1
|
Kasanga M, Kwenda G, Wu J, Kasanga M, Mwikisa MJ, Chanda R, Mupila Z, Yankonde B, Sikazwe M, Mwila E, Shempela DM, Solochi BB, Phiri C, Mudenda S, Chanda D. Antimicrobial Resistance Patterns and Risk Factors Associated with ESBL-Producing and MDR Escherichia coli in Hospital and Environmental Settings in Lusaka, Zambia: Implications for One Health, Antimicrobial Stewardship and Surveillance Systems. Microorganisms 2023; 11:1951. [PMID: 37630511 PMCID: PMC10459584 DOI: 10.3390/microorganisms11081951] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial resistance (AMR) is a public health problem threatening human, animal, and environmental safety. This study assessed the AMR profiles and risk factors associated with Escherichia coli in hospital and environmental settings in Lusaka, Zambia. This cross-sectional study was conducted from April 2022 to August 2022 using 980 samples collected from clinical and environmental settings. Antimicrobial susceptibility testing was conducted using BD PhoenixTM 100. The data were analysed using SPSS version 26.0. Of the 980 samples, 51% were from environmental sources. Overall, 64.5% of the samples tested positive for E. coli, of which 52.5% were from clinical sources. Additionally, 31.8% were ESBL, of which 70.1% were clinical isolates. Of the 632 isolates, 48.3% were MDR. Most clinical isolates were resistant to ampicillin (83.4%), sulfamethoxazole/trimethoprim (73.8%), and ciprofloxacin (65.7%) while all environmental isolates were resistant to sulfamethoxazole/trimethoprim (100%) and some were resistant to levofloxacin (30.6%). The drivers of MDR in the tested isolates included pus (AOR = 4.6, CI: 1.9-11.3), male sex (AOR = 2.1, CI: 1.2-3.9), and water (AOR = 2.6, CI: 1.2-5.8). This study found that E. coli isolates were resistant to common antibiotics used in humans. The presence of MDR isolates is a public health concern and calls for vigorous infection prevention measures and surveillance to reduce AMR and its burdens.
Collapse
Affiliation(s)
- Maisa Kasanga
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou 450001, China (J.W.)
| | - Geoffrey Kwenda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia;
| | - Jian Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou 450001, China (J.W.)
| | - Maika Kasanga
- Department of Pharmacy, University Teaching Hospital, Lusaka 50110, Zambia;
| | - Mark J. Mwikisa
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka 50110, Zambia (B.B.S.)
| | - Raphael Chanda
- Adult Centre of Excellence, University Teaching Hospital, Lusaka 50110, Zambia
| | - Zachariah Mupila
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka 50110, Zambia (B.B.S.)
| | - Baron Yankonde
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka 50110, Zambia (B.B.S.)
| | - Mutemwa Sikazwe
- Department of Pathology, Lusaka Trust Hospital, Lusaka 35852, Zambia
| | - Enock Mwila
- Department of Pathology, Lusaka Trust Hospital, Lusaka 35852, Zambia
| | - Doreen M. Shempela
- Churches Health Association of Zambia, Lusaka 34511, Zambia
- Department of Laboratory and Research, Central University of Nicaragua, Managua 12104, Nicaragua
| | - Benjamin B. Solochi
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka 50110, Zambia (B.B.S.)
| | - Christabel Phiri
- Department of Microbiology, School of Public Health, University of Zambia, Lusaka 10101, Zambia
| | - Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia
- Research and Surveillance Technical Working Group, Zambia National Public Health Institute, Lusaka 10101, Zambia
| | - Duncan Chanda
- Adult Centre of Excellence, University Teaching Hospital, Lusaka 50110, Zambia
| |
Collapse
|
2
|
Liao X, Deng R, Warriner K, Ding T. Antibiotic resistance mechanism and diagnosis of common foodborne pathogens based on genotypic and phenotypic biomarkers. Compr Rev Food Sci Food Saf 2023; 22:3212-3253. [PMID: 37222539 DOI: 10.1111/1541-4337.13181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/22/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023]
Abstract
The emergence of antibiotic-resistant bacteria due to the overuse or inappropriate use of antibiotics has become a significant public health concern. The agri-food chain, which serves as a vital link between the environment, food, and human, contributes to the large-scale dissemination of antibiotic resistance, posing a concern to both food safety and human health. Identification and evaluation of antibiotic resistance of foodborne bacteria is a crucial priority to avoid antibiotic abuse and ensure food safety. However, the conventional approach for detecting antibiotic resistance heavily relies on culture-based methods, which are laborious and time-consuming. Therefore, there is an urgent need to develop accurate and rapid tools for diagnosing antibiotic resistance in foodborne pathogens. This review aims to provide an overview of the mechanisms of antibiotic resistance at both phenotypic and genetic levels, with a focus on identifying potential biomarkers for diagnosing antibiotic resistance in foodborne pathogens. Furthermore, an overview of advances in the strategies based on the potential biomarkers (antibiotic resistance genes, antibiotic resistance-associated mutations, antibiotic resistance phenotypes) for antibiotic resistance analysis of foodborne pathogens is systematically exhibited. This work aims to provide guidance for the advancement of efficient and accurate diagnostic techniques for antibiotic resistance analysis in the food industry.
Collapse
Affiliation(s)
- Xinyu Liao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo, Zhejiang, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, Zhejiang, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, China
| | - Keith Warriner
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, Zhejiang, China
| |
Collapse
|
3
|
Aworh MK, Kwaga JKP, Hendriksen RS, Okolocha EC, Harrell E, Thakur S. Quinolone-resistant Escherichia coli at the interface between humans, poultry and their shared environment- a potential public health risk. ONE HEALTH OUTLOOK 2023; 5:2. [PMID: 36855171 PMCID: PMC9976508 DOI: 10.1186/s42522-023-00079-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Commensal Escherichia coli residing in the guts of humans and animals are reservoirs of multidrug resistance (MDR) genes, including quinolone resistance genes, in humans and poultry. This study aimed to characterize quinolones resistance in E. coli recovered from poultry workers, chickens, and poultry farm/market environments in Abuja, Nigeria. METHODS This was a cross-sectional study conducted between December 2018 and April 2019 comprising poultry workers, chickens and their poultry farm/market environments. This study characterized E. coli isolates from stool, faecal and environmental samples using antimicrobial susceptibility testing and whole-genome sequencing methods. Core-genome multilocus sequences-based phylogeny was used to determine the relatedness between quinolone-resistant E. coli isolates. Data were analyzed using descriptive statistics. RESULTS Of 110 E. coli isolates, quinolone-resistant phenotypes were observed in 68.2% (n = 75) isolates. Whole-genome sequencing detected plasmid-mediated quinolone resistance (PMQR) genes in 63.6% (n = 70) isolates. The most prevalent PMQR gene detected in 56 of these 70 E. coli isolates was qnrS1, followed by qnrB19 in 14 isolates and aac(6')-lb-cr in two isolates. Fifteen ciprofloxacin and 19 nalidixic acid-resistant isolates respectively showed double mutations in the quinolone-resistance determining regions (QRDRs) of gyrA, with single or double mutations in parC, and a single mutation in parE. The most prevalent amino-acid substitutions observed were S83L + D87N in gyrA (46.5%, n = 20), S80I in parC (51.2%, n = 22) and S458A in parE (14%, n = 6). About 2.9% (2/70) of PMQR isolates were extended-spectrum beta-lactamase (ESBL) producers while 2.9% (2/70) had plasmid-mediated colistin resistance (PMCR) genes. CONCLUSIONS PMQR genes were prevalent in E. coli isolates recovered from healthy humans, chickens and poultry farm/market environments. PMCR genes (mcr-1.1) occurred in PMQR-positive isolates recovered from manure and drinking water originating from poultry farm/market environments. It was found that the gene encoding ESBL coexisted with qnrS-positive isolates of human and avian origin. Horizontal transfer of PMQR genes among E. coli isolates in the human-poultry-environment interface has public health implications for the spread of antimicrobial resistance. Relevant government agencies should enforce regulations to restrict the use of critically important antimicrobials in poultry production.
Collapse
Affiliation(s)
- Mabel Kamweli Aworh
- Department of Veterinary and Pest Control Services, Federal Ministry of Agriculture and Rural Development, Abuja, Nigeria.
- Nigeria Field Epidemiology and Laboratory Training Programme, Abuja, Nigeria.
- Department of Veterinary Public Health and Preventive Medicine, Ahmadu Bello University, Zaria, Nigeria.
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | - Jacob K P Kwaga
- Department of Veterinary Public Health and Preventive Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Rene S Hendriksen
- Reference Laboratory for Antimicrobial Resistance, WHO, FAO, National Food Institute, Technical University of Denmark, Kgs. Lyngby, EU, Denmark
| | - Emmanuel C Okolocha
- Department of Veterinary Public Health and Preventive Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Erin Harrell
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
4
|
Mabika RM, Liabagui SLO, Mounioko F, Souza A, Yala JF. Evaluation of the bioresistance profile of enterobacteria isolated from faeces of children with diarrhoea in the town of Koula-Moutou, Gabon: prospective study. Pan Afr Med J 2022; 43:63. [PMID: 36523289 PMCID: PMC9733464 DOI: 10.11604/pamj.2022.43.63.25276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/04/2022] [Indexed: 06/17/2023] Open
Abstract
Introduction the emergence and expansion of multidrug resistance in Enterobacteriaceae responsible for various infections are increasing in the world. This study was designed to determine the phenotypic profiles of the resistance of enterobacteria strains isolated from the faeces of children with diarrhoeal diseases and to classify them according to the type of resistance. Methods screening was carried out on 98 isolates divided into 2 groups: opportunistic pathogens and strict enteropathogens. Their sensitivity to 13 antibiotics was evaluated by the Mueller Hinton agar medium diffusion method. Results a strong resistance to different classes of β-lactams was found in the strains, 74.0% (n=45) and 83.3% (n=31) for opportunists and enteropathogens, respectively. These strains were completely resistant to doxycycline and erythromycin (100%; n=98) for both types of bacteria. Opportunists and enteropathogens were 95.1% (n=58) and 94.6% (n=35) resistant to gentamicin, and 31.1% (n=19) and 35.1% (n=13) resistant to chloramphenicol, respectively. Similarly, the total resistance of strains was observed with ofloxacin and amounted to 98.4% (n=60) and 96.7% with levofloxacin and norfloxacin, respectively. The analysis of β-lactam resistance phenotypes revealed a dominance of the carbapenemase-producing strains (28.6%; n=28). However, 24.3% (n=9) of enteropathogens were pan-resistant versus 19.7% (n=12) for opportunists. Conclusion the results of this study indicate a worryingly high level of antibiotic resistance in enterobacteria which might tend towards total resistance.
Collapse
Affiliation(s)
- Rolande Mabika Mabika
- Laboratory of Molecular and Cellular Biology, Microbiology Team, Agrobiology Research Unit, Masuku University of Science and Technology, BP 067 Franceville, Gabon
| | - Sandrine Lydie Oyegue Liabagui
- Laboratory of Research in Immunology, Parasitology and Microbiology, Regional Doctoral School of Central Africa in Tropical Infectiology, Masuku University of Science and Technology, Franceville, Gabon
| | - Franck Mounioko
- Vector Ecology Laboratory, Tropical Ecology Research Institute, Libreville, Gabon
| | - Alain Souza
- Laboratory of Molecular and Cellular Biology, Microbiology Team, Agrobiology Research Unit, Masuku University of Science and Technology, BP 067 Franceville, Gabon
| | - Jean Fabrice Yala
- Laboratory of Molecular and Cellular Biology, Microbiology Team, Agrobiology Research Unit, Masuku University of Science and Technology, BP 067 Franceville, Gabon
| |
Collapse
|
5
|
Juraschek K, Malekzadah J, Malorny B, Käsbohrer A, Schwarz S, Meemken D, Hammerl JA. Characterization of qnrB-carrying plasmids from ESBL- and non-ESBL-producing Escherichia coli. BMC Genomics 2022; 23:365. [PMID: 35549890 PMCID: PMC9101827 DOI: 10.1186/s12864-022-08564-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Escherichia coli carrying clinically important antimicrobial resistances [i.e., against extended-spectrum-beta-lactamases (ESBL)] are of high concern for human health and are increasingly detected worldwide. Worryingly, they are often identified as multidrug-resistant (MDR) isolates, frequently including resistances against quinolones/fluoroquinolones. RESULTS Here, the occurrence and genetic basis of the fluoroquinolone resistance enhancing determinant qnrB in ESBL-/non-ESBL-producing E. coli was investigated. Overall, 33 qnrB-carrying isolates out of the annual German antimicrobial resistance (AMR) monitoring on commensal E. coli (incl. ESBL-/AmpC-producing E. coli) recovered from food and livestock between 2013 and 2018 were analysed in detail. Whole-genome sequencing, bioinformatics analyses and transferability evaluation was conducted to characterise the prevailing qnrB-associated plasmids. Furthermore, predominant qnrB-carrying plasmid-types were subjected to in silico genome reconstruction analysis. In general, the qnrB-carrying E. coli were found to be highly heterogenic in their multilocus sequence types (STs) and their phenotypic resistance profiles. Most of them appeared to be MDR and exhibited resistances against up to ten antimicrobials of different classes. With respect to qnrB-carrying plasmids, we found qnrB19 located on small Col440I plasmids to be most widespread among ESBL-producing E. coli from German livestock and food. This Col440I plasmid-type was found to be highly conserved by exhibiting qnrB19, a pspF operon and different genes of unassigned function. Furthermore, we detected plasmids of the incompatibility groups IncN and IncH as carriers of qnrB. All qnrB-carrying plasmids also exhibited virulence factors and various insertion sequences (IS). The majority of the qnrB-carrying plasmids were determined to be self-transmissible, indicating their possible contribution to the spread of resistances against (fluoro)quinolones and other antimicrobials. CONCLUSION In this study, a diversity of different plasmid types carrying qnrB alone or in combination with other resistance determinants (i.e., beta-lactamase genes) were found. The spread of these plasmids, especially those carrying antimicrobial resistance genes against highest priority critically important antimicrobial agents, is highly unfavourable and can pose a threat for public health. Therefore, the dissemination pathways and evolution of these plasmids need to be further monitored.
Collapse
Affiliation(s)
- Katharina Juraschek
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589, Berlin, Germany.
| | - Janina Malekzadah
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589, Berlin, Germany
| | - Burkhard Malorny
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589, Berlin, Germany
| | - Annemarie Käsbohrer
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589, Berlin, Germany
- Unit for Veterinary Public Health and Epidemiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Robert-von-Ostertag-Str. 8, 14163 Berlin, Germany
| | - Diana Meemken
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Robert-von-Ostertag-Str. 8, 14163 Berlin, Germany
- Institute of Food Safety and Food Hygiene, Department of Veterinary Medicine, Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163, Berlin, Germany
| | - Jens Andre Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
6
|
Osińska M, Nowakiewicz A, Zięba P, Gnat S, Łagowski D, Trościańczyk A. A rich mosaic of resistance in extended-spectrum β-lactamase-producing Escherichia coli isolated from red foxes (Vulpes vulpes) in Poland as a potential effect of increasing synanthropization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151834. [PMID: 34808162 DOI: 10.1016/j.scitotenv.2021.151834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
In our research, we analyzed the resistance of cephalosporin-resistant E. coli strains to antimicrobial agents. The strains were collected during five years from wild animal species commonly inhabiting Poland. We have identified the type of β-lactamases produced and the multidrug-resistance profile. Most strains (73.8%) had genes encoding ESBL enzymes, mainly CTX-M-1 and TEM. Almost all AmpC-β-lactamase-producing isolates had the blaCMY-2 gene. Almost 70% of the strains tested showed a multi-drug resistance profile. The dominant phenotype was resistance to tetracycline (69.05%), and/or sulfamethoxazole (57.1%). We also found high resistance to quinolones: ciprofloxacin 35.7% and nalidixic acid 52.4%. The phenotypic resistance of the strains was in most cases confirmed by the presence of corresponding genes. Among strains, 26.2% were carriers of plasmid-mediated quinolone resistance genes (PMQR). MLST analysis revealed a large clonal variation of the strains, which was reflected in 28 different sequence types. More than half of the strains (54.7%) were classified into the following sequence complexes: 10, 23, 69, 101, 155, 156, 168, 354, 398, 446, and 648. Only one strain in the studied group was assigned to the ExPEC pathotype and represented sequence type 117. The results of our research have confirmed that isolates obtained from wild animals possess many resistance determinants and sequence types, which are also found in food-producing animals and humans. This reflects the doctrine of "One health", which clearly indicates that human health is inextricably linked with animal health as well as degree of environmental contamination. We conclude that the resistance and virulence profiles of strains isolated from wildlife animals may be a resultant of various sources encountered by animals, creating a rich and varied mosaic of genes, which is very often unpredictable and not reflected in the correlation between the sequence type and the gene profile of resistance or virulence observed in epidemic clones.
Collapse
Affiliation(s)
- Marcelina Osińska
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland.
| | - Aneta Nowakiewicz
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland.
| | - Przemysław Zięba
- State Veterinary Laboratory, Droga Męczenników Majdanka 50, 20-325 Lublin, Poland
| | - Sebastian Gnat
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland.
| | - Dominik Łagowski
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland.
| | - Aleksandra Trościańczyk
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland.
| |
Collapse
|
7
|
El-Mohandes SS, Eid RH, Allam AM, Abou-Zeina HAA, Elbayoumy MK. Phenotyping and genotyping studies on extended-spectrum β-lactamase-producing Escherichia coli isolates from mastitic cows on dairy farms in Egypt. Vet World 2022; 15:890-897. [PMID: 35698499 PMCID: PMC9178576 DOI: 10.14202/vetworld.2022.890-897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae have become a serious public health hazard worldwide. This importance is derived from the increase of new variants, particularly blaTEM, blaSHV, and blaCTX-M genes. This study aimed to examine ESBL-producing Escherichia coli isolated from different governorates in Egypt from dairy cows infected with subclinical and clinical mastitis.
Materials and Methods: This study examined 207 milk samples for the resistance of isolates against 14 different antibiotics and ran serological identification of ESBL-producing E. coli isolates with complete antibiotic resistance. Genotypic and sequencing analyses of several resistance genes were conducted using a polymerase chain reaction.
Results: E. coli was identified in cases with subclinical mastitis (80.5%) and clinical mastitis (85.7%). ESBL-producing E. coli was isolated from 38.2% of subclinical mastitic milk compared to 39.3% in clinical cases, where O26:k60, O125:k70, and O25:k11 were the serotypes with complete resistance to antibiotics. ESBL-producing E. coli isolates were resistant to cefotaxime, amoxicillin, cloxacillin, oxacillin, rifampicin, and penicillin in 100% but susceptible to amoxicillin and clavulanic acid in 82.5% of the cases. Results also revealed that 51.25%, 52.5%, 66.25%, 77.5% and 60% of ESBL-producing E. coli isolates were responsive to ciprofloxacin, ofloxacin, norfloxacin, levofloxacin, and gentamycin, respectively. The detected genes were registered in GenBank as MW345819.1 and MW345820.1 for the E. coli blaTEM gene and MW295407 for the E. coli blaSHV gene.
Conclusion: This study found ESBL-producing E. coli in mastitic milk samples from Egyptian dairy farms and confirmed the occurrence and circulation of the main antibiotic genes (blaTEM and blaSHV) in the samples. Regular and thorough surveillance of ESBL-producing E. coli and subsequent preventive actions are essential for preventing the spread of these resistance genes in the future, which could pose serious and catastrophic health risks. Authorities should cling to the concept of One Health to minimize the risk of new varieties.
Collapse
Affiliation(s)
- Shereen S. El-Mohandes
- Department of Mastitis and Neonatal Diseases, Animal Reproduction Research Institute, Agriculture Research Center, Giza 12622, Egypt
| | - Rasha H. Eid
- Department of Mastitis and Neonatal Diseases, Animal Reproduction Research Institute, Agriculture Research Center, Giza 12622, Egypt
| | - Ahmad M. Allam
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Giza 12556, Egypt
| | - Hala A. A. Abou-Zeina
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Giza 12556, Egypt
| | - Mohamed K. Elbayoumy
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Giza 12556, Egypt
| |
Collapse
|
8
|
Hayer SS, Casanova-Higes A, Paladino E, Elnekave E, Nault A, Johnson T, Bender J, Perez A, Alvarez J. Global Distribution of Fluoroquinolone and Colistin Resistance and Associated Resistance Markers in Escherichia coli of Swine Origin - A Systematic Review and Meta-Analysis. Front Microbiol 2022; 13:834793. [PMID: 35359709 PMCID: PMC8961385 DOI: 10.3389/fmicb.2022.834793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 01/05/2023] Open
Abstract
Background Fluoroquinolones and polymyxins (colistin) are considered as critical drugs for human medicine. Antimicrobials of these classes are also used in swine production worldwide and this usage can contribute to selection of antimicrobial resistance (AMR), which is a threat to both human and animal health. Given the dynamic epidemiology of AMR, updating our knowledge regarding distribution and trends in the proportion of resistant bacteria is of critical importance. Objectives The aim of this systematic review and meta-analysis was to describe the global prevalence of phenotypic and genotypic resistance to fluoroquinolones and colistin in Escherichia coli collected from swine. Results Four databases (PubMed, PubAg, Web of Science, and CAB abstracts) and reports of national surveillance programs were scanned and 360 articles were included in the analysis. We identified higher prevalence levels of fluoroquinolone and colistin resistance in isolates from pig populations in Asia compared to Europe. The heterogeneity of pooled estimates was also higher in Asian countries suggesting that prevalence of AMR is still not fully characterized. There was a major knowledge gap about the situation of AMR in South American and African countries. We also identified key deficiencies in how AMR data was reported in the studies. A meta-analysis using 6,167 publicly available genomes of swine E. coli established the prevalence and global distribution of genetic determinants that can lead to fluoroquinolone and colistin resistance. Conclusion This study provides the most comprehensive information on prevalence of phenotypic and genotypic resistance to key antimicrobials in pig populations globally. There is a need to establish national surveillance programs and effective policies, particularly in certain world regions, to curtail the threat of evolution of resistant isolates in swine production that can potentially contribute to public health detrimentally.
Collapse
Affiliation(s)
- Shivdeep Singh Hayer
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota-Twin Cities, Saint Paul, MN, United States.,Department of Biology, College of Arts and Sciences, University of Nebraska Omaha, Omaha, NE, United States
| | - Alejandro Casanova-Higes
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Eliana Paladino
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota-Twin Cities, Saint Paul, MN, United States
| | - Ehud Elnekave
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andre Nault
- Health Science Libraries, University of Minnesota-Twin Cities, Saint Paul, MN, United States
| | - Timothy Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota Twin-Cities, Saint Paul, MN, United States
| | - Jeff Bender
- School of Public Health, University of Minnesota-Twin Cities, Saint Paul, MN, United States
| | - Andres Perez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota-Twin Cities, Saint Paul, MN, United States
| | - Julio Alvarez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota-Twin Cities, Saint Paul, MN, United States.,VISAVET Health Surveillance Center, Universidad Complutense Madrid, Madrid, Spain.,Department of Animal Health, Facultad de Veterinaria, Universidad Complutense Madrid, Madrid, Spain
| |
Collapse
|
9
|
Zhao Y, Cao Z, Cui L, Hu T, Guo K, Zhang F, Wang X, Peng Z, Liu Q, Dai M. Enrofloxacin Promotes Plasmid-Mediated Conjugation Transfer of Fluoroquinolone-Resistance Gene qnrS. Front Microbiol 2022; 12:773664. [PMID: 35250901 PMCID: PMC8889117 DOI: 10.3389/fmicb.2021.773664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to determine the effect of enrofloxacin (ENR) on the transfer of the plasmid-mediated quinolone resistance (PMQR) gene qnrS from opportunistic pathogen Escherichia coli (E2) to Salmonella Enteritidis (SE211) and to analyze the resistance characteristics of SE211-qnrS isolates. The plasmid carrying qnrS gene of E2 was sequenced by Oxford Nanopore technology. The plasmid carrying qnrS gene belonged to incompatibility group IncY. In vitro, the transfer experiment of IncY plasmid was performed by the liquid medium conjugation method. The conjugation transfer frequency of the IncY plasmid was 0.008 ± 0.0006 in the absence of ENR, 0.012 ± 0.003 in 1/32 MICENR, 0.01 ± 0.008 in 1/8 MICENR, and 0.03 ± 0.015 (Mean±SD) in 1/2 MICENR, respectively. After inoculation of E. coli E2 and SE211, chickens were treated with different doses of ENR (3.03, 10, and 50 mg/kg b.w.) for 7 days consecutively. To screen the SE211-qnrS strains from intestinal tract of chickens, the resistance genes and susceptibility of isolates were identified. The amount of E. coli E2 and the copy number of qnrS gene in the chicken intestinal tract were determined by colony counting and qPCR, respectively. In vivo, more SE211-qnrS strains were isolated from the treated group compared with the untreated group. SE211-qnrS strains not only obtained IncY plasmid, but also showed similar resistance phenotype as E2. In conclusion, ENR treatment can promote the spread of a IncY-resistance plasmid carrying the qnrS fluoroquinolone-resistance gene in Escherichia coli and the development of drug-resistant bacteria.
Collapse
Affiliation(s)
- Yue Zhao
- The Co-operative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture (MOA) Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Zhengzheng Cao
- The Co-operative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture (MOA) Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Luqing Cui
- The Co-operative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture (MOA) Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Tianyu Hu
- The Co-operative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture (MOA) Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Kaixuan Guo
- The Co-operative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture (MOA) Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Fan Zhang
- The Co-operative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture (MOA) Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Xiangru Wang
- The Co-operative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Zhong Peng
- The Co-operative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Quan Liu
- The Co-operative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture (MOA) Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Menghong Dai
- The Co-operative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture (MOA) Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Dissection of Highly Prevalent qnrS1-Carrying IncX Plasmid Types in Commensal Escherichia coli from German Food and Livestock. Antibiotics (Basel) 2021; 10:antibiotics10101236. [PMID: 34680816 PMCID: PMC8532951 DOI: 10.3390/antibiotics10101236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Plasmids are mobile genetic elements, contributing to the spread of resistance determinants by horizontal gene transfer. Plasmid-mediated quinolone resistances (PMQRs) are important determinants able to decrease the antimicrobial susceptibility of bacteria against fluoroquinolones and quinolones. The PMQR gene qnrS1, especially, is broadly present in the livestock and food sector. Thus, it is of interest to understand the characteristics of plasmids able to carry and disseminate this determinant and therewith contribute to the resistance development against this class of high-priority, critically important antimicrobials. Therefore, we investigated all commensal Escherichia (E.) coli isolates, with reduced susceptibility to quinolones, recovered during the annual zoonosis monitoring 2017 in the pork and beef production chain in Germany (n = 2799). Through short-read whole-genome sequencing and bioinformatics analysis, the composition of the plasmids and factors involved in their occurrence were determined. We analysed the presence and structures of predominant plasmids carrying the PMQR qnrS1. This gene was most frequently located on IncX plasmids. Although the E. coli harbouring these IncX plasmids were highly diverse in their sequence types as well as their phenotypic resistance profiles, the IncX plasmids-carrying the qnrS1 gene were rather conserved. Thus, we only detected three distinct IncX plasmids carrying qnrS1 in the investigated isolates. The IncX plasmids were assigned either to IncX1 or to IncX3. All qnrS1-carrying IncX plasmids further harboured a β-lactamase gene (bla). In addition, all investigated IncX plasmids were transmissible. Overall, we found highly heterogenic E. coli harbouring conserved IncX plasmids as vehicles for the most prevalent qnr gene qnrS1. These IncX plasmids may play an important role in the dissemination of those two resistance determinants and their presence, transfer and co-selection properties require a deeper understanding for a thorough risk assessment.
Collapse
|
11
|
Fadhil Abdul-Husin I, Sabri Abdul-Razzaq M. Plasmid-Mediated Mechanism of Quinolone Resistance on E. coli Isolates from Different Clinical Samples. ARCHIVES OF RAZI INSTITUTE 2021; 76:561-573. [PMID: 34824749 PMCID: PMC8605851 DOI: 10.22092/ari.2021.355392.1679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Quinolone antimicrobials are widely used in clinical medicine due to their wide spectrum with high tissue penetration and ease of use; but increasing resistance with clinical use appears to be common in some bacterial pathogens, including Escherichia coli (E.coli). The aim of this study was to investigate plasmid-mediated quinolone resistance determinants (PMQR) including, qnrA, qnrB, and qnrS as the emerging mechanisms of quinolone resistance of E.coli isolates from different clinical sites in Karbala province, Iraq. A total of 200 clinical samples were collected from patients suffering from infections such as UTI, gastro enteritis (diarrhea), vaginitis, and wound infections; 30 samples were diagnosed as E.coli clinical strain from both sexes and different ages after identification by biochemical test, VITEK-2 compact system, and by molecular method using 16Sr DNA marker. Antimicrobial susceptibility and minimal inhibition concentration (MIC) testing for nalidixic acid, norfloxacin, ciprofloxacin, levofloxacin, and gatifloxacin was performed using the broth microdilution method. All strains were screened for PMQR genes qnrA, qnrB, and qnrS by the PCR method after DNA extraction from tested clinical isolates of E.coli. The results showed that E. coli is largely isolated from vaginal (40%) and urine (32%) samples, followed by wound infections (24%) and stools (21%).The high occurrence rate of E. coli(33.33%) isolates was observed in participants aged 31-45 years, while a lower occurrence (10%)was recorded in a group of ˃ 60-year-old female participants. Females have a notably increased frequency of E.coli compared to males, with the female to male ratio being 87%: 13%. Molecular investigation showed the total percentage of E.coli isolates harboring qnr genes to be 21/30 (70%); this figure is composed of 14/30 isolates harboring qnr in combined or mixed form (46.66%) and 7/30 (23.33%) isolates harboring qnr in single form (3 isolates harboring qnrA alone, 1 isolate harboring qnrB alone, 3 isolates harboring qnrS alone).The prevalence rates of qnrA, qnrB, and qnrS were 40%, 43.33%, and 53.33%, respectively. The results also showed that among E.coli isolates encoding qnr genes A, B, and S, 24%, 12%, and 36% were resistant to nalidixic acid, respectively. Among those isolates carrying qnrA, qnrB, and qnrS genes, 15.8%, 5.3%, and 26.3%, respectively, were resistant to ciprofloxacin. Moreover, Norfloxacin resistance was seen in 20.0%, 5.0%, and 30.0% of E.coli isolates harboring qnr A, B, and S genes, respectively. Levofloxacin resistance was seen in 37.5%, 75.0%, and 37.5% of the isolates carrying the qnrA, qnrB, and qnrS genes, respectively. The lowest resistance rates of qnrA, B, and S-positive E.coli strains were against gatifloxacin (0,0, and 25%, respectively).A high prevalence of qnr genes enhances the increasing resistance rate of E.coli against the quinolone antibiotic under study.
Collapse
Affiliation(s)
| | - M Sabri Abdul-Razzaq
- Collage of Medicine, Microbiological Department, University of Babylon Province, Iraq
| |
Collapse
|
12
|
Kürekci C, Aydın M, Tekeli İO, Ambarcıoğlu P, Şengül SA, Sakin F. Occurrence and characterization of ciprofloxacin‐resistant
Escherichia coli
from bovine and ovine bulk tank milk samples in Turkey. J Food Saf 2021. [DOI: 10.1111/jfs.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Cemil Kürekci
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Mustafa Kemal University Antakya Hatay Turkey
| | - Muhsin Aydın
- Department of Biology, Faculty of Science and Letters Adıyaman University Adıyaman Turkey
| | - İbrahim Ozan Tekeli
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine Mustafa Kemal University Antakya Hatay Turkey
| | - Pınar Ambarcıoğlu
- Department of Biostatistics, Faculty of Veterinary Medicine Mustafa Kemal University Antakya Hatay Turkey
| | - Seydi Ahmet Şengül
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine Mustafa Kemal University Antakya Hatay Turkey
| | - Fatih Sakin
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine Mustafa Kemal University Antakya Hatay Turkey
| |
Collapse
|
13
|
Ramos S, Silva V, Dapkevicius MDLE, Caniça M, Tejedor-Junco MT, Igrejas G, Poeta P. Escherichia coli as Commensal and Pathogenic Bacteria Among Food-Producing Animals: Health Implications of Extended Spectrum β-lactamase (ESBL) Production. Animals (Basel) 2020; 10:ani10122239. [PMID: 33260303 PMCID: PMC7761174 DOI: 10.3390/ani10122239] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary This revision is about the problem of Escherichia coli as a commensal and pathogenic bacterium among food-producing animals and health implications. Escherichia coli may play an important ecological role and can be used as a bioindicator of antimicrobial resistance. All animal species used for food production, as well as humans, carry E. coli in their intestinal tract; plus, the genetic flexibility and adaptability of this bacteria to constantly changing environments allows it to acquire a great number of antimicrobial resistance mechanisms. The majority of E. coli strains are commensals inhabiting the intestinal tract of humans and warm-blooded animals and rarely causes diseases. However, E. coli also remains as one of the most frequent causes of several common bacterial infections in humans and animals. All over the word, antibiotic resistance is commonly detected among commensal bacteria from food-producing animals, raising important questions on the potential impact of antibiotic use in animals and the possible transmission of these resistant bacteria to humans through the food chain. The use, in food-producing animals, of antibiotics that are critically important in human medicine has been implicated in the emergence of new forms of resistant bacteria, including new strains of multidrug-resistant foodborne bacteria, such as extended spectrum β-lactamase (ESBL)-producing E. coli. Abstract Escherichia coli are facultative, anaerobic Gram-negative rods with many facets. Within resistant bacterial populations, they play an important ecological role and can be used as a bioindicator of antimicrobial resistance. All animal species used for food production, as well as humans, carry E. coli in their intestinal tracts; plus, the genetic flexibility and adaptability of this bacteria to constantly changing environments allows it to acquire a great number of antimicrobial resistance mechanisms. Thus, the prevalence of antimicrobial resistance in these commensal bacteria (or others, such as enterococci) can be a good indicator for the selective pressure caused by the use of antimicrobial agents, providing an early warning of the emergence of antimicrobial resistance in pathogens. As many as 90% of E. coli strains are commensals inhabiting the intestinal tracts of humans and warm-blooded animals. As a commensal, it lives in a mutually beneficial association with its hosts and rarely causes diseases. However, E. coli also remains as one of the most frequent causes of several common bacterial infections in humans and animals. In humans, it is the prominent cause of enteritis, community- and hospital-acquired urinary tract infection (UTI), septicemia, postsurgical peritonitis, and other clinical infections, such as neonatal meningitis, while, in farm animals, it is more prominently associated with diarrhea. On a global scale, E. coli can be considered the most important human pathogen, causing severe infection along with other major bacterial foodborne agents, such as Salmonella spp. and Campylobacter. Thus, the importance of resistance in E. coli, typically considered a benign commensal, should not be underestimated.
Collapse
Affiliation(s)
- Sónia Ramos
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (S.R.); (V.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (S.R.); (V.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - Maria de Lurdes Enes Dapkevicius
- Faculty of Agricultural and Environmental Sciences, University of the Azores, 9500-321 Angra do Heroísmo, Portugal;
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9500-321 Angra do Heroísmo, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal;
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - María Teresa Tejedor-Junco
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35001 Canary Islands, Spain;
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria, 35001 Canary Islands, Spain
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (S.R.); (V.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
- Correspondence: ; Tel./Fax: +351-259-350-466
| |
Collapse
|
14
|
Kaspersen H, Fiskebeck EZ, Sekse C, Slettemeås JS, Urdahl AM, Norström M, Lagesen K, Simm R. Comparative Genome Analyses of Wild Type- and Quinolone Resistant Escherichia coli Indicate Dissemination of QREC in the Norwegian Broiler Breeding Pyramid. Front Microbiol 2020; 11:938. [PMID: 32508776 PMCID: PMC7248565 DOI: 10.3389/fmicb.2020.00938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/20/2020] [Indexed: 01/27/2023] Open
Abstract
Quinolones are important antimicrobials for both humans and animals, and resistance toward these compounds is a serious threat to public health. In Norway, quinolone resistant E. coli (QREC) have been detected at low levels in a high proportion of broiler flocks, even without the use of quinolones in rearing of broilers. Due to the pyramidal structure of broiler breeding, QREC isolates may be disseminated from grandparent animals down through the pyramid. However, quinolone resistance can also develop in wild type E. coli through specific chromosomal mutations, and by horizontal acquisition of plasmid-mediated quinolone resistance genes. The goal of this study was to determine whether QREC is disseminated through the broiler breeding pyramid or developed locally at some stage in the broiler production chain. For this purpose, we whole genome sequenced wild type- and QREC isolates from broiler and parent flocks that had been isolated in the Norwegian monitoring program for antimicrobial resistance in feed, food and animals (NORM-VET) between 2006 and 2017, from 22 different production sites. The sequencing data was used for typing of the isolates, phylogenetic analysis and identification of relevant resistance mechanisms. Highly similar QREC isolates were identified within major sequence types from multiple production sites, suggesting dissemination of QREC isolates in the broiler production chain. The occurrence of potential resistance development among the WT E. coli was low, indicating that this may be a rare phenomenon in the Norwegian broiler production. The results indicate that the majority of the observed QREC at the bottom of the broiler production pyramid originates from parent or grandparent animals. These results highlight the importance of surveillance at all levels of the broiler production pyramid and of implementation of proper biosecurity measures to control dissemination of QREC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Roger Simm
- Institute of Oral Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Kaspersen H, Sekse C, Zeyl Fiskebeck E, Slettemeås JS, Simm R, Norström M, Urdahl AM, Lagesen K. Dissemination of Quinolone-Resistant Escherichia coli in the Norwegian Broiler and Pig Production Chains and Possible Persistence in the Broiler Production Environment. Appl Environ Microbiol 2020; 86:e02769-19. [PMID: 31953334 PMCID: PMC7082582 DOI: 10.1128/aem.02769-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 11/20/2022] Open
Abstract
In Norway, the use of quinolones in livestock populations is very low, and prophylactic use is prohibited. Despite this, quinolone-resistant Escherichia coli (QREC) isolates are present at low levels in several animal species. The source of these QREC isolates is unknown. The aim of this study was to characterize and compare QREC isolates from different animal species to identify putative factors that may promote the occurrence of QREC. A total of 280 QREC isolates, from broilers, pigs, red foxes, and wild birds, were whole-genome sequenced and analyzed. Well-known chromosomal and plasmid-mediated resistance mechanisms were identified. In addition, mutations in marR, marA, and rpoB causing novel amino acid substitutions in their respective proteins were detected. Phylogenetic analyses were used to determine the relationships between the isolates. Quinolone resistance mechanism patterns appeared to follow sequence type groups. Similar QREC isolates with similar resistance mechanism patterns were detected from the samples, and further phylogenetic analysis indicated close evolutionary relationships between specific isolates from different sources. This suggests the dissemination of highly similar QREC isolates between animal species and also the persistence of QREC strains within the broiler production chain. This highlights the importance of both control measures at the top of the production chain as well as biosecurity measures to avoid the further dissemination and persistence of QREC in these environments.IMPORTANCE Since antimicrobial usage is low in Norwegian animal husbandry, Norway is an ideal country to study antimicrobial resistance in the absence of selective pressure from antimicrobial usage. In particular, the usage of quinolones is very low, which makes it possible to investigate the spread and development of quinolone resistance in natural environments. Comparison of quinolone-resistant E. coli (QREC) isolates from livestock and wild animals in light of this low quinolone usage provides new insights into the development and dissemination of QREC in both natural and production environments. With this information, preventive measures may be taken to prevent further dissemination within Norwegian livestock and between other animals, thus maintaining the favorable situation in Norway.
Collapse
Affiliation(s)
| | | | | | | | - Roger Simm
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | | | | | | |
Collapse
|
16
|
Correction: Occurrence and characterization of quinolone resistant Escherichia coli from Norwegian turkey meat and complete sequence of an IncX1 plasmid encoding qnrS1. PLoS One 2019; 14:e0217321. [PMID: 31121010 PMCID: PMC6532913 DOI: 10.1371/journal.pone.0217321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|