1
|
Jia Y, Wei K, Qin J, Zhai W, Li Q, Li Y. The Roles of MicroRNAs in the Regulation of Rice-Pathogen Interactions. PLANTS (BASEL, SWITZERLAND) 2025; 14:136. [PMID: 39795396 PMCID: PMC11722856 DOI: 10.3390/plants14010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025]
Abstract
Rice is exposed to attacks by the three most destructive pathogens, Magnaporthe oryzae (M. oryzae), Xanthomonas oryzae pv. oryzae (Xoo), and Rhizoctonia solani (R. solani), which cause substantial yield losses and severely threaten food security. To cope with pathogenic infections, rice has evolved diverse molecular mechanisms to respond to a wide range of pathogens. Among these strategies, plant microRNAs (miRNAs), endogenous single-stranded short non-coding RNA molecules, have emerged as promising candidates in coordinating plant-pathogen interactions. MiRNAs can modulate target gene expression at the post-transcriptional level through mRNA cleavage and/or translational inhibition. In rare instances, they also influence gene expression at the transcriptional level through DNA methylation. In recent years, substantial advancements have been achieved in the investigation of microRNA-mediated molecular mechanisms in rice immunity. Therefore, we attempt to summarize the current advances of immune signaling mechanisms in rice-pathogen interactions that are regulated by osa-miRNAs, including their functions and molecular mechanisms. We also focus on recent findings concerning the role of osa-miRNAs that respond to M. oryzae, Xoo, and R. solani, respectively. These insights enhance our understanding of how the mechanisms of osa-miRNAs mediate rice immunity and may facilitate the development of improved strategies for breeding pathogen-resistant rice varieties.
Collapse
Affiliation(s)
- Yanfeng Jia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.J.); (K.W.); (J.Q.)
| | - Kai Wei
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.J.); (K.W.); (J.Q.)
| | - Jiawang Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.J.); (K.W.); (J.Q.)
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Quanlin Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Yalan Li
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
2
|
Cheng X, Zhou G, Chen W, Tan L, Long Q, Cui F, Tan L, Zou G, Tan Y. Current status of molecular rice breeding for durable and broad-spectrum resistance to major diseases and insect pests. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:219. [PMID: 39254868 PMCID: PMC11387466 DOI: 10.1007/s00122-024-04729-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024]
Abstract
In the past century, there have been great achievements in identifying resistance (R) genes and quantitative trait loci (QTLs) as well as revealing the corresponding molecular mechanisms for resistance in rice to major diseases and insect pests. The introgression of R genes to develop resistant rice cultivars has become the most effective and eco-friendly method to control pathogens/insects at present. However, little attention has been paid to durable and broad-spectrum resistance, which determines the real applicability of R genes. Here, we summarize all the R genes and QTLs conferring durable and broad-spectrum resistance in rice to fungal blast, bacterial leaf blight (BLB), and the brown planthopper (BPH) in molecular breeding. We discuss the molecular mechanisms and feasible methods of improving durable and broad-spectrum resistance to blast, BLB, and BPH. We will particularly focus on pyramiding multiple R genes or QTLs as the most useful method to improve durability and broaden the disease/insect spectrum in practical breeding regardless of its uncertainty. We believe that this review provides useful information for scientists and breeders in rice breeding for multiple stress resistance in the future.
Collapse
Affiliation(s)
- Xiaoyan Cheng
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, People's Republic of China
- College of Life Sciences and Resources and Environment, Yichun University, Yichun, People's Republic of China
| | - Guohua Zhou
- College of Life Sciences and Resources and Environment, Yichun University, Yichun, People's Republic of China
| | - Wei Chen
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, People's Republic of China
| | - Lin Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
| | - Qishi Long
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
| | - Fusheng Cui
- Yichun Academy of Sciences (Jiangxi Selenium-Rich Industry Research Institute), Yichun, People's Republic of China
| | - Lei Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
| | - Guoxing Zou
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, People's Republic of China.
| | - Yong Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China.
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, People's Republic of China.
| |
Collapse
|
3
|
Babbar A, Rawat N, Kaur P, Singh N, Lore JS, Vikal Y, Neelam K. Precision mapping and expression analysis of recessive bacterial blight resistance gene xa-45(t) from Oryza glaberrima. Mol Biol Rep 2024; 51:626. [PMID: 38717621 DOI: 10.1007/s11033-024-09573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating diseases of rice leading to huge yield losses in Southeast Asia. The recessive resistance gene xa-45(t) from Oryza glaberrima IRGC102600B, mapped on rice chromosome 8, spans 80 Kb with 9 candidate genes on Nipponbare reference genome IRGSP-1.0. The xa-45(t) gene provides durable resistance against all the ten Xanthomonas pathotypes of Northern India, thus aiding in the expansion of recessive bacterial blight resistance gene pool. Punjab Rice PR127, carrying xa-45(t), was released for wider use in breeding programs. This study aims to precisely locate the target gene among the 9 candidates conferring resistance to bacterial blight disease. METHODS AND RESULTS Sanger sequencing of all nine candidate genes revealed seven SNPs and an Indel between the susceptible parent Pusa 44 and the resistant introgression line IL274. The genotyping with polymorphic markers identified three recombinant breakpoints for LOC_Os08g42370, and LOC_Os08g42400, 15 recombinants for LOC_Os08g423420 and 26 for LOC_Os08g42440 out of 190 individuals. Relative expression analysis across six time intervals (0, 8, 24, 48, 72, and 96 h) after bacterial blight infection showed over expression of LOC_Os08g42410-specific transcripts in IL274 compared to Pusa 44, with a significant 4.46-fold increase observed at 72 h post-inoculation. CONCLUSIONS The Indel marker at the locus LOC_Os08g42410 was found co-segregating with the phenotype, suggesting its candidacy towards xa-45(t). The transcript abundance assay provides strong evidence for the involvement of LOC_Os08g42410 in the resistance conferred by the bacterial blight gene xa-45(t).
Collapse
Affiliation(s)
- Ankita Babbar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Nidhi Rawat
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, Maryland, USA
| | - Pavneet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Navdeep Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Jagjeet Singh Lore
- Department of Plant Breeding & Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India.
| |
Collapse
|
4
|
Bose S, Banerjee S, Kumar S, Saha A, Nandy D, Hazra S. Review of applications of artificial intelligence (AI) methods in crop research. J Appl Genet 2024; 65:225-240. [PMID: 38216788 DOI: 10.1007/s13353-023-00826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/14/2024]
Abstract
Sophisticated and modern crop improvement techniques can bridge the gap for feeding the ever-increasing population. Artificial intelligence (AI) refers to the simulation of human intelligence in machines, which refers to the application of computational algorithms, machine learning (ML) and deep learning (DL) techniques. This is aimed to generalise patterns and relationships from historical data, employing various mathematical optimisation techniques thus making prediction models for facilitating selection of superior genotypes. These techniques are less resource intensive and can solve the problem based on the analysis of large-scale phenotypic datasets. ML for genomic selection (GS) uses high-throughput genotyping technologies to gather genetic information on a large number of markers across the genome. The prediction of GS models is based on the mathematical relation between genotypic and phenotypic data from the training population. ML techniques have emerged as powerful tools for genome editing through analysing large-scale genomic data and facilitating the development of accurate prediction models. Precise phenotyping is a prerequisite to advance crop breeding for solving agricultural production-related issues. ML algorithms can solve this problem through generating predictive models, based on the analysis of large-scale phenotypic datasets. DL models also have the potential reliability of precise phenotyping. This review provides a comprehensive overview on various ML and DL models, their applications, potential to enhance the efficiency, specificity and safety towards advanced crop improvement protocols such as genomic selection, genome editing, along with phenotypic prediction to promote accelerated breeding.
Collapse
Affiliation(s)
- Suvojit Bose
- Department of Vegetables and Spice Crops, Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, 736165, West Bengal, India
| | | | - Soumya Kumar
- School of Agricultural Sciences, JIS University, Kolkata, 700109, West Bengal, India
| | - Akash Saha
- School of Agricultural Sciences, JIS University, Kolkata, 700109, West Bengal, India
| | - Debalina Nandy
- School of Agricultural Sciences, JIS University, Kolkata, 700109, West Bengal, India
| | - Soham Hazra
- Department of Agriculture, Brainware University, Barasat, 700125, West Bengal, India.
| |
Collapse
|
5
|
Ricciardi V, Crespan M, Maddalena G, Migliaro D, Brancadoro L, Maghradze D, Failla O, Toffolatti SL, De Lorenzis G. Novel loci associated with resistance to downy and powdery mildew in grapevine. FRONTIERS IN PLANT SCIENCE 2024; 15:1386225. [PMID: 38584944 PMCID: PMC10998452 DOI: 10.3389/fpls.2024.1386225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
Among the main challenges in current viticulture, there is the increasing demand for sustainability in the protection from fungal diseases, such as downy mildew (DM) and powdery mildew (PM). Breeding disease-resistant grapevine varieties is a key strategy for better managing fungicide inputs. This study explores the diversity of grapevine germplasm (cultivated and wild) from Caucasus and neighboring areas to identify genotypes resistant to DM and PM, based on 13 Simple Sequence Repeat (SSR) loci and phenotypical (artificial pathogen inoculation) analysis, and to identify loci associated with DM and PM resistance, via Genome-Wide Association Analysis (GWAS) on Single Nucleotide Polymorphism (SNP) profiles. SSR analysis revealed resistant alleles for 16 out of 88 genotypes. Phenotypic data identified seven DM and 31 PM resistant genotypes. GWAS identified two new loci associated with DM resistance, located on chromosome 15 and 16 (designated as Rpv36 and Rpv37), and two with PM resistance, located on chromosome 6 and 17 (designated as Ren14 and Ren15). The four novel loci identified genomic regions rich in genes related to biotic stress response, such as genes involved in pathogen recognition, signal transduction and resistance response. This study highlights potential candidate genes associated with resistance to DM and PM, providing valuable insights for breeding programs for resistant varieties. To optimize their utilization, further functional characterization studies are recommended.
Collapse
Affiliation(s)
- Valentina Ricciardi
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Manna Crespan
- Centro di Ricerca per la Viticoltura e l'Enologia, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Conegliano, Italy
| | - Giuliana Maddalena
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Daniele Migliaro
- Centro di Ricerca per la Viticoltura e l'Enologia, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Conegliano, Italy
| | - Lucio Brancadoro
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - David Maghradze
- Faculty of Viticulture-Winemaking, Caucasus International University, Tbilisi, Georgia
- Faculty of Agricultural Sciences and Biosystems Engineering, Georgian Technical University, Tbilisi, Georgia
| | - Osvaldo Failla
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Silvia Laura Toffolatti
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Gabriella De Lorenzis
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
6
|
Singh G, Singh N, Ellur RK, Balamurugan A, Prakash G, Rathour R, Mondal KK, Bhowmick PK, Gopala Krishnan S, Nagarajan M, Seth R, Vinod KK, Singh V, Bollinedi H, Singh AK. Genetic Enhancement for Biotic Stress Resistance in Basmati Rice through Marker-Assisted Backcross Breeding. Int J Mol Sci 2023; 24:16081. [PMID: 38003271 PMCID: PMC10671030 DOI: 10.3390/ijms242216081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 11/26/2023] Open
Abstract
Pusa Basmati 1509 (PB1509) is one of the major foreign-exchange-earning varieties of Basmati rice; it is semi-dwarf and early maturing with exceptional cooking quality and strong aroma. However, it is highly susceptible to various biotic stresses including bacterial blight and blast. Therefore, bacterial blight resistance genes, namely, xa13 + Xa21 and Xa38, and fungal blast resistance genes Pi9 + Pib and Pita were incorporated into the genetic background of recurrent parent (RP) PB1509 using donor parents, namely, Pusa Basmati 1718 (PB1718), Pusa 1927 (P1927), Pusa 1929 (P1929) and Tetep, respectively. Foreground selection was carried out with respective gene-linked markers, stringent phenotypic selection for recurrent parent phenotype, early generation background selection with Simple sequence repeat (SSR) markers, and background analysis at advanced generations with Rice Pan Genome Array comprising 80K SNPs. This has led to the development of Near isogenic lines (NILs), namely, Pusa 3037, Pusa 3054, Pusa 3060 and Pusa 3066 carrying genes xa13 + Xa21, Xa38, Pi9 + Pib and Pita with genomic similarity of 98.25%, 98.92%, 97.38% and 97.69%, respectively, as compared to the RP. Based on GGE-biplot analysis, Pusa 3037-1-44-3-164-20-249-2 carrying xa13 + Xa21, Pusa 3054-2-47-7-166-24-261-3 carrying Xa38, Pusa 3060-3-55-17-157-4-124-1 carrying Pi9 + Pib, and Pusa 3066-4-56-20-159-8-174-1 carrying Pita were identified to be relatively stable and better-performing individuals in the tested environments. Intercrossing between the best BC3F1s has led to the generation of Pusa 3122 (xa13 + Xa21 + Xa38), Pusa 3124 (Xa38 + Pi9 + Pib) and Pusa 3123 (Pi9 + Pib + Pita) with agronomy, grain and cooking quality parameters at par with PB1509. Cultivation of such improved varieties will help farmers reduce the cost of cultivation with decreased pesticide use and improve productivity with ensured safety to consumers.
Collapse
Affiliation(s)
- Gagandeep Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India (N.S.); (P.K.B.); (S.G.K.); (K.K.V.)
| | - Niraj Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India (N.S.); (P.K.B.); (S.G.K.); (K.K.V.)
| | - Ranjith Kumar Ellur
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India (N.S.); (P.K.B.); (S.G.K.); (K.K.V.)
| | - Alexander Balamurugan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India (G.P.)
| | - G. Prakash
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India (G.P.)
| | - Rajeev Rathour
- Department of Agriculture Biotechnology, CSKHPKV, Palampur 176062, Himachal Pradesh, India
| | - Kalyan Kumar Mondal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India (G.P.)
| | - Prolay Kumar Bhowmick
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India (N.S.); (P.K.B.); (S.G.K.); (K.K.V.)
| | - S. Gopala Krishnan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India (N.S.); (P.K.B.); (S.G.K.); (K.K.V.)
| | - Mariappan Nagarajan
- Rice Breeding and Genetics Research Centre, ICAR-Indian Agricultural Research Institute, Aduthurai 612101, Tamil Nadu, India
| | - Rakesh Seth
- Regional Station, ICAR-Indian Agricultural Research Institute, Karnal 132001, Haryana, India;
| | - K. K. Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India (N.S.); (P.K.B.); (S.G.K.); (K.K.V.)
| | - Varsha Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India (N.S.); (P.K.B.); (S.G.K.); (K.K.V.)
| | - Haritha Bollinedi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India (N.S.); (P.K.B.); (S.G.K.); (K.K.V.)
| | - Ashok Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India (N.S.); (P.K.B.); (S.G.K.); (K.K.V.)
| |
Collapse
|
7
|
Sinha P, Kumar T. D, Sk H, Solanki M, Gokulan CG, Das A, Miriyala A, Gonuguntala R, Elumalai P, M. B. V. N K, S. K. M, Kumboju C, Arra Y, G. S. L, Chirravuri NN, Patel HK, Ghazi IA, Kim SR, Jena KK, Hanumanth SR, Oliva R, Mangrauthia SK, Sundaram RM. Fine mapping and sequence analysis reveal a promising candidate gene encoding a novel NB-ARC domain derived from wild rice ( Oryza officinalis) that confers bacterial blight resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1173063. [PMID: 37692438 PMCID: PMC10485833 DOI: 10.3389/fpls.2023.1173063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023]
Abstract
Bacterial blight disease of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious constraints in rice production. The most sustainable strategy to combat the disease is the deployment of host plant resistance. Earlier, we identified an introgression line, IR 75084-15-3-B-B, derived from Oryza officinalis possessing broad-spectrum resistance against Xoo. In order to understand the inheritance of resistance in the O. officinalis accession and identify genomic region(s) associated with resistance, a recombinant inbred line (RIL) mapping population was developed from the cross Samba Mahsuri (susceptible to bacterial blight) × IR 75084-15-3-B-B (resistant to bacterial blight). The F2 population derived from the cross segregated in a phenotypic ratio of 3: 1 (resistant susceptible) implying that resistance in IR 75084-15-3-B-B is controlled by a single dominant gene/quantitative trait locus (QTL). In the F7 generation, a set of 47 homozygous resistant lines and 47 homozygous susceptible lines was used to study the association between phenotypic data obtained through screening with Xoo and genotypic data obtained through analysis of 7K rice single-nucleotide polymorphism (SNP) chip. Through composite interval mapping, a major locus was detected in the midst of two flanking SNP markers, viz., Chr11.27817978 and Chr11.27994133, on chromosome 11L with a logarithm of the odds (LOD) score of 10.21 and 35.93% of phenotypic variation, and the locus has been named Xa48t. In silico search in the genomic region between the two markers flanking Xa48t identified 10 putatively expressed genes located in the region of interest. The quantitative expression and DNA sequence analysis of these genes from contrasting parents identified the Os11g0687900 encoding an NB-ARC domain-containing protein as the most promising gene associated with resistance. Interestingly, a 16-bp insertion was noticed in the untranslated region (UTR) of the gene in the resistant parent, IR 75084-15-3-B-B, which was absent in Samba Mahsuri. The association of Os11g0687900 with resistance phenotype was further established by sequence-based DNA marker analysis in the RIL population. A co-segregating PCR-based INDEL marker, Marker_Xa48, has been developed for use in the marker-assisted breeding of Xa48t.
Collapse
Affiliation(s)
- Pragya Sinha
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Dilip Kumar T.
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Hajira Sk
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Manish Solanki
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - C. G. Gokulan
- Crop Improvement, Council of Scientific & Industrial Research (CSIR)-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Ayyappa Das
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Anila Miriyala
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | | | - Punniakoti Elumalai
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Kousik M. B. V. N
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Masthani S. K.
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Chaitra Kumboju
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Yugander Arra
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
- Institute of Molecular Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Laha G. S.
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - N. Neerja Chirravuri
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Hitendra Kumar Patel
- Crop Improvement, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Irfan Ahmad Ghazi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sung-Ryul Kim
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Banos, Philippines
| | - Kshirod K. Jena
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha, India
| | | | - Ricardo Oliva
- Safe and Sustainable Value Chain, World Vegetable Center, Tainan, Taiwan
| | | | | |
Collapse
|
8
|
Nadarajah K, Abdul Rahman NSN. The Microbial Connection to Sustainable Agriculture. PLANTS (BASEL, SWITZERLAND) 2023; 12:2307. [PMID: 37375932 DOI: 10.3390/plants12122307] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Microorganisms are an important element in modeling sustainable agriculture. Their role in soil fertility and health is crucial in maintaining plants' growth, development, and yield. Further, microorganisms impact agriculture negatively through disease and emerging diseases. Deciphering the extensive functionality and structural diversity within the plant-soil microbiome is necessary to effectively deploy these organisms in sustainable agriculture. Although both the plant and soil microbiome have been studied over the decades, the efficiency of translating the laboratory and greenhouse findings to the field is largely dependent on the ability of the inoculants or beneficial microorganisms to colonize the soil and maintain stability in the ecosystem. Further, the plant and its environment are two variables that influence the plant and soil microbiome's diversity and structure. Thus, in recent years, researchers have looked into microbiome engineering that would enable them to modify the microbial communities in order to increase the efficiency and effectiveness of the inoculants. The engineering of environments is believed to support resistance to biotic and abiotic stressors, plant fitness, and productivity. Population characterization is crucial in microbiome manipulation, as well as in the identification of potential biofertilizers and biocontrol agents. Next-generation sequencing approaches that identify both culturable and non-culturable microbes associated with the soil and plant microbiome have expanded our knowledge in this area. Additionally, genome editing and multidisciplinary omics methods have provided scientists with a framework to engineer dependable and sustainable microbial communities that support high yield, disease resistance, nutrient cycling, and management of stressors. In this review, we present an overview of the role of beneficial microbes in sustainable agriculture, microbiome engineering, translation of this technology to the field, and the main approaches used by laboratories worldwide to study the plant-soil microbiome. These initiatives are important to the advancement of green technologies in agriculture.
Collapse
Affiliation(s)
- Kalaivani Nadarajah
- Department of Biological Sciences and Biotechnology, Faculty of Sciences and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Nur Sabrina Natasha Abdul Rahman
- Department of Biological Sciences and Biotechnology, Faculty of Sciences and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
9
|
Li J, Shi X, Wang C, Li Q, Lu J, Zeng D, Xie J, Shi Y, Zhai W, Zhou Y. Genome-Wide Association Study Identifies Resistance Loci for Bacterial Blight in a Collection of Asian Temperate Japonica Rice Germplasm. Int J Mol Sci 2023; 24:ijms24108810. [PMID: 37240156 DOI: 10.3390/ijms24108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/29/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Growing resistant rice cultivars is the most effective strategy to control bacterial blight (BB), a devastating disease caused by Xanthomonas oryzae pv. oryzae (Xoo). Screening resistant germplasm and identifying resistance (R) genes are prerequisites for breeding resistant rice cultivars. We conducted a genome-wide association study (GWAS) to detect quantitative trait loci (QTL) associated with BB resistance using 359 East Asian temperate Japonica accessions inoculated with two Chinese Xoo strains (KS6-6 and GV) and one Philippine Xoo strain (PXO99A). Based on the 55K SNPs Array dataset of the 359 Japonica accessions, eight QTL were identified on rice chromosomes 1, 2, 4, 10, and 11. Four of the QTL coincided with previously reported QTL, and four were novel loci. Six R genes were localized in the qBBV-11.1, qBBV-11.2, and qBBV-11.3 loci on chromosome 11 in this Japonica collection. Haplotype analysis revealed candidate genes associated with BB resistance in each QTL. Notably, LOC_Os11g47290 in qBBV-11.3, encoding a leucine-rich repeat receptor-like kinase, was a candidate gene associated with resistance to the virulent strain GV. Knockout mutants of Nipponbare with the susceptible haplotype of LOC_Os11g47290 exhibited significantly improved BB resistance. These results will be useful for cloning BB resistance genes and breeding resistant rice cultivars.
Collapse
Affiliation(s)
- Jianmin Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Xiaorong Shi
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Chunchao Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Quanlin Li
- Institute of Genetics and Developmental Biological, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Jialing Lu
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Zeng
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junping Xie
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biological, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Yongli Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
10
|
Sharma A, Gupta AK, Devi B. Current trends in management of bacterial pathogens infecting plants. Antonie Van Leeuwenhoek 2023; 116:303-326. [PMID: 36683073 DOI: 10.1007/s10482-023-01809-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/08/2023] [Indexed: 01/24/2023]
Abstract
Plants are continuously challenged by different pathogenic microbes that reduce the quality and quantity of produce and therefore pose a serious threat to food security. Among them bacterial pathogens are known to cause disease outbreaks with devastating economic losses in temperate, tropical and subtropical regions throughout the world. Bacteria are structurally simple prokaryotic microorganisms and are diverse from a metabolic standpoint. Bacterial infection process mainly involves successful attachment or penetration by using extracellular enzymes, type secretion systems, toxins, growth regulators and by exploiting different molecules that modulate plant defence resulting in successful colonization. Theses bacterial pathogens are extremely difficult to control as they develop resistance to antibiotics. Therefore, attempts are made to search for innovative methods of disease management by the targeting bacterial virulence and manipulating the genes in host plants by exploiting genome editing methods. Here, we review the recent developments in bacterial disease management including the bioactive antimicrobial compounds, bacteriophage therapy, quorum-quenching mediated control, nanoparticles and CRISPR/Cas based genome editing techniques for bacterial disease management. Future research should focus on implementation of smart delivery systems and consumer acceptance of these innovative methods for sustainable disease management.
Collapse
Affiliation(s)
- Aditi Sharma
- College of Horticulture and Forestry, Thunag- Mandi, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India.
| | - A K Gupta
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| | - Banita Devi
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| |
Collapse
|
11
|
Bai X, Fang H, He Y, Zhang J, Tao M, Wu Q, Yang G, Wei Y, Tang Y, Tang L, Lou B, Deng S, Yang Y, Feng X. Dynamic UAV Phenotyping for Rice Disease Resistance Analysis Based on Multisource Data. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0019. [PMID: 37040287 PMCID: PMC10076055 DOI: 10.34133/plantphenomics.0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/09/2022] [Indexed: 05/27/2023]
Abstract
Bacterial blight poses a threat to rice production and food security, which can be controlled through large-scale breeding efforts toward resistant cultivars. Unmanned aerial vehicle (UAV) remote sensing provides an alternative means for the infield phenotype evaluation of crop disease resistance to relatively time-consuming and laborious traditional methods. However, the quality of data acquired by UAV can be affected by several factors such as weather, crop growth period, and geographical location, which can limit their utility for the detection of crop disease and resistant phenotypes. Therefore, a more effective use of UAV data for crop disease phenotype analysis is required. In this paper, we used time series UAV remote sensing data together with accumulated temperature data to train the rice bacterial blight severity evaluation model. The best results obtained with the predictive model showed an R p 2 of 0.86 with an RMSEp of 0.65. Moreover, model updating strategy was used to explore the scalability of the established model in different geographical locations. Twenty percent of transferred data for model training was useful for the evaluation of disease severity over different sites. In addition, the method for phenotypic analysis of rice disease we built here was combined with quantitative trait loci (QTL) analysis to identify resistance QTL in genetic populations at different growth stages. Three new QTLs were identified, and QTLs identified at different growth stages were inconsistent. QTL analysis combined with UAV high-throughput phenotyping provides new ideas for accelerating disease resistance breeding.
Collapse
Affiliation(s)
- Xiulin Bai
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hui Fang
- Huzhou Institute of Zhejiang University, Huzhou 313000, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jinnuo Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Mingzhu Tao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qingguan Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Guofeng Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yuzhen Wei
- School of Information Engineering, Huzhou University, Huzhou 313000, China
| | - Yu Tang
- Academy of Interdisciplinary Studies, Guangdong Polytechnic Normal University, Guangzhou 510665, China
| | - Lie Tang
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011-3270, USA
| | - Binggan Lou
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shuiguang Deng
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, China
| | - Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 31002, China
| | - Xuping Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Rezvi HUA, Tahjib‐Ul‐Arif M, Azim MA, Tumpa TA, Tipu MMH, Najnine F, Dawood MFA, Skalicky M, Brestič M. Rice and food security: Climate change implications and the future prospects for nutritional security. Food Energy Secur 2022. [DOI: 10.1002/fes3.430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
| | - Md. Tahjib‐Ul‐Arif
- Department of Biochemistry and Molecular Biology Bangladesh Agricultural University Mymensingh Bangladesh
| | - Md. Abdul Azim
- Biotechnology Division Bangladesh Sugarcrop Research Institute Pabna Bangladesh
| | - Toufica Ahmed Tumpa
- Department of Entomology Bangladesh Agricultural University Mymensingh Bangladesh
| | | | - Farhana Najnine
- Food Science and Engineering South China University of Technology Guangdong Guangzhou China
| | - Mona F. A. Dawood
- Botany and Microbiology Department, Faculty of Science Assiut University Assiut Egypt
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources Czech University of Life Sciences Prague Prague Czech Republic
| | - Marián Brestič
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources Czech University of Life Sciences Prague Prague Czech Republic
- Institute of Plant and Environmental Sciences Faculty of Agrobiology and Food Resources Slovak University of Agriculture Nitra Slovakia
| |
Collapse
|
13
|
Xie W, Xu X, Qiu W, Lai X, Liu M, Zhang F. Expression of PmACRE1 in Arabidopsis thaliana enables host defence against Bursaphelenchus xylophilus infection. BMC PLANT BIOLOGY 2022; 22:541. [PMID: 36418942 PMCID: PMC9682698 DOI: 10.1186/s12870-022-03929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Pine wilt disease (PWD) is a destructive disease that endangers pine trees, resulting in the wilting, with yellowing and browning of the needles, and eventually the death of the trees. Previous studies showed that the Avr9/Cf-9 rapidly elicited (PmACRE1) gene was downregulated by Bursaphelenchus xylophilus infection, suggesting a correlation between PmACRE1 expression and pine tolerance. Here, we used the expression of PmACRE1 in Arabidopsis thaliana to evaluate the role of PmACRE1 in the regulation of host defence against B. xylophilus infection. RESULTS Our results showed that the transformation of PmACRE1 into A. thaliana enhanced plant resistance to the pine wood nematode (PWN); that is, the leaves of the transgenic line remained healthy for a longer period than those of the blank vector group. Ascorbate peroxidase (APX) activity and total phenolic acid and total flavonoid contents were higher in the transgenic line than in the control line. Widely targeted metabolomics analysis of the global secondary metabolites in the transgenic line and the vector control line showed that the contents of 30 compounds were significantly different between these two lines; specifically, the levels of crotaline, neohesperidin, nobiletin, vestitol, and 11 other compounds were significantly increased in the transgenic line. The studies also showed that the ACRE1 protein interacted with serine hydroxymethyltransferase, catalase domain-containing protein, myrosinase, dihydrolipoyl dehydrogenase, ketol-acid reductoisomerase, geranylgeranyl diphosphate reductase, S-adenosylmethionine synthase, glutamine synthetase, and others to comprehensively regulate plant resistance. CONCLUSIONS Taken together, these results indicate that PmACRE1 has a potential role in the regulation of plant defence against PWNs.
Collapse
Affiliation(s)
- Wanfeng Xie
- Jinshan College, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, People's Republic of China
| | - Xiaomei Xu
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, People's Republic of China
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350000, People's Republic of China
| | - Wenjing Qiu
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, People's Republic of China
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350000, People's Republic of China
| | - Xiaolin Lai
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, People's Republic of China
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350000, People's Republic of China
| | - Mengxia Liu
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, People's Republic of China
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350000, People's Republic of China
| | - Feiping Zhang
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, People's Republic of China.
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350000, People's Republic of China.
| |
Collapse
|
14
|
Kumar R, Bahuguna RN, Tiwari M, Pal M, Chinnusamy V, Sreeman S, Muthurajan R, Krishna Jagadish SV. Walking through crossroads-rice responses to heat and biotic stress interactions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4065-4081. [PMID: 35713657 DOI: 10.1007/s00122-022-04131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Rice, the most important source of calories for humans is prone to severe yield loss due to changing climate including heat stress. Additionally, rice encounters biotic stresses in conjunction with heat stress, which exacerbates the adverse effects, and exponentially increase such losses. Several investigations have identified biotic and heat stress-related quantitative trait loci (QTLs) that may contribute to improved tolerance to these stresses. However, a significant knowledge gap exists in identifying the genomic regions imparting tolerance against combined biotic and heat stress. Hereby, we are presenting a conceptual meta-analysis identifying genomic regions that may be promising candidates for enhancing combined biotic and heat stress tolerance in rice. Fourteen common genomic regions were identified along chromosomes 1, 2, 3, 4, 6, 10 and 12, which harbored 1265 genes related to heat stress and defense responses in rice. Further, the meta expression analysis revealed 24 differentially expressed genes (DEGs) involved in calcium-mediated stress signaling including transcription factors Myb, bHLH, ROS signaling, molecular chaperones HSP110 and pathogenesis related proteins. Additionally, we also proposed a hypothetical model based on GO and MapMan analysis representing the pathways intersecting heat and biotic stresses. These DEGs can be potential candidate genes for improving tolerance to combined biotic and heat stress in rice. We present a framework highlighting plausible connecting links (QTLs/genes) between rice response to heat stress and different biotic factors associated with yield, that can be extended to other crops.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Rajeev N Bahuguna
- Center for Advanced Studies on Climate Change, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, India
| | - Manish Tiwari
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Madan Pal
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sheshshayee Sreeman
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| | - S V Krishna Jagadish
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India.
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
15
|
Bai X, Zhou Y, Feng X, Tao M, Zhang J, Deng S, Lou B, Yang G, Wu Q, Yu L, Yang Y, He Y. Evaluation of rice bacterial blight severity from lab to field with hyperspectral imaging technique. FRONTIERS IN PLANT SCIENCE 2022; 13:1037774. [PMID: 36340356 PMCID: PMC9627309 DOI: 10.3389/fpls.2022.1037774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Hyperspectral imaging technique combined with machine learning is a powerful tool for the evaluation of disease phenotype in rice disease-resistant breeding. However, the current studies are almost carried out in the lab environment, which is difficult to apply to the field environment. In this paper, we used visible/near-infrared hyperspectral images to analysis the severity of rice bacterial blight (BB) and proposed a novel disease index construction strategy (NDSCI) for field application. A designed long short-term memory network with attention mechanism could evaluate the BB severity robustly, and the attention block could filter important wavelengths. Best results were obtained based on the fusion of important wavelengths and color features with an accuracy of 0.94. Then, NSDCI was constructed based on the important wavelength and color feature related to BB severity. The correlation coefficient of NDSCI extended to the field data reached -0.84, showing good scalability. This work overcomes the limitations of environmental conditions and sheds new light on the rapid measurement of phenotype in disease-resistant breeding.
Collapse
Affiliation(s)
- Xiulin Bai
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yujie Zhou
- Zhuji Agricultural Technology Extension Center, Zhuji, China
| | - Xuping Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Mingzhu Tao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jinnuo Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Shuiguang Deng
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Binggan Lou
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guofeng Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Qingguan Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Li Yu
- Agricultural Experiment Station & Agricultural Sci-Tech Park Management Committee, Zhejiang University, Hangzhou, China
| | - Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Li J, Xin W, Wang W, Zhao S, Xu L, Jiang X, Duan Y, Zheng H, Yang L, Liu H, Jia Y, Zou D, Wang J. Mapping of Candidate Genes in Response to Low Nitrogen in Rice Seedlings. RICE (NEW YORK, N.Y.) 2022; 15:51. [PMID: 36243857 PMCID: PMC9569405 DOI: 10.1186/s12284-022-00597-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen is not only a macronutrient essential for crop growth and development, but also one of the most critical nutrients in farmland ecosystem. Insufficient nitrogen supply will lead to crop yield reduction, while excessive application of nitrogen fertilizer will cause agricultural and eco-environment damage. Therefore, mining low-nitrogen tolerant rice genes and improving nitrogen use efficiency are of great significance to the sustainable development of agriculture. This study was conducted by Genome-wide association study on a basis of two root morphological traits (root length and root diameter) and 788,396 SNPs of a natural population of 295 rice varieties. The transcriptome of low-nitrogen tolerant variety (Longjing 31) and low-nitrogen sensitive variety (Songjing 10) were sequenced between low and high nitrogen treatments. A total of 35 QTLs containing 493 genes were mapped. 3085 differential expressed genes were identified. Among these 493 genes, 174 genes showed different haplotype patterns. There were significant phenotype differences among different haplotypes of 58 genes with haplotype differences. These 58 genes were hypothesized as candidate genes for low nitrogen tolerance related to root morphology. Finally, six genes (Os07g0471300, Os11g0230400, Os11g0229300, Os11g0229400, Os11g0618300 and Os11g0229333) which expressed differentially in Longjing 31 were defined as more valuable candidate genes for low-nitrogen tolerance. The results revealed the response characteristics of rice to low-nitrogen, and provided insights into regulatory mechanisms of rice to nitrogen deficiency.
Collapse
Affiliation(s)
- Jia Li
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Wei Xin
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Weiping Wang
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Shijiao Zhao
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Lu Xu
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Xingdong Jiang
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Yuxuan Duan
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Hongliang Zheng
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Luomiao Yang
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Hualong Liu
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Yan Jia
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Detang Zou
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China.
| | - Jingguo Wang
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
17
|
Myint NNA, Korinsak S, Chutteang C, Laosatit K, Thunnom B, Toojinda T, Siangliw JL. Identification of Pathogenicity Loci in Magnaporthe oryzae Using GWAS with Neck Blast Phenotypic Data. Genes (Basel) 2022; 13:916. [PMID: 35627301 PMCID: PMC9141631 DOI: 10.3390/genes13050916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/10/2022] Open
Abstract
Magnaporthae oryzae (M. oryzae) is the most destructive disease of rice worldwide. In this study, one hundred and two isolates of M. oryzae were collected from rice (Oryzae sativa L.) from 2001 to 2017, and six rice varieties with resistance genes Pizt, Pish, Pik, Pib, and Pi2 were used in a genome-wide association study to identify pathogenicity loci in M. oryzae. Genome-wide association analysis was performed using 5338 single nucleotide polymorphism (SNPs) and phenotypic data of neck blast screening by TASSEL software together with haplotype block and SNP effect analysis. Twenty-seven significant SNPs were identified on chromosomes 1, 2, 3, 4, 5, 6, and 7. Many predicted genes (820 genes) were found in the target regions of six rice varieties. Most of these genes are described as putative uncharacterized proteins, however, some genes were reported related to virulence in M. oryzae. Moreover, this study revealed that R genes, Pik, Pish, and Pi2, were broad-spectrum resistant against neck blast disease caused by Thai blast isolate. Haplotype analysis revealed that the combination of the favorable alleles causing reduced virulence of isolates against IRBLz5-CA carrying Pi2 gene contributes 69% of the phenotypic variation in pathogenicity. The target regions and information are useful to develop marker-specific genes to classify blast fungal isolates and select appropriate resistance genes for rice cultivation and improvement.
Collapse
Affiliation(s)
- Nyein Nyein Aye Myint
- Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand;
| | - Siripar Korinsak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.K.); (B.T.); (T.T.)
| | - Cattleya Chutteang
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand; (C.C.); (K.L.)
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand; (C.C.); (K.L.)
| | - Burin Thunnom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.K.); (B.T.); (T.T.)
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.K.); (B.T.); (T.T.)
| | - Jonaliza L. Siangliw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.K.); (B.T.); (T.T.)
| |
Collapse
|
18
|
Shah S, Tsuneyoshi H, Ichitani K, Taura S. QTL Analysis Revealed One Major Genetic Factor Inhibiting Lesion Elongation by Bacterial Blight (Xanthomonas oryzae pv. oryzae) from a japonica Cultivar Koshihikari in Rice. PLANTS 2022; 11:plants11070867. [PMID: 35406847 PMCID: PMC9003242 DOI: 10.3390/plants11070867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/19/2022]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a pathogen that has ravaged the rice industry as the causal agent of bacterial blight (BB) diseases in rice. Koshihikari (KO), an elite japonica cultivar, and ARC7013 (AR), an indica cultivar, are both susceptible to Xoo. Their phenotypic characteristics reveal that KO has shorter lesion length than that of AR. The F2 population from KO × AR results in continuous distribution of lesion length by inoculation of an Xoo race (T7147). Consequently, quantitative trait loci (QTL) mapping of the F2 population is conducted, covering 12 chromosomes with 107 simple sequence repeat (SSR) and insertion/deletion (InDel) genetic markers. Three QTLs are identified on chromosomes 2, 5, and 10. Of them, qXAR5 has the strongest resistance variance effect of 20.5%, whereas qXAR2 and qXAR10 have minor QTL effects on resistance variance, with 3.9% and 2.3%, respectively, for a total resistance variance of 26.7%. The QTLs we examine for this study differ from the loci of BB resistance genes from earlier studies. Our results can help to facilitate understanding of genetic and morphological fundamentals for use in rice breeding programs that are more durable against evolving Xoo pathogens and uncertain climatic temperature.
Collapse
Affiliation(s)
- Shameel Shah
- Graduate School of Agriculture Science Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; (S.S.); (K.I.)
| | - Hiroaki Tsuneyoshi
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Katsuyuki Ichitani
- Graduate School of Agriculture Science Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; (S.S.); (K.I.)
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan;
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Satoru Taura
- Graduate School of Agriculture Science Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; (S.S.); (K.I.)
- Division of Gene Research, Kagoshima University, Kagoshima 890-0065, Japan
- Correspondence: ; Tel.: +81-0992853590
| |
Collapse
|
19
|
Yang Y, Zhou Y, Sun J, Liang W, Chen X, Wang X, Zhou J, Yu C, Wang J, Wu S, Yao X, Zhou Y, Zhu J, Yan C, Zheng B, Chen J. Research Progress on Cloning and Function of Xa Genes Against Rice Bacterial Blight. FRONTIERS IN PLANT SCIENCE 2022; 13:847199. [PMID: 35386667 PMCID: PMC8978965 DOI: 10.3389/fpls.2022.847199] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/24/2022] [Indexed: 05/27/2023]
Abstract
Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious bacterial diseases that hinder the normal growth and production of rice, which greatly reduces the quality and yield of rice. The effect of traditional methods such as chemical control is often not ideal. A series of production practices have shown that among the numerous methods for BB controlling, breeding and using resistant varieties are the most economical, effective, and environmentally friendly, and the important basis for BB resistance breeding is the exploration of resistance genes and their functional research. So far, 44 rice BB resistance genes have been identified and confirmed by international registration or reported in journals, of which 15 have been successfully cloned and characterized. In this paper, research progress in recent years is reviewed mainly on the identification, map-based cloning, molecular resistance mechanism, and application in rice breeding of these BB resistance genes, and the future influence and direction of the remained research for rice BB resistance breeding are also prospected.
Collapse
Affiliation(s)
- Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Yuhang Zhou
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Jia Sun
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Plant Protection, Fujian A & F University, Fuzhou, China
| | - Weifang Liang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xinyu Chen
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Xuming Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Jie Zhou
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Chulang Yu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Junmin Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Shilu Wu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xiaoming Yao
- Zhejiang Plant Protection, Quarantine and Pesticide Management Station, Hangzhou, China
| | - Yujie Zhou
- Zhuji Agricultural Technology Extension Center, Zhuji, China
| | - Jie Zhu
- Plant Protection and Soil Fertilizer Management Station of Wenzhou, Wenzhou, China
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Science, Ningbo, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
20
|
Du XX, Park JR, Wang XH, Jan R, Lee GS, Kim KM. Genotype and Phenotype Interaction between OsWKRYq6 and BLB after Xanthomonas oryzae pv. Oryzae Inoculation in the Field. PLANTS 2022; 11:plants11030287. [PMID: 35161267 PMCID: PMC8840003 DOI: 10.3390/plants11030287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
Bacterial leaf blight (BLB) is an important and devastating rice disease caused by the pathogen Xanthomonas oryzae pv. Oryzae (Xoo). In particular, in recent years, the occurrence of abnormal climate and warming phenomena has produced a good environment for the occurrence of BLB, and the rice yield due to the occurrence of BLB continues to decrease. Currently, molecular breeding is applied by searching for resistant genes to development of BLB resistance cultivar. In addition, there are many methods for screening resistant genes, and among them, phenotype analysis in the field and applied research is rarely conducted. Due to recent rapid climate change, BLB is a major problem that has a more serious negative effect on rice yield. Therefore, we suggest OsWRKYq6 to be effectively used for breeding BLB-resistant cultivars by screening BLB-resistant genes. In this study, the BLB-resistant gene was screened using the lesion length, which most definitely changes to the phenotype when Xoo is infected. OsWRKYq6 was finally selected as a BLB resistance gene by analyzing the phenotype and genotype after inoculating Xoo in 120 Cheongcheong/Nagdong double haploid (CNDH) lines in the field. After Xoo inoculation, lesion length and yield were investigated, and 120 CNDH lines were divided from BLB-resistant and susceptible lines. Moreover, when the transcription level of OsWRKYq6 was analyzed in the resistant and susceptible lines after Xoo inoculation in the field, the expression level was regulated to a high level in the resistant line. In this study, we propose OsWRKYq6 as a transcription factor involved in BLB resistance. Currently, the differentiation of various races is proceeding rapidly due to rapid climate change. In addition, screening of transcription factor genes involved in BLB resistance in the field can be effectively applied to molecular breeding to develop resistant cultivars in preparation for rapid climate change.
Collapse
Affiliation(s)
- Xiao-Xuan Du
- Biosafety Division, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea;
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Korea
| | - Jae-Ryoung Park
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea; (J.-R.P.); (R.J.)
- Department of Crop Breeding, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea
| | - Xiao-Han Wang
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54875, Korea;
| | - Rahmatullah Jan
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea; (J.-R.P.); (R.J.)
| | - Gang-Seob Lee
- Biosafety Division, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea;
- Correspondence: (G.-S.L.); (K.-M.K.); Tel.: +82-63-238-4791 (G.-S.L.); +82-53-950-5711 (K.-M.K.)
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Korea
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea; (J.-R.P.); (R.J.)
- Correspondence: (G.-S.L.); (K.-M.K.); Tel.: +82-63-238-4791 (G.-S.L.); +82-53-950-5711 (K.-M.K.)
| |
Collapse
|
21
|
Jia Y, Li Q, Li Y, Zhai W, Jiang G, Li C. Inducible Enrichment of Osa-miR1432 Confers Rice Bacterial Blight Resistance through Suppressing OsCaML2. Int J Mol Sci 2021; 22:ijms222111367. [PMID: 34768797 PMCID: PMC8583624 DOI: 10.3390/ijms222111367] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 01/20/2023] Open
Abstract
MicroRNAs (miRNAs) handle immune response to pathogens by adjusting the function of target genes in plants. However, the experimentally documented miRNA/target modules implicated in the interplay between rice and Xanthomonas oryzae pv. oryzae (Xoo) are still in the early stages. Herein, the expression of osa-miR1432 was induced in resistant genotype IRBB5, but not susceptible genotype IR24, under Xoo strain PXO86 attack. Overexpressed osa-miR1432 heightened rice disease resistance to Xoo, indicated by enhancive enrichment of defense marker genes, raised reactive oxygen species (ROS) levels, repressed bacterial growth and shortened leaf lesion length, whilst the disruptive accumulation of osa-miR1432 accelerated rice susceptibility to Xoo infection. Noticeably, OsCaML2 (LOC_Os03g59770) was experimentally confirmed as a target gene of osa-miR1432, and the overexpressing OsCaML2 transgenic plants exhibited compromised resistance to Xoo infestation. Our results indicate that osa-miR1432 and OsCaML2 were differently responsive to Xoo invasion at the transcriptional level and fine-tune rice resistance to Xoo infection, which may be referable in resistance gene discovery and valuable in the pursuit of improving Xoo resistance in rice breeding.
Collapse
|
22
|
Du XX, Park JR, Wang XH, Jang YH, Kim EG, Lee GS, Kim KM. Applying HPLC to Screening QTLs for BLB Resistance in Rice. PLANTS 2021; 10:plants10102145. [PMID: 34685953 PMCID: PMC8537431 DOI: 10.3390/plants10102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 11/28/2022]
Abstract
Bacterial leaf blight (BLB) is caused by Xanthomonas oryzae pv. oryzae and is a major cause of rice yield reductions around the world. When diseased, plants produce a variety of metabolites to resist pathogens. In this study, the various defense metabolites were quantified using high-performance liquid chromatography (HPLC) after Xoo inoculation in a 120 Cheongcheong/Nagdong double haploid (CNDH) population. Quantitative trait locus (QTL) mapping was conducted using the concentration of the plant defense metabolites. HPLC analyzes the concentration of substances according to the severity of disease symptoms. Searching for BLB resistance candidate genes by applying this analysis method is very effective when mapping related genes. These resistance genes can be mapped directly to the causative pathogens. A total of 17 metabolites were detected by means of HPLC analysis after Xoo inoculation in the 120 CNDH population. QTL mapping of the metabolite concentrations resulted in the detection of the BLB resistance candidate gene, OsWRKYq6, in RM3343 of chromosome 6. OsWRKYq6 has a very high homology sequence with WRKY transcription factor 39, and when inoculated with Xoo, the relative expression level of the resistant population was higher than that of the susceptible population. Resistance genes have previously been detected using only phenotypic change data. In this study, resistance candidate genes were detected using the concentration of metabolites produced in plants after inoculation with pathogens. This newly developed analysis method can be used to effectively detect and identify genes directly involved in disease resistance for future studies.
Collapse
Affiliation(s)
- Xiao-Xuan Du
- Biosafety Division, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea;
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Korea;
| | - Jae-Ryoung Park
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Korea;
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea; (Y.-H.J.); (E.-G.K.)
| | - Xiao-Han Wang
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 55365, Korea;
| | - Yoon-Hee Jang
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea; (Y.-H.J.); (E.-G.K.)
| | - Eun-Gyeong Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea; (Y.-H.J.); (E.-G.K.)
| | - Gang-Seob Lee
- Biosafety Division, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea;
- Correspondence: (G.-S.L.); (K.-M.K.); Tel.: +82-63-238-4714 (G.-S.L.); +82-53-950-5711 (K.-M.K.)
| | - Kyung-Min Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea; (Y.-H.J.); (E.-G.K.)
- Correspondence: (G.-S.L.); (K.-M.K.); Tel.: +82-63-238-4714 (G.-S.L.); +82-53-950-5711 (K.-M.K.)
| |
Collapse
|
23
|
Introgression of Bacterial Blight Resistance Genes in the Rice Cultivar Ciherang: Response against Xanthomonas oryzae pv. oryzae in the F 6 Generation. PLANTS 2021; 10:plants10102048. [PMID: 34685858 PMCID: PMC8540907 DOI: 10.3390/plants10102048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022]
Abstract
Bacterial blight (BB) is caused by Xanthomonas oryzae pv. oryzae and is one of the most important diseases in rice. It results in significantly reduced productivity throughout all rice-growing regions of the world. Four BB resistance genes have been reported; however, introgression of a single gene into rice has not been able to sufficiently protect rice against BB infection. Pyramiding of effective BB resistance genes (i.e., Xa genes) into background varieties is a potential approach to controlling BB infection. In this study, combinations of four BB resistance genes, Xa4, xa5, xa13, and Xa21, were pyramided into populations. The populations were derived from crossing Ciherang (a widespread Indonesian rice variety) with IRBB60 (resistance to BB). Promising recombinants from the F6 generation were identified by scoring the phenotype against three virulent bacterial strains, C5, P6, and V, which cause widespread BB infection in most rice-growing countries. Pyramiding of genes for BB resistance in 265 recombinant introgressed lines (RILs) were confirmed through marker-assisted selection (MAS) of the F5 and F6 generations using gene-specific primers. Of these 265 RILs, 11, 34 and 45 lines had four, three, or two BB resistance genes, respectively. The RILs had pyramiding of two or three resistance genes, with the Xa4 resistance gene showing broad spectrum resistance against Xoo races with higher agronomic performance compared to their donor and recipients parents. The developed BB-resistant RILs have high yield potential to be further developed for cultivation or as sources of BB resistance donor material for varietal improvement in other rice lines.
Collapse
|
24
|
Kaur B, Sandhu KS, Kamal R, Kaur K, Singh J, Röder MS, Muqaddasi QH. Omics for the Improvement of Abiotic, Biotic, and Agronomic Traits in Major Cereal Crops: Applications, Challenges, and Prospects. PLANTS (BASEL, SWITZERLAND) 2021; 10:1989. [PMID: 34685799 PMCID: PMC8541486 DOI: 10.3390/plants10101989] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/22/2022]
Abstract
Omics technologies, namely genomics, transcriptomics, proteomics, metabolomics, and phenomics, are becoming an integral part of virtually every commercial cereal crop breeding program, as they provide substantial dividends per unit time in both pre-breeding and breeding phases. Continuous advances in omics assure time efficiency and cost benefits to improve cereal crops. This review provides a comprehensive overview of the established omics methods in five major cereals, namely rice, sorghum, maize, barley, and bread wheat. We cover the evolution of technologies in each omics section independently and concentrate on their use to improve economically important agronomic as well as biotic and abiotic stress-related traits. Advancements in the (1) identification, mapping, and sequencing of molecular/structural variants; (2) high-density transcriptomics data to study gene expression patterns; (3) global and targeted proteome profiling to study protein structure and interaction; (4) metabolomic profiling to quantify organ-level, small-density metabolites, and their composition; and (5) high-resolution, high-throughput, image-based phenomics approaches are surveyed in this review.
Collapse
Affiliation(s)
- Balwinder Kaur
- Everglades Research and Education Center, University of Florida, 3200 E. Palm Beach Rd., Belle Glade, FL 33430, USA;
| | - Karansher S. Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA;
| | - Roop Kamal
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Stadt Seeland, Germany; (R.K.); or (M.S.R.)
| | - Kawalpreet Kaur
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Jagmohan Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Marion S. Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Stadt Seeland, Germany; (R.K.); or (M.S.R.)
| | - Quddoos H. Muqaddasi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Stadt Seeland, Germany; (R.K.); or (M.S.R.)
| |
Collapse
|
25
|
Zhang F, Hu Z, Wu Z, Lu J, Shi Y, Xu J, Wang X, Wang J, Zhang F, Wang M, Shi X, Cui Y, Vera Cruz C, Zhuo D, Hu D, Li M, Wang W, Zhao X, Zheng T, Fu B, Ali J, Zhou Y, Li Z. Reciprocal adaptation of rice and Xanthomonas oryzae pv. oryzae: cross-species 2D GWAS reveals the underlying genetics. THE PLANT CELL 2021; 33:2538-2561. [PMID: 34467412 PMCID: PMC8408478 DOI: 10.1093/plcell/koab146] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 05/15/2021] [Indexed: 05/23/2023]
Abstract
A 1D/2D genome-wide association study strategy was adopted to investigate the genetic systems underlying the reciprocal adaptation of rice (Oryza sativa) and its bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo) using the whole-genome sequencing and large-scale phenotyping data of 701 rice accessions and 23 diverse Xoo strains. Forty-seven Xoo virulence-related genes and 318 rice quantitative resistance genes (QR-genes) mainly located in 41 genomic regions, and genome-wide interactions between the detected virulence-related genes and QR genes were identified, including well-known resistance genes/virulence genes plus many previously uncharacterized ones. The relationship between rice and Xoo was characterized by strong differentiation among Xoo races corresponding to the subspecific differentiation of rice, by strong shifts toward increased resistance/virulence of rice/Xoo populations and by rich genetic diversity at the detected rice QR-genes and Xoo virulence genes, and by genome-wide interactions between many rice QR-genes and Xoo virulence genes in a multiple-to-multiple manner, presumably resulting either from direct protein-protein interactions or from genetic epistasis. The observed complex genetic interaction system between rice and Xoo likely exists in other crop-pathogen systems that would maintain high levels of diversity at their QR-loci/virulence-loci, resulting in dynamic coevolutionary consequences during their reciprocal adaptation.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
| | - Zhiqiang Hu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Zhichao Wu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Jialing Lu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
| | - Jianlong Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Xiyin Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063009, China
| | - Jinpeng Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063009, China
| | - Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Mingming Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Xiaorong Shi
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
| | - Yanru Cui
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Casiana Vera Cruz
- International Rice Research Institute, DAPO Box 7777, Metro Manila, The Philippines
| | - Dalong Zhuo
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
| | - Dandan Hu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
| | - Min Li
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
| | - Wensheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Tianqing Zheng
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Jauhar Ali
- International Rice Research Institute, DAPO Box 7777, Metro Manila, The Philippines
| | - Yongli Zhou
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| |
Collapse
|
26
|
Yang W, Zhao J, Zhang S, Chen L, Yang T, Dong J, Fu H, Ma Y, Zhou L, Wang J, Liu W, Liu Q, Liu B. Genome-Wide Association Mapping and Gene Expression Analysis Reveal the Negative Role of OsMYB21 in Regulating Bacterial Blight Resistance in Rice. RICE (NEW YORK, N.Y.) 2021; 14:58. [PMID: 34185169 PMCID: PMC8241976 DOI: 10.1186/s12284-021-00501-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/08/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating diseases in rice all over the world. Due to the diversity and rapid evolution of Xoo, identification and use of the non-race specific quantitative resistance QTLs has been considered the preferred strategy for effective control of this disease. Although numerous QTLs for BB resistance have been identified, they haven't been effectively used for improvement of BB resistance in rice due to their small effects and lack of knowledge on the function of genes underlying the QTLs. RESULTS In the present study, a genome-wide association study of BB resistance was performed in a rice core collection from South China. A total of 17 QTLs were identified to be associated with BB resistance. Among them, 13 QTLs were newly identified in the present study and the other 4 QTLs were co-localized with the previously reported QTLs or Xa genes that confer qualitative resistance to Xoo strains. Particularly, the qBBR11-4 on chromosome 11 explained the largest phenotypic variation in this study and was co-localized with the previously identified QTLs for BB and bacterial leaf streak (BLS) resistance against diverse strains in three studies, suggesting its broad-spectrum resistance and potential value in rice breeding. Through combined analysis of differential expression and annotations of the predicted genes within qBBR11-4 between two sets of rice accessions selected based on haplotypes and disease phenotypes, we identified the transcription factor OsMYB21 as the candidate gene for qBBR11-4. The OsMYB21 overexpressing plants exhibited decreased resistance to bacterial blight, accompanied with down-regulation of several defense-related genes compared with the wild-type plants. CONCLUSION The results suggest that OsMYB21 negatively regulates bacterial blight resistance in rice, and this gene can be a promising target in rice breeding by using the gene editing method. In addition, the potential candidate genes for the 13 novel QTLs for BB resistance were also analyzed in this study, providing a new source for cloning of genes associated with BB resistance and molecular breeding in rice.
Collapse
Affiliation(s)
- Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Luo Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Hua Fu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Lian Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Wei Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Bin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| |
Collapse
|
27
|
Yu K, Liu Z, Gui H, Geng L, Wei J, Liang D, Lv J, Xu J, Chen X. Highly efficient generation of bacterial leaf blight-resistant and transgene-free rice using a genome editing and multiplexed selection system. BMC PLANT BIOLOGY 2021; 21:197. [PMID: 33894749 PMCID: PMC8066475 DOI: 10.1186/s12870-021-02979-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/12/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Rice leaf blight, which is a devastating disease worldwide, is caused by the bacterium Xanthomonas oryzae pv. oryzae (Xoo). The upregulated by transcription activator-like 1 (UPT) effector box in the promoter region of the rice Xa13 gene plays a key role in Xoo pathogenicity. Mutation of a key bacterial protein-binding site in the UPT box of Xa13 to abolish PXO99-induced Xa13 expression is a way to improve rice resistance to bacteria. Highly efficient generation and selection of transgene-free edited plants are helpful to shorten and simplify the gene editing-based breeding process. Selective elimination of transgenic pollen of T0 plants can enrich the proportion of T1 transgene-free offspring, and expression of a color marker gene in seeds makes the selection of T2 plants very convenient and efficient. In this study, a genome editing and multiplexed selection system was used to generate bacterial leaf blight-resistant and transgene-free rice plants. RESULTS We introduced site-specific mutations into the UPT box using CRISPR/Cas12a technology to hamper with transcription-activator-like effector (TAL) protein binding and gene activation and generated genome-edited rice with improved bacterial blight resistance. Transgenic pollen of T0 plants was eliminated by pollen-specific expression of the α-amylase gene Zmaa1, and the proportion of transgene-free plants increased from 25 to 50% among single T-DNA insertion events in the T1 generation. Transgenic seeds were visually identified and discarded by specific aleuronic expression of DsRed, which reduced the cost by 50% and led to up to 98.64% accuracy for the selection of transgene-free edited plants. CONCLUSION We demonstrated that core nucleotide deletion in the UPT box of the Xa13 promoter conferred resistance to rice blight, and selection of transgene-free plants was boosted by introducing multiplexed selection. The combination of genome editing and transgene-free selection is an efficient strategy to accelerate functional genomic research and plant breeding.
Collapse
Affiliation(s)
- Kun Yu
- Syngenta Biotechnology (China) Co., Ltd, No.25, Life Science Park Road, Beijing, 102206, China
| | - Zhiqiang Liu
- Syngenta Biotechnology (China) Co., Ltd, No.25, Life Science Park Road, Beijing, 102206, China
| | - Huaping Gui
- Syngenta Biotechnology (China) Co., Ltd, No.25, Life Science Park Road, Beijing, 102206, China
| | - Lizhao Geng
- Syngenta Biotechnology (China) Co., Ltd, No.25, Life Science Park Road, Beijing, 102206, China
| | - Juan Wei
- Syngenta Biotechnology (China) Co., Ltd, No.25, Life Science Park Road, Beijing, 102206, China
| | - Dawei Liang
- Syngenta Biotechnology (China) Co., Ltd, No.25, Life Science Park Road, Beijing, 102206, China
| | - Jian Lv
- Syngenta Biotechnology (China) Co., Ltd, No.25, Life Science Park Road, Beijing, 102206, China
| | - Jianping Xu
- Syngenta Biotechnology (China) Co., Ltd, No.25, Life Science Park Road, Beijing, 102206, China
| | - Xi Chen
- Syngenta Biotechnology (China) Co., Ltd, No.25, Life Science Park Road, Beijing, 102206, China.
| |
Collapse
|
28
|
Jiang N, Fu J, Zeng Q, Liang Y, Shi Y, Li Z, Xiao Y, He Z, Wu Y, Long Y, Wang K, Yang Y, Liu X, Peng J. Genome-wide association mapping for resistance to bacterial blight and bacterial leaf streak in rice. PLANTA 2021; 253:94. [PMID: 33830376 DOI: 10.1007/s00425-021-03612-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Using genome-wide SNP association mapping, a total of 77 and 7 loci were identified for rice bacterial blight and bacterial leaf streak resistance, respectively, which may facilitate rice resistance improvement. Bacterial blight (BB) and bacterial leaf streak (BLS) caused by Gram-negative bacteria Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc), respectively, are two economically important diseases negatively affecting rice production. To mine new sources of resistance, a set of rice germplasm collection consisting of 895 re-sequenced accessions from the 3000 Rice Genomes Project (3 K RGP) were screened for BB and BLS resistance under field conditions. Higher levels of BB resistance were observed in aus/boro subgroup, whereas the japonica, temperate japonica and tropical japonica subgroups possessed comparatively high levels of resistance to BLS. A genome-wide association study (GWAS) mined 77 genomic loci significantly associated with BB and 7 with BLS resistance. The phenotypic variance (R2) explained by these loci ranged from 0.4 to 30.2%. Among the loci, 7 for BB resistance were co-localized with known BB resistance genes and one for BLS resistance overlapped with a previously reported BLS resistance QTL. A search for the candidates in other novel loci revealed several defense-related genes that may be involved in resistance to BB and BLS. High levels of phenotypic resistance to BB or BLS could be attributed to the accumulation of the resistance (R) alleles at the associated loci, indicating their potential value in rice resistance breeding via gene pyramiding. The GWAS analysis validated the known genes underlying BB and BLS resistance and identified novel loci that could enrich the current resistance gene pool. The resources with strong resistance and significant SNPs identified in this study are potentially useful in breeding for BB and BLS resistance.
Collapse
Affiliation(s)
- Nan Jiang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops and College of Agronomy, Hunan Agricultural University, Changsha, China
- Huazhi Bio-Tech Company Ltd., Changsha, China
- Key Laboratory of Southern Rice Innovation and Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Company Ltd., Changsha, China
| | - Jun Fu
- Key Laboratory of Southern Rice Innovation and Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Company Ltd., Changsha, China
| | - Qin Zeng
- Huazhi Bio-Tech Company Ltd., Changsha, China
| | - Yi Liang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops and College of Agronomy, Hunan Agricultural University, Changsha, China
- Huazhi Bio-Tech Company Ltd., Changsha, China
| | - Yanlong Shi
- Huazhi Bio-Tech Company Ltd., Changsha, China
| | - Zhouwei Li
- Huazhi Bio-Tech Company Ltd., Changsha, China
| | - Youlun Xiao
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhizhou He
- Huazhi Bio-Tech Company Ltd., Changsha, China
| | - Yuntian Wu
- Huazhi Bio-Tech Company Ltd., Changsha, China
| | - Yu Long
- Huazhi Bio-Tech Company Ltd., Changsha, China
| | - Kai Wang
- Key Laboratory of Southern Rice Innovation and Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Company Ltd., Changsha, China
| | - Yuanzhu Yang
- Key Laboratory of Southern Rice Innovation and Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Company Ltd., Changsha, China
| | - Xionglun Liu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops and College of Agronomy, Hunan Agricultural University, Changsha, China.
| | - Junhua Peng
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops and College of Agronomy, Hunan Agricultural University, Changsha, China.
- Huazhi Bio-Tech Company Ltd., Changsha, China.
| |
Collapse
|
29
|
Msami JA, Kawaguchi Y, Ichitani K, Taura S. Linkage analysis of rice bacterial blight resistance gene xa20 in XM6, a mutant line from IR24. BREEDING SCIENCE 2021; 71:144-154. [PMID: 34377062 PMCID: PMC8329881 DOI: 10.1270/jsbbs.20104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/06/2020] [Indexed: 06/13/2023]
Abstract
Bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is an important disease constraining rice (Oryza sativa L.) production worldwide. The XM6 line was induced by N-methyl-N-nitrosourea from IR24, an Indica cultivar that is susceptible to Philippine and Japanese Xoo races. XM6 was confirmed to carry a recessive gene named xa20, resistant to six Philippine and five Japanese Xoo races. The chromosomal gene location was found using 10 plants with the shortest lesion length in an F2 population consisting of 298 plants from a susceptible Japonica variety Koshihikari × XM6. Analysis using PCR-based DNA markers covering the whole rice genome indicated the gene as located on the distal region of the long arm of chromosome 3. The IKC3 line carries IR24 genetic background with Koshihikari fragment on chromosome 3 where a resistance gene was thought to be located. The F2 population from IKC3 × XM6 clearly showed a bimodal distribution separating resistant and susceptible plants. Further linkage analysis conducted using this F2 population revealed that xa20 is located within the 0.8 cM region flanked by DNA markers KIC3-33.88 (33.0 Mb) and KIC3-34.06 (33.2 Mb). This study yields important findings for resistance breeding and for the genetic mechanism of Xoo resistance.
Collapse
Affiliation(s)
- Jessey Anderson Msami
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Yoshiki Kawaguchi
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Katsuyuki Ichitani
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Satoru Taura
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Division of Gene Research, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
30
|
Yadav AK, Kumar A, Grover N, Ellur RK, Bollinedi H, Krishnan SG, Bhowmick PK, Vinod KK, Nagarajan M, Singh AK. Genome-Wide Association Study Reveals Marker-Trait Associations for Early Vegetative Stage Salinity Tolerance in Rice. PLANTS (BASEL, SWITZERLAND) 2021; 10:559. [PMID: 33809618 PMCID: PMC8000697 DOI: 10.3390/plants10030559] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
Rice germplasm is a rich resource for discovering genes associated with salt tolerance. In the current study, a set of 96 accessions were evaluated for seedling stage salinity tolerance and its component traits. Significant phenotypic variation was observed among the genotypes for all the measured traits and eleven accessions with high level of salt tolerance at seedling stage were identified. The germplasm set comprised of three sub-populations and genome-wide association study (GWAS) identified a total of 23 marker-trait associations (MTAs) for traits studied. These MTAs were located on rice chromosomes 1, 2, 5, 6, 7, 9, and 12 and explained the trait phenotypic variances ranging from 13.98 to 29.88 %. Twenty-one MTAs identified in this study were located either in or near the previously reported quantitative trait loci (QTLs), while two MTAs namely, qSDW2.1 and qSNC5 were novel. A total of 18 and 13 putative annotated candidate genes were identified in a genomic region spanning ~200 kb around the MTAs qSDW2.1 and qSNC5, respectively. Some of the important genes underlying the novel MTAs were OsFBA1,OsFBL7, and mTERF which are known to be associated with salinity tolerance in crops. These MTAs pave way for combining salinity tolerance with high yield in rice genotypes through molecular breeding.
Collapse
Affiliation(s)
- Ashutosh Kumar Yadav
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.Y.); (N.G.); (R.K.E.); (H.B.); (S.G.K.); (P.K.B.); (K.K.V.)
- Amity Institute of Biotechnology, Amity University, Noida 201303, India;
| | - Aruna Kumar
- Amity Institute of Biotechnology, Amity University, Noida 201303, India;
| | - Nitasha Grover
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.Y.); (N.G.); (R.K.E.); (H.B.); (S.G.K.); (P.K.B.); (K.K.V.)
| | - Ranjith Kumar Ellur
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.Y.); (N.G.); (R.K.E.); (H.B.); (S.G.K.); (P.K.B.); (K.K.V.)
| | - Haritha Bollinedi
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.Y.); (N.G.); (R.K.E.); (H.B.); (S.G.K.); (P.K.B.); (K.K.V.)
| | - Subbaiyan Gopala Krishnan
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.Y.); (N.G.); (R.K.E.); (H.B.); (S.G.K.); (P.K.B.); (K.K.V.)
| | - Prolay Kumar Bhowmick
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.Y.); (N.G.); (R.K.E.); (H.B.); (S.G.K.); (P.K.B.); (K.K.V.)
| | - Kunnummal Kurungara Vinod
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.Y.); (N.G.); (R.K.E.); (H.B.); (S.G.K.); (P.K.B.); (K.K.V.)
| | - Mariappan Nagarajan
- Rice Breeding and Genetics Research Centre, ICAR—Indian Agricultural Research Institute, Aduthurai 612101, Tamil Nadu, India;
| | - Ashok Kumar Singh
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.Y.); (N.G.); (R.K.E.); (H.B.); (S.G.K.); (P.K.B.); (K.K.V.)
| |
Collapse
|
31
|
Identification of Bacterial Blight Resistance Loci in Rice ( Oryza sativa L.) against Diverse Xoo Thai Strains by Genome-Wide Association Study. PLANTS 2021; 10:plants10030518. [PMID: 33802191 PMCID: PMC8001028 DOI: 10.3390/plants10030518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
Bacterial leaf blight (BLB) is a serious disease affecting global rice agriculture caused by Xanthomonas oryzae pv. oryzae (Xoo). Most resistant rice lines are dependent on single genes that are vulnerable to resistance breakdown caused by pathogen mutation. Here we describe a genome-wide association study of 222 predominantly Thai rice accessions assayed by phenotypic screening against 20 Xoo isolates. Loci corresponding to BLB resistance were detected using >142,000 SNPs. We identified 147 genes according to employed significance thresholds across chromosomes 1–6, 8, 9 and 11. Moreover, 127 of identified genes are located on chromosomal regions outside estimated Linkage Disequilibrium influences of known resistance genes, potentially indicating novel BLB resistance markers. However, significantly associated SNPs only occurred across a maximum of six Xoo isolates indicating that the development of broad-spectrum Xoo strain varieties may prove challenging. Analyses indicated a range of gene functions likely underpinning BLB resistance. In accordance with previous studies of accession panels focusing on indica varieties, our germplasm displays large numbers of SNPs associated with resistance. Despite encouraging data suggesting that many loci contribute to resistance, our findings corroborate previous inferences that multi-strain resistant varieties may not be easily realised in breeding programs without resorting to multi-locus strategies.
Collapse
|
32
|
Lu J, Wang C, Zeng D, Li J, Shi X, Shi Y, Zhou Y. Genome-Wide Association Study Dissects Resistance Loci against Bacterial Blight in a Diverse Rice Panel from the 3000 Rice Genomes Project. RICE (NEW YORK, N.Y.) 2021; 14:22. [PMID: 33638765 PMCID: PMC7914325 DOI: 10.1186/s12284-021-00462-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 02/12/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most devastating bacterial diseases of rice in temperate and tropical regions. Breeding and deployment of resistant cultivars carrying major resistance (R) genes has been the most effective approach for BB management. However, because of specific interaction of each R gene with the product of the corresponding pathogen avirulence or effector gene, new pathogen strains that can overcome the deployed resistance often emerge rapidly. To deal with ever-evolving Xoo, it is necessary to identify novel R genes and resistance quantitative trait loci (QTL). RESULTS BB resistance of a diverse panel of 340 accessions from the 3000 Rice Genomes Project (3 K RGP) was evaluated by artificial inoculation with four representative Xoo strains, namely Z173 (C4), GD1358 (C5), V from China and PXO339 (P9a) from Philippines. Using the 3 K RG 4.8mio filtered SNP Dataset, a total of 11 QTL associated with BB resistance on chromosomes 4, 5, 11 and 12 were identified through a genome-wide association study (GWAS). Among them, eight resistance loci, which were narrowed down to relatively small genomic intervals, coincided with previously reported QTL or R genes, e.g. xa5, xa25, xa44(t). The other three QTL were putative novel loci associated with BB resistance. Linear regression analysis showed a dependence of BB lesion length on the number of favorable alleles, suggesting that pyramiding QTL using marker-assisted selection would be an effective approach for improving resistance. In addition, the Hap2 allele of LOC_Os11g46250 underlying qC5-11.1 was validated as positively regulating resistance against strain C5. CONCLUSIONS Our findings provide valuable information for the genetic improvement of BB resistance and application of germplasm resources in rice breeding programs.
Collapse
Affiliation(s)
- Jialing Lu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Chunchao Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Dan Zeng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jianmin Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiaorong Shi
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036 China
| | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, Hefei, 230036 China
| | - Yongli Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
33
|
Lin Y, Zhou K, Hu H, Jiang X, Yu S, Wang Q, Li C, Ma J, Chen G, Yang Z, Liu Y. Multi-Locus Genome-Wide Association Study of Four Yield-Related Traits in Chinese Wheat Landraces. FRONTIERS IN PLANT SCIENCE 2021; 12:665122. [PMID: 34484253 PMCID: PMC8415402 DOI: 10.3389/fpls.2021.665122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/20/2021] [Indexed: 05/13/2023]
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops in the world. Here, four yield-related traits, namely, spike length, spikelets number, tillers number, and thousand-kernel weight, were evaluated in 272 Chinese wheat landraces in multiple environments. Five multi-locus genome-wide association studies (FASTmrEMMA, ISIS EN-BLASSO, mrMLM, pKWmEB, and pLARmEB) were performed using 172,711 single-nucleotide polymorphisms (SNPs) to identify yield-related quantitative trait loci (QTL). A total of 27 robust QTL were identified by more than three models. Nine of these QTL were consistent with those in previous studies. The remaining 18 QTL may be novel. We identified a major QTL, QTkw.sicau-4B, with up to 18.78% of phenotypic variation explained. The developed kompetitive allele-specific polymerase chain reaction marker for QTkw.sicau-4B was validated in two recombinant inbred line populations with an average phenotypic difference of 16.07%. After combined homologous function annotation and expression analysis, TraesCS4B01G272300 was the most likely candidate gene for QTkw.sicau-4B. Our findings provide new insights into the genetic basis of yield-related traits and offer valuable QTL to breed wheat cultivars via marker-assisted selection.
Collapse
Affiliation(s)
- Yu Lin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Kunyu Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Haiyan Hu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaojun Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shifan Yu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Caixia Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Zisong Yang
- College of Resources and Environment, Aba Teachers University, Wenchuan, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yaxi Liu, , orcid.org/0000-0001-6814-7218
| |
Collapse
|
34
|
Sagare DB, Abbai R, Jain A, Jayadevappa PK, Dixit S, Singh AK, Challa V, Alam S, Singh UM, Yadav S, Sandhu N, Kabade PG, Singh VK, Kumar A. More and more of less and less: Is genomics-based breeding of dry direct-seeded rice (DDSR) varieties the need of hour? PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2173-2186. [PMID: 32725933 PMCID: PMC7589319 DOI: 10.1111/pbi.13454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/07/2020] [Accepted: 07/13/2020] [Indexed: 06/02/2023]
Abstract
Rice is a staple food for half of the world's population. Changing climatic conditions, water and labour scarcity are the major challenges that shall limit future rice production. Dry direct-seeded rice (DDSR) is emerging as an efficient, resources conserving, mechanized, climate smart and economically viable strategy to be adopted as an alternative to puddled transplanted rice (TPR) with the potential to address the problem of labour-water shortages and ensure sustainable rice cultivation. Despite these benefits, several constraints obstruct the adoption of DDSR. In principle, the plant type for DDSR should be different from one for TPR, which could be achieved by developing rice varieties that combine the traits of upland and lowland varieties. In this context, recent advances in precise phenotyping and NGS-based trait mapping led to identification of promising donors and QTLs/genes for DDSR favourable traits to be employed in genomic breeding. This review discusses the important traits influencing DDSR, research studies to clarify the need for breeding DDSR-specific varieties to achieve enhanced grain yield, climate resilience and nutrition demand. We anticipate that in the coming years, genomic breeding for developing DDSR-specific varieties would be a regular practice and might be further strengthened by combining superior haplotypes regulating important DDSR traits by haplotype-based breeding.
Collapse
Affiliation(s)
- Deepti B. Sagare
- International Rice Research Institute (IRRI)South‐Asia Hub (SAH)HyderabadIndia
| | - Ragavendran Abbai
- International Rice Research Institute (IRRI)South‐Asia Hub (SAH)HyderabadIndia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
| | - Abhinav Jain
- International Rice Research Institute (IRRI)South‐Asia Hub (SAH)HyderabadIndia
| | | | - Shilpi Dixit
- International Rice Research Institute (IRRI)South‐Asia Hub (SAH)HyderabadIndia
| | - Arun Kumar Singh
- International Rice Research Institute (IRRI)South‐Asia Hub (SAH)HyderabadIndia
| | | | - Shamshad Alam
- International Rice Research Institute (IRRI)South‐Asia Hub (SAH)HyderabadIndia
| | - Uma Maheshwar Singh
- International Rice Research Institute (IRRI)South‐Asia Hub (SAH)HyderabadIndia
| | - Shailesh Yadav
- International Rice Research Institute (IRRI)Metro ManilaPhilippines
| | | | - Pramod G. Kabade
- International Rice Research Institute (IRRI)South‐Asia Hub (SAH)HyderabadIndia
| | - Vikas Kumar Singh
- International Rice Research Institute (IRRI)South‐Asia Hub (SAH)HyderabadIndia
- International Rice Research Institute (IRRI)Metro ManilaPhilippines
| | - Arvind Kumar
- International Rice Research Institute (IRRI)Metro ManilaPhilippines
- International Rice Research Institute (IRRI)South‐Asia Regional Centre (SARC)VaranasiIndia
| |
Collapse
|
35
|
Joshi JB, Arul L, Ramalingam J, Uthandi S. Advances in the Xoo-rice pathosystem interaction and its exploitation in disease management. J Biosci 2020. [DOI: 10.1007/s12038-020-00085-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Agrahari RK, Singh P, Koyama H, Panda SK. Plant-microbe Interactions for Sustainable Agriculture in the Post-genomic Era. Curr Genomics 2020; 21:168-178. [PMID: 33071611 PMCID: PMC7521031 DOI: 10.2174/1389202921999200505082116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 11/22/2022] Open
Abstract
Plant-microbe interactions are both symbiotic and antagonistic, and the knowledge of both these interactions is equally important for the progress of agricultural practice and produce. This review gives an insight into the recent advances that have been made in the plant-microbe interaction study in the post-genomic era and the application of those for enhancing agricultural production. Adoption of next-generation sequencing (NGS) and marker assisted selection of resistant genes in plants, equipped with cloning and recombination techniques, has progressed the techniques for the development of resistant plant varieties by leaps and bounds. Genome-wide association studies (GWAS) of both plants and microbes have made the selection of desirable traits in plants and manipulation of the genomes of both plants and microbes effortless and less time-consuming. Stress tolerance in plants has been shown to be accentuated by association of certain microorganisms with the plant, the study and application of the same have helped develop stress-resistant varieties of crops. Beneficial microbes associated with plants are being extensively used for the development of microbial consortia that can be applied directly to the plants or the soil. Next-generation sequencing approaches have made it possible to identify the function of microbes associated in the plant microbiome that are both culturable and non-culturable, thus opening up new doors and possibilities for the use of these huge resources of microbes that can have a potential impact on agriculture.
Collapse
Affiliation(s)
| | | | | | - Sanjib Kumar Panda
- Address correspondence to this author at the Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH 8, Bandarsindri, Ajmer 305817, Rajasthan, India; Tel: 9435370608; E-mail:
| |
Collapse
|
37
|
Neelam K, Mahajan R, Gupta V, Bhatia D, Gill BK, Komal R, Lore JS, Mangat GS, Singh K. High-resolution genetic mapping of a novel bacterial blight resistance gene xa-45(t) identified from Oryza glaberrima and transferred to Oryza sativa. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:689-705. [PMID: 31811315 DOI: 10.1007/s00122-019-03501-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/30/2019] [Indexed: 05/07/2023]
Abstract
A novel recessive bacterial blight resistance locus designated as a xa-45(t) was identified from Oryza glaberrima accession IRGC 102600B, transferred to O. sativa and mapped to the long arm of chromosome 8 using ddRAD sequencing approach. The identified QTL spans 80 kb region on Nipponbare reference genome IRGSP-1.0 and contains 9 candidate genes. An STS marker developed from the locus LOC_Os08g42410 was found co-segregating with the trait and will be useful for marker-assisted transfer of this recessive resistance gene in breeding programs. Bacterial blight, caused by Xanthomonas oryzae pv. oryzae, is one of the major constraints of rice productivity in Southeast Asia. In spite of having 44 bacterial blight resistance genes from cultivated rice and wild species, the durability of resistance is always at stake due to the continually evolving nature of the pathogen and lack of suitable chemical control. Here, we report high-resolution genetic mapping of a novel bacterial blight resistance gene tentatively designated as a xa-45(t) from an introgression line derived from Oryza glaberrima accession IRGC 102600B. This introgression line was crossed with the susceptible rice indica cultivar cv. Pusa 44 to generate F2 and F2:3 populations for inheritance and mapping studies. The inheritance studies revealed the presence of single recessive locus controlling resistance to the Xanthomonas pathotype seven. A high-density linkage map was constructed using double-digest restriction-associated DNA sequencing of 96 F2 populations along with the parents. The QTL mapping identified a major locus on the long arm of rice chromosome 8 with a LOD score of 33.22 between the SNP markers C8.26737175 and C8.26818765. The peak marker, C8.26810477, explains 49.8% of the total phenotypic variance and was positioned at 202.90 cM on the linkage map. This major locus spans 80 kb region on Nipponbare reference genome IRGSP-1.0 and contains 9 candidate genes. A co-segregating STS marker was developed from the LOC_Os08g42410 for efficient transfer of this novel gene to elite cultivars.
Collapse
Affiliation(s)
- Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Ritu Mahajan
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Vikas Gupta
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Dharminder Bhatia
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Baljeet Kaur Gill
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Ratika Komal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Jagjeet Singh Lore
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Gurjit Singh Mangat
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Kuldeep Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110073, India.
| |
Collapse
|
38
|
|
39
|
Nelson R. International Plant Pathology: Past and Future Contributions to Global Food Security. PHYTOPATHOLOGY 2020; 110:245-253. [PMID: 31680649 DOI: 10.1094/phyto-08-19-0300-ia] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The challenge of feeding the current and future world population is widely recognized, and the management of plant diseases has an important role in overcoming this. This paper explores the ways in which international plant pathology has contributed and continues to support efforts to secure adequate, safe and culturally appropriate nourishment and livelihoods for present and future generations. For the purposes of this paper, "international plant pathology" refers to the work that plant pathologists do when they work across international borders, with a focus on enhancing food security in tropical regions. Significant efforts involve public and philanthropic resources from the global North for addressing plant disease concerns in the global South, where food security is a legitimate and pressing concern. International disease management efforts are also aimed at protecting domestic food security, for example when pathogens of major staples migrate across national borders. In addition, some important crops are largely produced in tropical countries and consumed globally, including in industrialized countries; the diseases of these crops are of international interest, and they are largely managed by the private sector. Finally, host-microbe interactions are fascinating biological systems, and basic research on plant diseases of international relevance has often yielded insights and technologies with both scientific and practical implications.
Collapse
Affiliation(s)
- Rebecca Nelson
- School of Integrative Plant Sciences, Cornell University
| |
Collapse
|
40
|
Kim KH, Kim JY, Lim WJ, Jeong S, Lee HY, Cho Y, Moon JK, Kim N. Genome-wide association and epistatic interactions of flowering time in soybean cultivar. PLoS One 2020; 15:e0228114. [PMID: 31968016 PMCID: PMC6975553 DOI: 10.1371/journal.pone.0228114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/07/2020] [Indexed: 12/02/2022] Open
Abstract
Genome-wide association studies (GWAS) have enabled the discovery of candidate markers that play significant roles in various complex traits in plants. Recently, with increased interest in the search for candidate markers, studies on epistatic interactions between single nucleotide polymorphism (SNP) markers have also increased, thus enabling the identification of more candidate markers along with GWAS on single-variant-additive-effect. Here, we focused on the identification of candidate markers associated with flowering time in soybean (Glycine max). A large population of 2,662 cultivated soybean accessions was genotyped using the 180k Axiom® SoyaSNP array, and the genomic architecture of these accessions was investigated to confirm the population structure. Then, GWAS was conducted to evaluate the association between SNP markers and flowering time. A total of 93 significant SNP markers were detected within 59 significant genes, including E1 and E3, which are the main determinants of flowering time. Based on the GWAS results, multilocus epistatic interactions were examined between the significant and non-significant SNP markers. Two significant and 16 non-significant SNP markers were discovered as candidate markers affecting flowering time via interactions with each other. These 18 candidate SNP markers mapped to 18 candidate genes including E1 and E3, and the 18 candidate genes were involved in six major flowering pathways. Although further biological validation is needed, our results provide additional information on the existing flowering time markers and present another option to marker-assisted breeding programs for regulating flowering time of soybean.
Collapse
Affiliation(s)
- Kyoung Hyoun Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jae-Yoon Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won-Jun Lim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Seongmun Jeong
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ho-Yeon Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Youngbum Cho
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jung-Kyung Moon
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Namshin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
41
|
Kumar A, Kumar R, Sengupta D, Das SN, Pandey MK, Bohra A, Sharma NK, Sinha P, Sk H, Ghazi IA, Laha GS, Sundaram RM. Deployment of Genetic and Genomic Tools Toward Gaining a Better Understanding of Rice- Xanthomonas oryzae pv. oryzae Interactions for Development of Durable Bacterial Blight Resistant Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:1152. [PMID: 32849710 PMCID: PMC7417518 DOI: 10.3389/fpls.2020.01152] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/15/2020] [Indexed: 05/05/2023]
Abstract
Rice is the most important food crop worldwide and sustainable rice production is important for ensuring global food security. Biotic stresses limit rice production significantly and among them, bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo) is very important. BB reduces rice yields severely in the highly productive irrigated and rainfed lowland ecosystems and in recent years; the disease is spreading fast to other rice growing ecosystems as well. Being a vascular pathogen, Xoo interferes with a range of physiological and biochemical exchange processes in rice. The response of rice to Xoo involves specific interactions between resistance (R) genes of rice and avirulence (Avr) genes of Xoo, covering most of the resistance genes except the recessive ones. The genetic basis of resistance to BB in rice has been studied intensively, and at least 44 genes conferring resistance to BB have been identified, and many resistant rice cultivars and hybrids have been developed and released worldwide. However, the existence and emergence of new virulent isolates of Xoo in the realm of a rapidly changing climate necessitates identification of novel broad-spectrum resistance genes and intensification of gene-deployment strategies. This review discusses about the origin and occurrence of BB in rice, interactions between Xoo and rice, the important roles of resistance genes in plant's defense response, the contribution of rice resistance genes toward development of disease resistance varieties, identification and characterization of novel, and broad-spectrum BB resistance genes from wild species of Oryza and also presents a perspective on potential strategies to achieve the goal of sustainable disease management.
Collapse
Affiliation(s)
- Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
- *Correspondence: Raman Meenakshi Sundaram, ; Anirudh Kumar,
| | - Rakesh Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Debashree Sengupta
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad (UoH), Hyderabad, India
| | - Subha Narayan Das
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Manish K. Pandey
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Abhishek Bohra
- ICAR-Crop Improvement Division, Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Naveen K. Sharma
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Pragya Sinha
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Hajira Sk
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Irfan Ahmad Ghazi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad (UoH), Hyderabad, India
| | - Gouri Sankar Laha
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Raman Meenakshi Sundaram
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
- *Correspondence: Raman Meenakshi Sundaram, ; Anirudh Kumar,
| |
Collapse
|