1
|
Dobránszki J, Agius DR, Berger MMJ, Moschou PN, Gallusci P, Martinelli F. Plant memory and communication of encounters. TRENDS IN PLANT SCIENCE 2025; 30:199-212. [PMID: 39547849 DOI: 10.1016/j.tplants.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024]
Abstract
Plants can communicate with each other and other living organisms in a very sophisticated manner. They use biological molecules and even physical cues to establish a molecular dialogue with beneficial organisms as well as with their predators and pathogens. Several studies were recently published that explore how plants communicate with each other about their previous encounters or stressful experiences. However, there is an almost complete lack of knowledge about how these intra- and interspecies communications are directly regulated at the epigenetic level. In this perspective article we provide new hypotheses for the possible epigenetic modifications that regulate plant responses at the communication level.
Collapse
Affiliation(s)
- Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, FAFSEM, University of Debrecen, Debrecen, Hungary
| | - Dolores R Agius
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta; Ġ.F. Abela Junior College, University of Malta, Msida, Malta
| | - Margot M J Berger
- Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, Institut National de la Recherche Agronomique (INRAE), Institut des Sciences de la Vigne et du Vin (ISVV), Villenave d'Ornon, France
| | - Panagiotis N Moschou
- Department of Biology, University of Crete, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece; Molecular Sciences Department, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Philippe Gallusci
- Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, Institut National de la Recherche Agronomique (INRAE), Institut des Sciences de la Vigne et du Vin (ISVV), Villenave d'Ornon, France
| | | |
Collapse
|
2
|
Kazancev M, Merkulov P, Tiurin K, Demurin Y, Soloviev A, Kirov I. Comparative Analysis of Active LTR Retrotransposons in Sunflower ( Helianthus annuus L.): From Extrachromosomal Circular DNA Detection to Protein Structure Prediction. Int J Mol Sci 2024; 25:13615. [PMID: 39769378 PMCID: PMC11728184 DOI: 10.3390/ijms252413615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/30/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Plant genomes possess numerous transposable element (TE) insertions that have occurred during evolution. Most TEs are silenced or diverged; therefore, they lose their ability to encode proteins and are transposed in the genome. Knowledge of active plant TEs and TE-encoded proteins essential for transposition and evasion of plant cell transposon silencing mechanisms remains limited. This study investigated active long terminal repeat (LTR) retrotransposons (RTEs) in sunflowers (Helianthus annuus), revealing heterogeneous and phylogenetically distinct RTEs triggered by epigenetic changes and heat stress. Many of these RTEs belong to three distinct groups within the Tekay clade, showing significant variations in chromosomal insertion distribution. Through protein analysis of these active RTEs, it was found that Athila RTEs and Tekay group 2 elements possess additional open reading frames (aORFs). The aORF-encoded proteins feature a transposase domain, a transmembrane domain, and nuclear localization signals. The aORF proteins of the Tekay subgroup exhibited remarkable conservation among over 500 Tekay members, suggesting their functional importance in RTE mobility. The predicted 3D structure of the sunflower Tekay aORF protein showed significant homology with Tekay proteins in rice, maize, and sorghum. Additionally, the structural features of aORF proteins resemble those of plant DRBM-containing proteins, suggesting their potential role in RNA-silencing modulation. These findings offer insights into the diversity and activity of sunflower RTEs, emphasizing the conservation and structural characteristics of aORF-encoded proteins.
Collapse
Affiliation(s)
- Mikhail Kazancev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (M.K.); (P.M.); (K.T.); (A.S.)
| | - Pavel Merkulov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (M.K.); (P.M.); (K.T.); (A.S.)
| | - Kirill Tiurin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (M.K.); (P.M.); (K.T.); (A.S.)
| | - Yakov Demurin
- Pustovoit All-Russia Research Institute of Oilseed Crops, Filatova St. 17, 350038 Krasnodar, Russia;
| | - Alexander Soloviev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (M.K.); (P.M.); (K.T.); (A.S.)
- All-Russia Center for Plant Quarantine, 140150 Ramenski, Russia
| | - Ilya Kirov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (M.K.); (P.M.); (K.T.); (A.S.)
| |
Collapse
|
3
|
Abdelsattar M, Soliman MS, Mohamed RA, Radwan KH, El-Mahdy MM, Mousa KH, Khalil SRM, Osman E, Alameldin HF, Hussein A, Hassanein SE, Abdallah NA, Alsamman AM, Osama O. Transcriptomic insights into mycorrhizal interactions with tomato root: a comparative study of short- and long-term post-inoculation responses. Front Genet 2024; 15:1434761. [PMID: 39440244 PMCID: PMC11493745 DOI: 10.3389/fgene.2024.1434761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/29/2024] [Indexed: 10/25/2024] Open
Abstract
Background Arbuscular mycorrhiza (AM) refers to a symbiotic association between plant roots and fungi that enhances the uptake of mineral nutrients from the soil and enables the plant to tolerate abiotic and biotic stresses. Although previously reported RNA-seq analyses have identified large numbers of AM-responsive genes in model plants, such as Solanum lycopersicum L., further studies are underway to comprehensively understand the complex interactions between plant roots and AM, especially in terms of the short- and long-term responses after inoculation. Results Herein, we used RNA-seq technology to obtain the transcriptomes of tomato roots inoculated with the fungus Rhizophagus irregularis at 7 and 30 days post inoculation (dpi). Of the 1,019 differentially expressed genes (DEGs) in tomato roots, 635 genes showed differential expressions between mycorrhizal and non-mycorrhizal associations at the two time points. The number of upregulated DEGs far exceeded the number of downregulated ones at 7 dpi, and this difference decreased at 30 dpi. Several notable genes were particularly involved in the plant defense, plant growth and development, ion transport, and biological processes, namely, GABAT, AGP, POD, NQO1, MT4, MTA, and AROGP3. In addition, the Kyoto encyclopedia of genes and genomes pathway enrichment analysis revealed that some of the genes were involved in different pathways, including those of ascorbic acid (AFRR, GME1, and APX), metabolism (CYP, GAPC2, and CAM2), and sterols (CYC1 and HMGR), as well as genes related to cell division and cell cycle (CDKB2 and PCNA). Conclusion These findings provide valuable new data on AM-responsive genes in tomato roots at both short- and long-term postinoculation stages, enabling the deciphering of biological interactions between tomato roots and symbiotic fungi.
Collapse
Affiliation(s)
- Mohamed Abdelsattar
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Maali S. Soliman
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
- The Central Laboratory for Phytosanitary and Food Safety, United Integrated Laboratories, Barka, Oman
| | - Rasha A. Mohamed
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Khaled H. Radwan
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- National Biotechnology Network of Expertise, ASRT, Cairo, Egypt
| | - Mohamed M. El-Mahdy
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Khaled H. Mousa
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Shaimaa R. M. Khalil
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Engy Osman
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Hussien F. Alameldin
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- Sugarbeet and Bean Research Unit, U.S. Department of Agriculture - Agriculture Research Service (USDA-ARS), East Lansing, MI, United States
| | - Ahmed Hussein
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Sameh E. Hassanein
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Naglaa A. Abdallah
- National Biotechnology Network of Expertise, ASRT, Cairo, Egypt
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Alsamman M. Alsamman
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- International Center for Agriculture Research in the Dry Areas (ICARD), Giza, Egypt
| | - Omnia Osama
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| |
Collapse
|
4
|
Zanetti ME, Blanco F, Ferrari M, Ariel F, Benoit M, Niebel A, Crespi M. Epigenetic control during root development and symbiosis. PLANT PHYSIOLOGY 2024; 196:697-710. [PMID: 38865442 DOI: 10.1093/plphys/kiae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/02/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024]
Abstract
The roots of plants play multiple functions that are essential for growth and development, including anchoring to the soil as well as water and nutrient acquisition. These underground organs exhibit the plasticity to modify their root system architecture in response to environmental cues, allowing adaptation to change in water and nutrient availability. In addition, roots enter in mutualistic interactions with soil microorganisms, for example, the root nodule symbiosis (RNS) established between a limited group of plants and nitrogen-fixing soil bacteria and the arbuscular mycorrhiza symbiosis involving most land plants and fungi of the Glomeromycetes phylum. In the past 20 years, genetic approaches allowed the identification and functional characterization of genes required for the specific programs of root development, root nodule, and arbuscular mycorrhiza symbioses. These genetic studies provided evidence that the program of the RNS recruited components of the arbuscular mycorrhiza symbiosis and the root developmental programs. The execution of these programs is strongly influenced by epigenetic changes-DNA methylation and histone post-translational modifications-that alter chromatin conformation modifying the expression of key genes. In this review, we summarize recent advances that highlight how DNA methylation and histone post-translational modifications, as well as chromatin remodeling factors and long noncoding RNAs, shape the root system architecture and allow the successful establishment of both root nodule and arbuscular mycorrhiza symbioses. We anticipate that the analysis of dynamic epigenetic changes and chromatin 3D structure in specific single cells or tissue types of root organs will illuminate our understanding of how root developmental and symbiotic programs are orchestrated, opening exciting questions and new perspectives to modulate agronomical and ecological traits linked to nutrient acquisition.
Collapse
Affiliation(s)
- María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata 1900, Argentina
| | - Flavio Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata 1900, Argentina
| | - Milagros Ferrari
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata 1900, Argentina
| | - Federico Ariel
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, and Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Buenos Aires C1428EGA, Argentina
| | - Matthias Benoit
- Laboratoire des Interactions Plantes-Microorganismes (LIPME), INRAE, CNRS, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Andreas Niebel
- Laboratoire des Interactions Plantes-Microorganismes (LIPME), INRAE, CNRS, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Martin Crespi
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
| |
Collapse
|
5
|
Ledford WC, Silvestri A, Fiorilli V, Roth R, Rubio-Somoza I, Lanfranco L. A journey into the world of small RNAs in the arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2024; 242:1534-1544. [PMID: 37985403 DOI: 10.1111/nph.19394] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/15/2023] [Indexed: 11/22/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is a mutualistic interaction between fungi and most land plants that is underpinned by a bidirectional exchange of nutrients. AM development is a tightly regulated process that encompasses molecular communication for reciprocal recognition, fungal accommodation in root tissues and activation of symbiotic function. As such, a complex network of transcriptional regulation and molecular signaling underlies the cellular and metabolic reprogramming of host cells upon AM fungal colonization. In addition to transcription factors, small RNAs (sRNAs) are emerging as important regulators embedded in the gene network that orchestrates AM development. In addition to controlling cell-autonomous processes, plant sRNAs also function as mobile signals capable of moving to different organs and even to different plants or organisms that interact with plants. AM fungi also produce sRNAs; however, their function in the AM symbiosis remains largely unknown. Here, we discuss the contribution of host sRNAs in the development of AM symbiosis by considering their role in the transcriptional reprogramming of AM fungal colonized cells. We also describe the characteristics of AM fungal-derived sRNAs and emerging evidence for the bidirectional transfer of functional sRNAs between the two partners to mutually modulate gene expression and control the symbiosis.
Collapse
Affiliation(s)
- William Conrad Ledford
- Department of Life Sciences and Systems Biology, University of Turin, Turin, 10125, Italy
- Molecular Reprogramming and Evolution (MoRE) Lab, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, 08193, Spain
| | - Alessandro Silvestri
- Molecular Reprogramming and Evolution (MoRE) Lab, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, 08193, Spain
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, 10125, Italy
| | - Ronelle Roth
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Ignacio Rubio-Somoza
- Molecular Reprogramming and Evolution (MoRE) Lab, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08001, Spain
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, 10125, Italy
| |
Collapse
|
6
|
Doddavarapu B, Lata C, Shah JM. Epigenetic regulation influenced by soil microbiota and nutrients: Paving road to epigenome editing in plants. Biochim Biophys Acta Gen Subj 2024; 1868:130580. [PMID: 38325761 DOI: 10.1016/j.bbagen.2024.130580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/25/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Soil is a complex ecosystem that houses microbes and nutrients that are necessary for plant development. Edaphic properties of the soil and environmental conditions influence microbial growth and nutrient accessibility. Various environmental stimuli largely affect the soil microbes and ionic balance, in turn influencing plants. Soil microflora helps decompose organic matter and is involved in mineral uptake. The combination of soil microbes and mineral nutrients notably affects plant growth. Recent advancements have enabled a deeper understanding of plant genetic/molecular regulators. Deficiencies/sufficiencies of soil minerals and microbes also alter plant gene regulation. Gene regulation mediated by epigenetic mechanisms comprises conformational alterations in chromatin structure, DNA/histone modifications, or involvement of small RNAs. Epigenetic regulation is unique due to its potential to inherit without involving alteration of the DNA sequence. Thus, the compilation study of heritable epigenetic changes driven by nutrient imbalances and soil microbes would facilitate understanding this molecular phenomenon in plants. This information can aid in epigenome editing, which has recently emerged as a promising technology for plant non-transgenic/non-mutagenic modification. Potential epigenetic marks induced by biotic and abiotic stresses in plants could be explored as target sites for epigenome editing. This review discusses novel ways of epigenome editing to create epigenome edited plants with desirable and heritable phenotypes. As plants are sessile and in constant exposure to the soil microbiome and nutrients, epigenetic changes induced by these factors could provide more effective, stable and a sustainable molecular solution for crop improvement.
Collapse
Affiliation(s)
- Bhavya Doddavarapu
- Department of Plant Science, Central University of Kerala, Kerala, India
| | - Charu Lata
- Inclusive Health & Traditional Knowledge Studies Division, CSIR- National Institute of Science Communication and Policy Research, New Delhi, India
| | - Jasmine M Shah
- Department of Plant Science, Central University of Kerala, Kerala, India.
| |
Collapse
|
7
|
Song W, Wang Y, Peng B, Yang L, Gao J, Xiao C. Structure and function of microbiomes in the rhizosphere and endosphere response to temperature and precipitation variation in Inner Mongolia steppes. FRONTIERS IN PLANT SCIENCE 2023; 14:1297399. [PMID: 38130486 PMCID: PMC10733484 DOI: 10.3389/fpls.2023.1297399] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Introduction Owing to challenges in the study of complex rhizosphere and endophytic microbial communities, the composition and function of such microbial communities in steppe ecosystems remain elusive. Here, we studied the microbial communities of the rhizosphere and endophytic microbes of the dominant plant species across the Inner Mongolian steppes using metagenomic sequencing and investigated their relationships with changes in mean annual temperature (MAT) and mean annual precipitation (MAP). Methods Metagenomic sequencing based on Illumina high-throughput sequencing, using the paired end method to construct a small fragment library for sequencing. Results Adaptation of root systems to the environment affected the composition and function of rhizosphere and endophytic microbial communities. However, these communities exhibited distinct community assembly and environmental adaptation patterns. Both rhizosphere and endophytic microbial communities can be divided into two unrelated systems based on their ecological niches. The composition and function of the rhizosphere microbial communities were mainly influenced by MAT, while those of the endophytic microbial communities were mainly influenced by MAP. MAT affected the growth, reproduction, and lipid decomposition of rhizosphere microorganisms, whereas MAP affected reverse transcription and cell wall/membrane/envelope biogenic functions of endophytic microorganisms. Conclusion Our findings reveal the composition and function of the rhizosphere and endophytic microbial communities in response to changes in MAP and MAT, which has important implications for future biogeography and climate change research.
Collapse
Affiliation(s)
- Wenchen Song
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
| | - Yao Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Bo Peng
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Linyan Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Jian Gao
- Faculty of Resources and Environment, Baotou Teachers’ College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Chunwang Xiao
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
| |
Collapse
|
8
|
Kirov I, Merkulov P, Polkhovskaya E, Konstantinov Z, Kazancev M, Saenko K, Polkhovskiy A, Dudnikov M, Garibyan T, Demurin Y, Soloviev A. Epigenetic Stress and Long-Read cDNA Sequencing of Sunflower ( Helianthus annuus L.) Revealed the Origin of the Plant Retrotranscriptome. PLANTS (BASEL, SWITZERLAND) 2022; 11:3579. [PMID: 36559691 PMCID: PMC9784723 DOI: 10.3390/plants11243579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/12/2023]
Abstract
Transposable elements (TEs) contribute not only to genome diversity but also to transcriptome diversity in plants. To unravel the sources of LTR retrotransposon (RTE) transcripts in sunflower, we exploited a recently developed transposon activation method ('TEgenesis') along with long-read cDNA Nanopore sequencing. This approach allows for the identification of 56 RTE transcripts from different genomic loci including full-length and non-autonomous RTEs. Using the mobilome analysis, we provided a new set of expressed and transpositional active sunflower RTEs for future studies. Among them, a Ty3/Gypsy RTE called SUNTY3 exhibited ongoing transposition activity, as detected by eccDNA analysis. We showed that the sunflower genome contains a diverse set of non-autonomous RTEs encoding a single RTE protein, including the previously described TR-GAG (terminal repeat with the GAG domain) as well as new categories, TR-RT-RH, TR-RH, and TR-INT-RT. Our results demonstrate that 40% of the loci for RTE-related transcripts (nonLTR-RTEs) lack their LTR sequences and resemble conventional eucaryotic genes encoding RTE-related proteins with unknown functions. It was evident based on phylogenetic analysis that three nonLTR-RTEs encode GAG (HadGAG1-3) fused to a host protein. These HadGAG proteins have homologs found in other plant species, potentially indicating GAG domestication. Ultimately, we found that the sunflower retrotranscriptome originated from the transcription of active RTEs, non-autonomous RTEs, and gene-like RTE transcripts, including those encoding domesticated proteins.
Collapse
Affiliation(s)
- Ilya Kirov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Pavel Merkulov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Ekaterina Polkhovskaya
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
| | - Zakhar Konstantinov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
| | - Mikhail Kazancev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Ksenia Saenko
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
- Federal Research Center of Biological Plant Protection, 350039 Krasnodar, Russia
| | - Alexander Polkhovskiy
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Maxim Dudnikov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Tsovinar Garibyan
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
| | - Yakov Demurin
- Pustovoit All-Russia Research Institute of Oilseed Crops, Filatova St. 17, 350038 Krasnodar, Russia
| | - Alexander Soloviev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
| |
Collapse
|
9
|
Bajus M, Macko-Podgórni A, Grzebelus D, Baránek M. A review of strategies used to identify transposition events in plant genomes. FRONTIERS IN PLANT SCIENCE 2022; 13:1080993. [PMID: 36531345 PMCID: PMC9751208 DOI: 10.3389/fpls.2022.1080993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Transposable elements (TEs) were initially considered redundant and dubbed 'junk DNA'. However, more recently they were recognized as an essential element of genome plasticity. In nature, they frequently become active upon exposition of the host to stress conditions. Even though most transposition events are neutral or even deleterious, occasionally they may happen to be beneficial, resulting in genetic novelty providing better fitness to the host. Hence, TE mobilization may promote adaptability and, in the long run, act as a significant evolutionary force. There are many examples of TE insertions resulting in increased tolerance to stresses or in novel features of crops which are appealing to the consumer. Possibly, TE-driven de novo variability could be utilized for crop improvement. However, in order to systematically study the mechanisms of TE/host interactions, it is necessary to have suitable tools to globally monitor any ongoing TE mobilization. With the development of novel potent technologies, new high-throughput strategies for studying TE dynamics are emerging. Here, we present currently available methods applied to monitor the activity of TEs in plants. We divide them on the basis of their operational principles, the position of target molecules in the process of transposition and their ability to capture real cases of actively transposing elements. Their possible theoretical and practical drawbacks are also discussed. Finally, conceivable strategies and combinations of methods resulting in an improved performance are proposed.
Collapse
Affiliation(s)
- Marko Bajus
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| | - Alicja Macko-Podgórni
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Dariusz Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Miroslav Baránek
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| |
Collapse
|
10
|
Mascagni F, Barghini E, Ceccarelli M, Baldoni L, Trapero C, Díez CM, Natali L, Cavallini A, Giordani T. The Singular Evolution of Olea Genome Structure. FRONTIERS IN PLANT SCIENCE 2022; 13:869048. [PMID: 35432417 PMCID: PMC9009077 DOI: 10.3389/fpls.2022.869048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The current view of plant genome evolution proposes that genome size has mainly been determined by polyploidisation and amplification/loss of transposons, with a minor role played by other repeated sequences, such as tandem repeats. In cultivated olive (Olea europaea subsp. europaea var. europaea), available data suggest a singular model of genome evolution, in which a massive expansion of tandem-repeated sequences accompanied changes in nuclear architecture. This peculiar scenario highlights the importance of focusing on Olea genus evolution, to shed light on mechanisms that led to its present genomic structure. Next-generation sequencing technologies, bioinformatics and in situ hybridisation were applied to study the genomic structure of five related Olea taxa, which originated at different times from their last common ancestor. On average, repetitive DNA in the Olea taxa ranged from ~59% to ~73% of the total genome, showing remarkable differences in terms of composition. Among repeats, we identified 11 major families of tandem repeats, with different abundances in the analysed taxa, five of which were novel discoveries. Interestingly, overall tandem repeat abundance was inversely correlated to that of retrotransposons. This trend might imply a competition in the proliferation of these repeat classes. Indeed, O. paniculata, the species closest to the Olea common ancestor, showed very few tandem-repeated sequences, while it was rich in long terminal repeat retrotransposons, suggesting that the amplification of tandem repeats occurred after its divergence from the Olea ancestor. Furthermore, some tandem repeats were physically localised in closely related O. europaea subspecies (i.e., cultivated olive and O. europaea subsp. cuspidata), which showed a significant difference in tandem repeats abundance. For 4 tandem repeats families, a similar number of hybridisation signals were observed in both subspecies, apparently indicating that, after their dissemination throughout the olive genome, these tandem repeats families differentially amplified maintaining the same positions in each genome. Overall, our research identified the temporal dynamics shaping genome structure during Olea speciation, which represented a singular model of genome evolution in higher plants.
Collapse
Affiliation(s)
- Flavia Mascagni
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Elena Barghini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Marilena Ceccarelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Luciana Baldoni
- CNR, Institute of Biosciences and BioResources, Perugia, Italy
| | - Carlos Trapero
- CSIRO Agriculture & Food, Narrabri, NSW, Australia
- Agronomy Department, University of Cordoba, Cordoba, Spain
| | | | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
11
|
Viviani A, Ventimiglia M, Fambrini M, Vangelisti A, Mascagni F, Pugliesi C, Usai G. Impact of transposable elements on the evolution of complex living systems and their epigenetic control. Biosystems 2021; 210:104566. [PMID: 34718084 DOI: 10.1016/j.biosystems.2021.104566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
Transposable elements (TEs) contribute to genomic innovations, as well as genome instability, across a wide variety of species. Popular designations such as 'selfish DNA' and 'junk DNA,' common in the 1980s, may be either inaccurate or misleading, while a more enlightened view of the TE-host relationship covers a range from parasitism to mutualism. Both plant and animal hosts have evolved epigenetic mechanisms to reduce the impact of TEs, both by directly silencing them and by reducing their ability to transpose in the genome. However, TEs have also been co-opted by both plant and animal genomes to perform a variety of physiological functions, ranging from TE-derived proteins acting directly in normal biological functions to innovations in transcription factor activity and also influencing gene expression. Their presence, in fact, can affect a range of features at genome, phenotype, and population levels. The impact TEs have had on evolution is multifaceted, and many aspects still remain unexplored. In this review, the epigenetic control of TEs is contextualized according to the evolution of complex living systems.
Collapse
Affiliation(s)
- Ambra Viviani
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Maria Ventimiglia
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy.
| | - Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| |
Collapse
|
12
|
Genetic variability assessment of 127 Triticum turgidum L. accessions for mycorrhizal susceptibility-related traits detection. Sci Rep 2021; 11:13426. [PMID: 34183734 PMCID: PMC8239029 DOI: 10.1038/s41598-021-92837-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Positive effects of arbuscular mycorrhizal fungi (AMF)-wheat plant symbiosis have been well discussed by research, while the actual role of the single wheat genotype in establishing this type of association is still poorly investigated. In this work, the genetic diversity of Triticum turgidum wheats was exploited to detect roots susceptibility to AMF and to identify genetic markers in linkage with chromosome regions involved in this symbiosis. A tetraploid wheat collection of 127 accessions was genotyped using 35K single-nucleotide polymorphism (SNP) array and inoculated with the AMF species Funneliformis mosseae (F. mosseae) and Rhizoglomus irregulare (R. irregulare), and a genome-wide association study (GWAS) was conducted. Six clusters of genetically related accessions were identified, showing a different mycorrhizal colonization among them. GWAS revealed four significant quantitative trait nucleotides (QTNs) involved in mycorrhizal symbiosis, located on chromosomes 1A, 2A, 2B and 6A. The results of this work enrich future breeding activities aimed at developing new grains on the basis of genetic diversity on low or high susceptibility to mycorrhization, and, possibly, maximizing the symbiotic effects.
Collapse
|
13
|
Ramos-Cruz D, Troyee AN, Becker C. Epigenetics in plant organismic interactions. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102060. [PMID: 34087759 DOI: 10.1016/j.pbi.2021.102060] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/18/2021] [Accepted: 04/27/2021] [Indexed: 05/26/2023]
Abstract
Plants are hubs of organismic interactions. They constantly engage in beneficial or competitive interactions with fungi, oomycetes, bacteria, insects, nematodes, and other plants. To adjust the molecular processes necessary for the establishment and maintenance of beneficial interactions and for the defense against pathogens and herbivores, plants have evolved intricate regulatory mechanisms. Besides the canonical plant immune system that acts as the primary defense, epigenetic mechanisms have started to emerge as another regulatory entity and as a target of pathogens trying to overcome the plant's defenses. In this review, we highlight recent advances in understanding the contribution of various epigenetic components and of epigenetic diversity to plant-organismic interactions.
Collapse
Affiliation(s)
- Daniela Ramos-Cruz
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - A Niloya Troyee
- Department of Evolutionary Ecology, Doñana Biological Station, CSIC, 41092 Sevilla, Spain
| | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria; Genetics, Faculty of Biology, Ludwig Maximilians University Munich, 82152 Martinsried, Germany.
| |
Collapse
|
14
|
Usai G, Vangelisti A, Simoni S, Giordani T, Natali L, Cavallini A, Mascagni F. DNA Modification Patterns within the Transposable Elements of the Fig ( Ficus carica L.) Genome. PLANTS 2021; 10:plants10030451. [PMID: 33673593 PMCID: PMC7997441 DOI: 10.3390/plants10030451] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Transposable element activity can be harmful to the host’s genome integrity, but it can also provide selective advantages. One strategy to cope with transposons is epigenetic control through DNA base modifications. We report the non-canonic DNA modification dynamics of fig (Ficus carica L.) by exploiting high-quality genome reference and related N4-methylcytosine (4mC) and N6-methyladenine (6mA) data. Overall, 1.49% of transposon nucleotides showed either 4mC or 6mA modifications: the 4mC/6mA ratio was similar in Class I and Class II transposons, with a prevalence of 4mC, which is comparable to coding genes. Different percentages of 4mC or 6mA were observed among LTR-retrotransposon lineages and sub-lineages. Furthermore, both the Copia and Gypsy retroelements showed higher modification rates in the LTR and coding regions compared with their neighbour regions. Finally, the unconventional methylation of retrotransposons is unrelated to the number of close genes, suggesting that the 4mC and 6mA frequency in LTR-retrotransposons should not be related to transcriptional repression in the adjacency of the element. In conclusion, this study highlighted unconventional DNA modification patterns in fig transposable elements. Further investigations will focus on functional implications, in regards to how modified retroelements affect the expression of neighbouring genes, and whether these epigenetic markers can spread from repeats to genes, shaping the plant phenotype.
Collapse
|
15
|
Fambrini M, Usai G, Vangelisti A, Mascagni F, Pugliesi C. The plastic genome: The impact of transposable elements on gene functionality and genomic structural variations. Genesis 2020; 58:e23399. [DOI: 10.1002/dvg.23399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| |
Collapse
|
16
|
Low Long Terminal Repeat (LTR)-Retrotransposon Expression in Leaves of the Marine Phanerogam Posidonia Oceanica L. Life (Basel) 2020; 10:life10030030. [PMID: 32213979 PMCID: PMC7151569 DOI: 10.3390/life10030030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/14/2020] [Accepted: 03/21/2020] [Indexed: 12/29/2022] Open
Abstract
Seagrasses as Posidonia oceanica reproduce mostly by vegetative propagation, which can reduce genetic variability within populations. Since, in clonally propagated species, insurgence of genetic variability can be determined by the activity of transposable elements, we have estimated the activity of such repeat elements by measuring their expression level in the leaves of plants from a Mediterranean site, for which Illumina complementary DNA (cDNA) sequence reads (produced from RNAs isolated by leaves of plants from deep and shallow meadows) were publicly available. Firstly, we produced a collection of retrotransposon-related sequences and then mapped Illumina cDNA reads onto these sequences. With this approach, it was evident that Posidonia retrotransposons are, in general, barely expressed; only nine elements resulted transcribed at levels comparable with those of reference genes encoding tubulins and actins. Differences in transcript abundance were observed according to the superfamily and the lineage to which the retrotransposons belonged. Only small differences were observed between retrotransposon expression levels in leaves of shallow and deep Posidonia meadow stands, whereas one TAR/Tork element resulted differentially expressed in deep plants exposed to heat. It can be concluded that, in P. oceanica, the contribution of retrotransposon activity to genetic variability is reduced, although the nine specific active elements could actually produce new structural variations.
Collapse
|
17
|
Mascagni F, Vangelisti A, Usai G, Giordani T, Cavallini A, Natali L. A computational genome-wide analysis of long terminal repeats retrotransposon expression in sunflower roots (Helianthus annuus L.). Genetica 2020; 148:13-23. [PMID: 31960179 DOI: 10.1007/s10709-020-00085-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 01/17/2020] [Indexed: 11/24/2022]
Abstract
Long terminal repeats (LTR) retrotransposons have a major role in determining genome size, structure and function, thanks to their ability to transpose. We performed a meta-analysis of LTR-retrotransposon expression in roots of sunflower plantlets treated with different plant hormones, chemicals and NaCl. By using Illumina cDNA libraries, available from public repositories, we measured the number of reads matching the retrotranscriptase domains isolated from a whole genome library of retrotransposons. LTR-retrotransposons resulted in general barely expressed, except for 4 elements, all belonging to the AleII lineage, which showed high transcription levels in roots of both control and treated plants. The expression of retrotransposons in treated plants was slightly higher than in the control. Transcribed elements belonged to specific chromosomal loci and were not abundant in the genome. A few elements resulted differentially expressed depending on the treatment. Results suggest that, although most retrotransposons are not expressed, the transcription of such elements is related to their abundance, to their position in the chromosome and to their lineage.
Collapse
Affiliation(s)
- Flavia Mascagni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Gabriele Usai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| |
Collapse
|
18
|
Velásquez A, Vega-Celedón P, Fiaschi G, Agnolucci M, Avio L, Giovannetti M, D'Onofrio C, Seeger M. Responses of Vitis vinifera cv. Cabernet Sauvignon roots to the arbuscular mycorrhizal fungus Funneliformis mosseae and the plant growth-promoting rhizobacterium Ensifer meliloti include changes in volatile organic compounds. MYCORRHIZA 2020; 30:161-170. [PMID: 31974639 DOI: 10.1007/s00572-020-00933-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/10/2020] [Indexed: 05/08/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi and plant growth-promoting rhizobacteria (PGPR) are beneficial microorganisms that may associate with grapevine roots, improving stress tolerance, growth, and nutrition. AM fungi and PGPR enhance the production of plant secondary metabolites, including volatile organic compounds (VOCs) that play a key role in the interaction of plants with the environment and are involved in defence mechanisms. The aim of this study was to analyse the effects of an AM fungus and a rhizobacterium on plant growth and VOCs in Vitis vinifera cv. Cabernet Sauvignon roots to gain insight into the potential role of plant-rhizosphere microorganisms in vine growth and defence. Grapevines were inoculated or not with the AM fungus Funneliformis mosseae IN101 and/or the plant growth-promoting rhizobacterium Ensifer meliloti TSA41. Both microbial strains enhanced plant growth. Fifty-eight VOCs extracted from ground roots were identified using headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry. VOCs were induced by F. mosseae IN101, increasing up to 87% compared with control plants. Monoterpenes were strongly enhanced by F. mosseae IN101, increasing up to 113% compared with control plants. Interestingly, monoterpene alcohols related to plant defence, such as myrtenol, p-cymen-7-ol, and p-mentha-1.8-dien-7-ol were increased. By contrast, E. meliloti TSA41 did not significantly affect VOCs. The knowledge of the effects of AM fungi and PGPR on grapevine VOCs may contribute to an integrated and sustainable management of vineyards.
Collapse
Affiliation(s)
- Alexis Velásquez
- Chemistry Department, Universidad Técnica Federico Santa María, Avenida España, 1680, Valparaíso, Chile
- Biotechnology Center "Dr. Daniel Alkalay Lowitt", Universidad Técnica Federico Santa María, General Bari, 699, Valparaíso, Chile
| | - Paulina Vega-Celedón
- Chemistry Department, Universidad Técnica Federico Santa María, Avenida España, 1680, Valparaíso, Chile
- Biotechnology Center "Dr. Daniel Alkalay Lowitt", Universidad Técnica Federico Santa María, General Bari, 699, Valparaíso, Chile
| | - Grazia Fiaschi
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, Pisa, Italy
| | - Monica Agnolucci
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy
| | - Luciano Avio
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy
| | - Claudio D'Onofrio
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy
| | - Michael Seeger
- Chemistry Department, Universidad Técnica Federico Santa María, Avenida España, 1680, Valparaíso, Chile.
- Biotechnology Center "Dr. Daniel Alkalay Lowitt", Universidad Técnica Federico Santa María, General Bari, 699, Valparaíso, Chile.
| |
Collapse
|
19
|
Usai G, Mascagni F, Vangelisti A, Giordani T, Ceccarelli M, Cavallini A, Natali L. Interspecific hybridisation and LTR-retrotransposon mobilisation-related structural variation in plants: A case study. Genomics 2019; 112:1611-1621. [PMID: 31605729 DOI: 10.1016/j.ygeno.2019.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/13/2019] [Accepted: 09/12/2019] [Indexed: 11/30/2022]
Abstract
The dynamics of long-terminal-repeat retrotransposons in two poplar species (Populus deltoides and P. nigra) and in an interspecific hybrid, recently synthesized, were investigated by analyzing the genomic abundance and transcription levels of a collection of 828 full-length retroelements identified in the genome sequence of P. trichocarpa, all occurring also in the genomes of P. deltoides and P. nigra. Overall, genomic abundance and transcription levels of many retrotransposons in the hybrid resulted higher or lower than expected by calculating the mean of the parental values. A bioinformatics procedure was established to ascertain the occurrence of the same retrotransposon loci in the three genotypes. The results indicated that retrotransposon abundance variations between the hybrid and the mean value of the parents were due to i) co-segregation of retrotransposon high- or low-abundant haplotypes; ii) new retroelement insertions; iii) retrotransposon loss. Concerning retrotransposon expression, this was generally low, with only 14/828 elements over- or under-expressed in the hybrid than expected by calculating the mean of the parents. It is concluded that interspecific hybridisation between the two poplar species determine quantitative variation and differential expression of some retrotransposons, with possible consequences for the genetic differentiation of the hybrid.
Collapse
Affiliation(s)
- Gabriele Usai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Marilena Ceccarelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di sotto 8, 06123 Perugia, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy.
| | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy.
| |
Collapse
|