. The use of negative
ion mode MALDI-2-MSI could constitute a valuable tool in glycobiology
research.
Collapse
Affiliation(s)
- Bram Heijs
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany.,Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Alexander Potthoff
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Jens Soltwisch
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Domagkstr. 3, 48149 Münster, Germany
| |
Collapse
|
15
|
Duivelshof BL, Murisier A, Camperi J, Fekete S, Beck A, Guillarme D, D'Atri V. Therapeutic Fc-fusion proteins: Current analytical strategies. J Sep Sci 2020; 44:35-62. [PMID: 32914936 DOI: 10.1002/jssc.202000765] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Fc-Fusion proteins represent a successful class of biopharmaceutical products, with already 13 drugs approved in the European Union and United States as well as three biosimilar versions of etanercept. Fc-Fusion products combine tailored pharmacological properties of biological ligands, together with multiple functions of the fragment crystallizable domain of immunoglobulins. There is a great diversity in terms of possible biological ligands, including the extracellular domains of natural receptors, functionally active peptides, recombinant enzymes, and genetically engineered binding constructs acting as cytokine traps. Due to their highly diverse structures, the analytical characterization of Fc-Fusion proteins is far more complex than that of monoclonal antibodies and requires the use and development of additional product-specific methods over conventional generic/platform methods. This can be explained, for example, by the presence of numerous sialic acids, leading to high diversity in terms of isoelectric points and complex glycosylation profiles including multiple N- and O-linked glycosylation sites. In this review, we highlight the wide range of analytical strategies used to fully characterize Fc-fusion proteins. We also present case studies on the structural assessment of all commercially available Fc-fusion proteins, based on the features and critical quality attributes of their ligand-binding domains.
Collapse
Affiliation(s)
- Bastiaan L Duivelshof
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Amarande Murisier
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Julien Camperi
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Alain Beck
- IRPF - Centre d'Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Affiliation(s)
- Hayden Wilkinson
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and Training, Blackrock, Dublin, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Dublin, Ireland
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and Training, Blackrock, Dublin, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Illiano A, Pinto G, Melchiorre C, Carpentieri A, Faraco V, Amoresano A. Protein Glycosylation Investigated by Mass Spectrometry: An Overview. Cells 2020; 9:E1986. [PMID: 32872358 PMCID: PMC7564411 DOI: 10.3390/cells9091986] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
The protein glycosylation is a post-translational modification of crucial importance for its involvement in molecular recognition, protein trafficking, regulation, and inflammation. Indeed, abnormalities in protein glycosylation are correlated with several disease states such as cancer, inflammatory diseases, and congenial disorders. The understanding of cellular mechanisms through the elucidation of glycan composition encourages researchers to find analytical solutions for their detection. Actually, the multiplicity and diversity of glycan structures bond to the proteins, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies make their detection much trickier than other kinds of biopolymers. An overview of the most prominent techniques based on mass spectrometry (MS) for protein glycosylation (glycoproteomics) studies is here presented. The tricks and pre-treatments of samples are discussed as a crucial step prodromal to the MS analysis to improve the glycan ionization efficiency. Therefore, the different instrumental MS mode is also explored for the qualitative and quantitative analysis of glycopeptides and the glycans structural composition, thus contributing to the elucidation of biological mechanisms.
Collapse
Affiliation(s)
- Anna Illiano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
- CEINGE Advanced Biotechnology, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Chiara Melchiorre
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
- Istituto Nazionale Biostrutture e Biosistemi—Consorzio Interuniversitario, Viale delle Medaglie d’Oro, 305, 00136 Rome, Italy
| |
Collapse
|
18
|
Kim J, Ryu C, Ha J, Lee J, Kim D, Ji M, Park CS, Lee J, Kim DK, Kim HH. Structural and Quantitative Characterization of Mucin-Type O-Glycans and the Identification of O-Glycosylation Sites in Bovine Submaxillary Mucin. Biomolecules 2020; 10:biom10040636. [PMID: 32326134 PMCID: PMC7226346 DOI: 10.3390/biom10040636] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Bovine submaxillary mucin (BSM) is a gel-forming glycoprotein polymer, and Ser/Thr-linked glycans (O-glycans) are important in regulating BSM's viscoelasticity and polymerization. However, details of O-glycosylation have not been reported. This study investigates the structural and quantitative characteristics of O-glycans and identifies O-glycosylation sites in BSM using liquid chromatography-tandem mass spectrometry. The O-glycans (consisting of di- to octa-saccharides) and their quantities (%) relative to total O-glycans (100%; 1.1 pmol per 1 μg of BSM) were identified with 14 major (>1.0%), 12 minor (0.1%-1.0%), and eight trace (<0.1%) O-glycans, which were characterized based on their constituents (sialylation (14 O-glycans; 81.9%, sum of relative quantities of each glycan), non-sialylation (20; 18.1%), fucosylation (20; 17.5%), and terminal-galactosylation (6; 3.6%)) and six core structure types [Gal-GalNAc, Gal-(GlcNAc)GalNAc, GlcNAc-GalNAc, GlcNAc-(GlcNAc)GalNAc, and GalNAc-GalNAc]. O-glycosylation sites were identified using O-glycopeptides (bold underlined; 56SGETRTSVI, 259SHSSSGRSRTI, 272GSPSSVSSAEQI, 307RPSYGAL, 625QTLGPL, 728TMTTRTSVVV, and 1080RPEDNTAVA) obtained from proteolytic BSM; these sites are in the four domains of BSM. The gel-forming mucins share common domain structures and glycosylation patterns; these results could provide useful information on mucin-type O-glycans. This is the first study to characterize O-glycans and identify O-glycosylation sites in BSM.
Collapse
Affiliation(s)
- Jihye Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (J.K.); (C.R.); (J.H.); (J.L.); (D.K.); (M.J.); (C.S.P.); (J.L.)
| | - Changsoo Ryu
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (J.K.); (C.R.); (J.H.); (J.L.); (D.K.); (M.J.); (C.S.P.); (J.L.)
| | - Jongkwan Ha
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (J.K.); (C.R.); (J.H.); (J.L.); (D.K.); (M.J.); (C.S.P.); (J.L.)
| | - Junmyoung Lee
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (J.K.); (C.R.); (J.H.); (J.L.); (D.K.); (M.J.); (C.S.P.); (J.L.)
| | - Donghwi Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (J.K.); (C.R.); (J.H.); (J.L.); (D.K.); (M.J.); (C.S.P.); (J.L.)
| | - Minkyoo Ji
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (J.K.); (C.R.); (J.H.); (J.L.); (D.K.); (M.J.); (C.S.P.); (J.L.)
| | - Chi Soo Park
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (J.K.); (C.R.); (J.H.); (J.L.); (D.K.); (M.J.); (C.S.P.); (J.L.)
| | - Jaeryong Lee
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (J.K.); (C.R.); (J.H.); (J.L.); (D.K.); (M.J.); (C.S.P.); (J.L.)
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- Correspondence: (D.K.K.); (H.H.K.); Tel.: +82-02-820-5610 (D.K.K.); +82-02-820-5612 (H.H.K.)
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (J.K.); (C.R.); (J.H.); (J.L.); (D.K.); (M.J.); (C.S.P.); (J.L.)
- Correspondence: (D.K.K.); (H.H.K.); Tel.: +82-02-820-5610 (D.K.K.); +82-02-820-5612 (H.H.K.)
| |
Collapse
|
19
|
Zhang T, Madunić K, Holst S, Zhang J, Jin C, Ten Dijke P, Karlsson NG, Stavenhagen K, Wuhrer M. Development of a 96-well plate sample preparation method for integrated N- and O-glycomics using porous graphitized carbon liquid chromatography-mass spectrometry. Mol Omics 2020; 16:355-363. [PMID: 32281997 DOI: 10.1039/c9mo00180h] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Changes in glycosylation signatures of cells have been associated with pathological processes in cancer as well as infectious and autoimmune diseases. The current protocols for comprehensive analysis of N-glycomics and O-glycomics derived from cells and tissues often require a large amount of biological material. They also only allow the processing of very limited numbers of samples at a time. Here we established a workflow for sequential release of N-glycans and O-glycans based on PVDF membrane immobilization in 96-well format from 5 × 105 cells. Released glycans are reduced, desalted, purified, and reconstituted, all in 96-well format plates, without additional staining or derivatization. Glycans are then analyzed with porous graphitized carbon nano-liquid chromatography coupled to tandem mass spectrometry using negative-mode electrospray ionization, enabling the chromatographic resolution and structural elucidation of glycan species including many compositional isomers. The approach was demonstrated using glycoprotein standards and further applied to analyze the glycosylation of the murine mammary gland NMuMG cell line. The developed protocol allows the analysis of N- and O-glycans from relatively large numbers of samples in a less time consuming way with high repeatability. Inter- and intraday repeatability of the fetuin N-glycan analysis showed two median intraday coefficients of variations (CVs) of 7.6% and 8.0%, and a median interday CV of 9.8%. Median CVs of 7.9% and 8.7% for the main peaks of N- and O-glycans released from the NMuMG cell line indicate a very good repeatability. The method is applicable to purified glycoproteins as well as to biofluids and cell- or tissue-based samples.
Collapse
Affiliation(s)
- Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abrahams JL, Taherzadeh G, Jarvas G, Guttman A, Zhou Y, Campbell MP. Recent advances in glycoinformatic platforms for glycomics and glycoproteomics. Curr Opin Struct Biol 2019; 62:56-69. [PMID: 31874386 DOI: 10.1016/j.sbi.2019.11.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/05/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
Protein glycosylation is the most complex and prevalent post-translation modification in terms of the number of proteins modified and the diversity generated. To understand the functional roles of glycoproteins it is important to gain an insight into the repertoire of oligosaccharides present. The comparison and relative quantitation of glycoforms combined with site-specific identification and occupancy are necessary steps in this direction. Computational platforms have continued to mature assisting researchers with the interpretation of such glycomics and glycoproteomics data sets, but frequently support dedicated workflows and users rely on the manual interpretation of data to gain insights into the glycoproteome. The growth of site-specific knowledge has also led to the implementation of machine-learning algorithms to predict glycosylation which is now being integrated into glycoproteomics pipelines. This short review describes commercial and open-access databases and software with an emphasis on those that are actively maintained and designed to support current analytical workflows.
Collapse
Affiliation(s)
- Jodie L Abrahams
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Ghazaleh Taherzadeh
- School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Gabor Jarvas
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Hungary; Horváth Csaba Laboratory of Bioseparation Sciences, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andras Guttman
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Hungary; Horváth Csaba Laboratory of Bioseparation Sciences, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; SCIEX, Brea, CA, USA
| | - Yaoqi Zhou
- School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Matthew P Campbell
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
21
|
Duivelshof BL, Jiskoot W, Beck A, Veuthey JL, Guillarme D, D’Atri V. Glycosylation of biosimilars: Recent advances in analytical characterization and clinical implications. Anal Chim Acta 2019; 1089:1-18. [DOI: 10.1016/j.aca.2019.08.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/14/2022]
|