1
|
Chen Y, Méhes G, Liu B, Gao L, Cui M, Lin C, Hirono-Hara Y, Hara KY, Mitome N, Miyake T. Proton Logic Gate Based on a Gramicidin-ATP Synthase Integrated Biotransducer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7480-7488. [PMID: 38295806 DOI: 10.1021/acsami.3c15251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Ion channels are membrane proteins that allow ionic signals to pass through channel pores for biofunctional modulations. However, biodevices that integrate bidirectional biological signal transmission between a device and biological converter through supported lipid bilayers (SLBs) while simultaneously controlling the process are lacking. Therefore, in this study, we aimed to develop a hybrid biotransducer composed of ATP synthase and proton channel gramicidin A (gA), controlled by a sulfonated polyaniline (SPA) conducting polymer layer deposited on a microelectrode, and to simulate a model circuit for this system. We controlled proton transport across the gA channel using both electrical and chemical input signals by applying voltage to the SPA or introducing calcium ions (inhibitor) and ethylenediaminetetraacetic acid molecules (inhibitor remover). The insertion of gA and ATP synthase into SLBs on microelectrodes resulted in an integrated biotransducer, in which the proton current was controlled by the flux of adenosine diphosphate molecules and calcium ions. Lastly, we created an XOR logic gate as an enzymatic logic system where the output proton current was controlled by Input A (ATP synthase) and Input B (calcium ions), making use of the unidirectional and bidirectional transmission of protons in ATP synthase and gA, respectively. We combined gA, ATP synthase, and SPA as a hybrid bioiontronics system to control bidirectional or unidirectional ion transport across SLBs in biotransducers. Thus, our findings are potentially relevant for a range of advanced biological and medical applications.
Collapse
Affiliation(s)
- Yukun Chen
- Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatu, Kitakyushu 808-0135, Fukuoka, Japan
| | - Gábor Méhes
- Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatu, Kitakyushu 808-0135, Fukuoka, Japan
| | - Bingfu Liu
- Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatu, Kitakyushu 808-0135, Fukuoka, Japan
| | - Liyun Gao
- Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatu, Kitakyushu 808-0135, Fukuoka, Japan
| | - Mingyin Cui
- Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatu, Kitakyushu 808-0135, Fukuoka, Japan
| | - Chenliang Lin
- Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatu, Kitakyushu 808-0135, Fukuoka, Japan
| | - Yoko Hirono-Hara
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kiyotaka Y Hara
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Noriyo Mitome
- Faculty of Education, Tokoha University, 6-1 Yayoicho, Suruga, Shizuoka 422-8581, Shizuoka, Japan
| | - Takeo Miyake
- Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatu, Kitakyushu 808-0135, Fukuoka, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Saitama, Japan
| |
Collapse
|
2
|
Gluschke JG, Seidl J, Lyttleton RW, Nguyen K, Lagier M, Meyer F, Krogstrup P, Nygård J, Lehmann S, Mostert AB, Meredith P, Micolich AP. Integrated bioelectronic proton-gated logic elements utilizing nanoscale patterned Nafion. MATERIALS HORIZONS 2021; 8:224-233. [PMID: 34821301 DOI: 10.1039/d0mh01070g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A central endeavour in bioelectronics is the development of logic elements to transduce and process ionic to electronic signals. Motivated by this challenge, we report fully monolithic, nanoscale logic elements featuring n- and p-type nanowires as electronic channels that are proton-gated by electron-beam patterned Nafion. We demonstrate inverter circuits with state-of-the-art ion-to-electron transduction performance giving DC gain exceeding 5 and frequency response up to 2 kHz. A key innovation facilitating the logic integration is a new electron-beam process for patterning Nafion with linewidths down to 125 nm. This process delivers feature sizes compatible with low voltage, fast switching elements. This expands the scope for Nafion as a versatile patternable high-proton-conductivity element for bioelectronics and other applications requiring nanoengineered protonic membranes and electrodes.
Collapse
Affiliation(s)
- J G Gluschke
- School of Physics, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Nag OK, Muroski ME, Hastman DA, Almeida B, Medintz IL, Huston AL, Delehanty JB. Nanoparticle-Mediated Visualization and Control of Cellular Membrane Potential: Strategies, Progress, and Remaining Issues. ACS NANO 2020; 14:2659-2677. [PMID: 32078291 DOI: 10.1021/acsnano.9b10163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The interfacing of nanoparticle (NP) materials with cells, tissues, and organisms for a range of applications including imaging, sensing, and drug delivery continues at a rampant pace. An emerging theme in this area is the use of NPs and nanostructured surfaces for the imaging and/or control of cellular membrane potential (MP). Given the important role that MP plays in cellular biology, both in normal physiology and in disease, new materials and methods are continually being developed to probe the activity of electrically excitable cells such as neurons and muscle cells. In this Review, we highlight the current state of the art for both the visualization and control of MP using traditional materials and techniques, discuss the advantageous features of NPs for performing these functions, and present recent examples from the literature of how NP materials have been implemented for the visualization and control of the activity of electrically excitable cells. We conclude with a forward-looking perspective of how we expect to see this field progress in the near term and further into the future.
Collapse
Affiliation(s)
- Okhil K Nag
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| | - Megan E Muroski
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
- American Society for Engineering Education, Washington, D.C. 20036, United States
| | - David A Hastman
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Bethany Almeida
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
- American Society for Engineering Education, Washington, D.C. 20036, United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| | - Alan L Huston
- Division of Optical Sciences, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| |
Collapse
|
4
|
Wu C, Selberg J, Nguyen B, Pansodtee P, Jia M, Dechiraju H, Teodorescu M, Rolandi M. A Microfluidic Ion Sensor Array. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906436. [PMID: 31965738 DOI: 10.1002/smll.201906436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/16/2019] [Indexed: 06/10/2023]
Abstract
A balanced concentration of ions is essential for biological processes to occur. For example, [H+ ] gradients power adenosine triphosphate synthesis, dynamic changes in [K+ ] and [Na+ ] create action potentials in neuronal communication, and [Cl- ] contributes to maintaining appropriate cell membrane voltage. Sensing ionic concentration is thus important for monitoring and regulating many biological processes. This work demonstrates an ion-selective microelectrode array that simultaneously and independently senses [K+ ], [Na+ ], and [Cl- ] in electrolyte solutions. To obtain ion specificity, the required ion-selective membranes are patterned using microfluidics. As a proof of concept, the change in ionic concentration is monitored during cell proliferation in a cell culture medium. This microelectrode array can easily be integrated in lab-on-a-chip approaches to physiology and biological research and applications.
Collapse
Affiliation(s)
- Chunxiao Wu
- Department of Electrical and Computer Engineering, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| | - John Selberg
- Department of Electrical and Computer Engineering, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| | - Brian Nguyen
- Department of Electrical and Computer Engineering, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| | - Pattawong Pansodtee
- Department of Electrical and Computer Engineering, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| | - Manping Jia
- Department of Electrical and Computer Engineering, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| | - Harika Dechiraju
- Department of Electrical and Computer Engineering, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| | - Mircea Teodorescu
- Department of Electrical and Computer Engineering, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| |
Collapse
|