1
|
Odendaal ML, Taenzer J, de Rooij MMT, Kuiling S, Bogaert D, Franz E, Smit LAM. Nasopharyngeal microbiota is influenced by agricultural air pollution in individuals with and without COPD. Sci Rep 2025; 15:15653. [PMID: 40325057 PMCID: PMC12053623 DOI: 10.1038/s41598-025-00242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025] Open
Abstract
Respiratory health in chronic obstructive pulmonary disease (COPD) is influenced by environmental factors such as air pollution, yet the role of the airway microbiota in this relationship remains unclear. We investigated the association between exposure to air pollution from livestock farms and the nasopharyngeal microbiota in individuals with COPD compared to healthy control subjects. The study included nasopharyngeal swabs from 186 currently non-smoking participants in the Netherlands, including 65 individuals with COPD and 121 without from a regional rural cohort. Additionally, 116 individuals from a population-wide cohort were included as national controls. Samples were taken at three time points over 12 weeks. The nasopharyngeal microbiota was studied using 16 S rRNA gene-based sequencing for all baseline samples and a random selection of 6-weeks and 12-weeks samples. Dispersion models were used to determine the average concentrations of livestock-related PM10, endotoxin, and ammonia at the participants' home addresses. Individuals with COPD had a higher absolute abundance of anaerobic bacteria, such as Peptoniphilus, Anaerococcus, Finegoldia magna, and Prevotella. Importantly, residential exposure to ammonia was identified as the most important driver of the microbial community composition, explaining 6.6% of the variation in nasopharyngeal microbiota in individuals with COPD. Higher ammonia concentrations were associated with decreased levels of key commensals and increased abundance of anaerobic bacteria. Furthermore, individuals living in areas with high livestock density exhibited greater microbial diversity compared to the broader national population. The study highlights the influence of residential exposure to livestock-related air pollution, particularly ammonia, on nasopharyngeal microbiota composition in individuals with COPD. Our findings suggest that environmental factors significantly impact microbial communities and underscore the potential role of anaerobic bacteria in COPD pathology. Future research should further investigate the mechanisms by which environmental air pollutants affect microbial communities and explore potential interventions to mitigate their effects on respiratory health.
Collapse
Affiliation(s)
- Mari-Lee Odendaal
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands.
| | - Julia Taenzer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Myrna M T de Rooij
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Sjoerd Kuiling
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Erlandson G, Magzamen S, Sharp JL, Seidel J, Poole JA, Bradford M, Schaeffer JW. Hypertonic Saline Nasal Rinse Intervention: Immunomodulatory Effects in Dairy Workers. J Agromedicine 2025; 30:27-37. [PMID: 39440411 DOI: 10.1080/1059924x.2024.2416425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
OBJECTIVE Increased risk of occupational exposure to bioaerosols has long been recognized in livestock operations including dairy facilities. Spanning the inhalable fraction (0-100 μm), dairy bioaerosols comprise a wide variety of inflammatory components that deposit in the nasopharyngeal region. The resultant inflammatory response from bioaerosol exposure is likely driving the increased prevalence of respiratory disease observed in dairy workers. It is also thought the microbiome of the upper respiratory system may help mediate this inflammation. We investigated the viability of a low-cost hypertonic saline nasal rinse intervention in modulating inflammatory responses in bioaerosol exposed dairy workers and its impact on microbial diversity. METHODS Pre- and post-shift nasal rinses were administered and collected alongside full shift inhalable personal breathing zone (PBZ) samples for each participant for up to 5 consecutive days. Treatment group participants (n = 23) received hypertonic saline rinses while control group participants (n = 22) received normotonic saline rinses. Particulate matter (PM) and endotoxin concentrations were quantified from PBZ samples using gravimetric and enzymatic analytical methods, respectively. Pre- and post-shift rinses were analyzed for pro- and anti-inflammatory markers and microbial diversity using a multiplex assay and 16S rRNA sequencing, respectively. RESULTS PM and endotoxin concentrations were comparable between groups indicating similar exposures. Post-shift pro-inflammatory markers were significantly higher than pre-shift for IL-13 (p = .047), IL-1β (p < .001), IL-6 (p < .001), IL-8 (p < .001), and TNF-α (p = .024). There was no evidence of a difference in log concentrations between intervention group or day among any of the measured inflammatory markers. Anti-inflammatory IL-10 concentrations increased across the 5 sample days, independent of treatment group suggesting tonicity may not be driving the change. However, this result was not significant (p = .217). Nasal microbiome alpha (within sample) and beta (between sample) diversity metrics did not differ significantly between group or day demonstrating no adverse washout intervention effects. CONCLUSION This study provided encouraging results that warrant future research to further evaluate saline nasal rinses as a workplace intervention.
Collapse
Affiliation(s)
- Grant Erlandson
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Julia L Sharp
- Department of Human Development and Family Studies, Colorado State University, Fort Collins, CO, USA
- Sharp Analytics LLC, Fort Collins, CO, USA
| | - James Seidel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jill A Poole
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mary Bradford
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Joshua W Schaeffer
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Environmental and Occupational Health, Colorado School of Public Health, Denver, CO, USA
| |
Collapse
|
3
|
Dalton KR, Lee M, Wang Z, Zhao S, Parks CG, Beane-Freeman LE, Motsinger-Reif AA, London SJ. Occupational farm work activities influence workers' indoor home microbiome. ENVIRONMENTAL RESEARCH 2024; 243:117819. [PMID: 38052359 PMCID: PMC10872285 DOI: 10.1016/j.envres.2023.117819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Farm work entails a heterogeneous mixture of exposures that vary considerably across farms and farmers. Farm work is associated with various health outcomes, both adverse and beneficial. One mechanism by which farming exposures can impact health is through the microbiome, including the indoor home environment microbiome. It is unknown how individual occupational exposures shape the microbial composition in workers' homes. OBJECTIVES We investigated associations between farm work activities, including specific tasks and pesticide use, and the indoor microbiome in the homes of 468 male farmers. METHODS Participants were licensed pesticide applicators, mostly farmers, enrolled in the Agricultural Lung Health Study from 2008 to 2011. Vacuumed dust from participants' bedrooms underwent whole-genome shotgun sequencing for indoor microbiome assessment. Using questionnaire data, we evaluated 6 farm work tasks (processing of either hay, silage, animal feed, fertilizer, or soy/grains, and cleaning grain bins) and 19 pesticide ingredients currently used in the past year, plus 7 banned persistent pesticide ingredients ever used. RESULTS All 6 work tasks were associated with increased microbial diversity levels, with a positive dose-response for the total number of tasks performed (P = 0.001). All tasks were associated with altered microbial compositions (weighted UniFrac P = 0.001) and with higher abundance of specific microbes, including soil-based commensal microbes such as Haloterrigena. Among the 19 pesticides, current use of glyphosate and past use of lindane were associated with increased microbial diversity (P = 0.02-0.04). Ten currently used pesticides and all 7 banned pesticides were associated with altered microbial composition (P = 0.001-0.04). Six pesticides were associated with differential abundance of certain microbes. DISCUSSION Different farm activities and exposures can uniquely impact the dust microbiome inside homes. Our work suggests that changes to the home microbiome could serve as one pathway for how occupational exposures impact the health of workers and their cohabitating family members, offering possible future intervention targets.
Collapse
Affiliation(s)
- Kathryn R Dalton
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Mikyeong Lee
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Ziyue Wang
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Shanshan Zhao
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Christine G Parks
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Laura E Beane-Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alison A Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Stephanie J London
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA.
| |
Collapse
|
4
|
Han J, Li M, Li X, Liu C, Li XL, Wang K, Qiao R, Yang F, Han X, Li XJ. Effects of microbes in pig farms on occupational exposed persons and the environment. AMB Express 2023; 13:136. [PMID: 38032532 PMCID: PMC10689614 DOI: 10.1186/s13568-023-01631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
In terms of pig farming, pig gut microbes have a significant effect on farmers and the farm environment. However, it is still unclear which microbial composition is more likely to contribute to this effect. This study collected a total of 136 samples, including pigs' faeces samples, farmers' faeces samples, samples from individuals who had no contact with any type of farm animal (referred to as 'non-exposed' persons), and environmental dust samples (collected from inside and outside pig houses and the farm) from two pig farms, pig farm A and pig farm B. Whereafter, 16S rRNA sequencing and taxonomic composition analysis were performed. According to the study, compared to non-exposed persons, pig farmers had a significantly higher abundance of 7 genera. In addition, the farmers were grouped according to the duration of their occupational exposure, and it was shown that 4 genera, including Turicibacter, Terrisporobacter, and Clostridium_sensu_stricto_1, exhibited a rise in more frequent contact with pigs. As compared to outside the pig house, the environmental dust has a greater concentration of the 3 bacteria mentioned before. Therefore, these 3 microbes can be considered as co-occurring microbes that may exist both in humans and the environment. Also, the 3 co-occurring microbes are involved in the fermentation and production of short-chain fatty acids and their effectiveness decreased as distance from the farm increased. This study shows that the 3 microbes where pig farmers co-occur with the environment come from pig farms, which provides fresh ideas for preventing the spread of microbial aerosols in pig farms and reducing pollution.
Collapse
Affiliation(s)
- Jinyi Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mengyu Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xin Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chuang Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiu-Ling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xin-Jian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
- Sanya Institute, Hainan Academy of Agricultural Science, Sanya, China.
| |
Collapse
|
5
|
Jin XEF, Low DY, Ang L, Lu L, Yin X, Tan YQ, Lee AKY, Seow WJ. Exposure to cooking fumes is associated with perturbations in nasal microbiota composition: A pilot study. ENVIRONMENTAL RESEARCH 2023; 234:116392. [PMID: 37302739 DOI: 10.1016/j.envres.2023.116392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/02/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
Air pollution is one of the leading causes of overall mortality globally. Cooking emissions are a major source of fine particulate matter (PM2.5). However, studies on their potential perturbations on the nasal microbiota as well as their association with respiratory health are lacking. This pilot study aims to assess the environmental air quality among occupational cooks and its associations with nasal microbiota and respiratory symptoms. A total of 20 cooks (exposed) and 20 unexposed controls (mainly office workers), were recruited in Singapore from 2019 to 2021. Information on sociodemographic factors, cooking methods, and self-reported respiratory symptoms were collected using a questionnaire. Personal PM2.5 concentrations and reactive oxygen species (ROS) levels were measured using portable sensors and filter samplers. DNA was extracted from nasal swabs and sequenced using 16s sequencing. Alpha-diversity and beta-diversity were calculated, and between-group variation analysis of species was performed. Multivariable logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for associations between exposure groups and self-reported respiratory symptoms. Higher daily mean PM2.5 (P = 2 × 10-7) and environmental ROS exposure (P = 3.25 × 10-7) were observed in the exposed group. Alpha diversity of the nasal microbiota between the two groups was not significantly different. However, beta diversity was significantly different (unweighted UniFrac P = 1.11 × 10-5, weighted UniFrac P = 5.42 × 10-6) between the two exposure groups. In addition, certain taxa of bacteria were slightly more abundant in the exposed group compared to unexposed controls. There were no significant associations between the exposure groups and self-reported respiratory symptoms. In summary, the exposed group had higher PM2.5 and ROS exposure levels and altered nasal microbiotas as compared to unexposed controls, though further studies are required to replicate these findings in a larger population.
Collapse
Affiliation(s)
- Xin Er Frances Jin
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.
| | - Dorrain Yanwen Low
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Lina Ang
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Lu Lu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Xin Yin
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Yue Qian Tan
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Alex King Yin Lee
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore; Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Wei Jie Seow
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore.
| |
Collapse
|
6
|
Dalton KR, Lee M, Wang Z, Zhao S, Parks CG, Beane-Freeman LE, Motsinger-Reif AA, London SJ. Occupational Farm Work Activities Influence Workers' Indoor Home Microbiome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.17.23293194. [PMID: 37662364 PMCID: PMC10473816 DOI: 10.1101/2023.08.17.23293194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Farm work entails a heterogeneous mixture of exposures that vary considerably across farms and farmers. Farm work is associated with various health outcomes, both adverse and beneficial. One mechanism by which farming exposures can impact health is through the microbiome, including the indoor built environment microbiome. It is unknown how individual occupational exposures shape the microbial composition in workers' homes. Objectives We investigated associations between farm work activities, including specific tasks and pesticide use, and the indoor microbiome in the homes of 468 male farmers. Methods Participants were licensed pesticide applicators, mostly farmers, enrolled in the Agricultural Lung Health Study from 2008-2011. Vacuumed dust from participants' bedrooms underwent whole-genome shotgun sequencing for indoor microbiome assessment. Using questionnaire data, we evaluated 6 farm work tasks (processing of either hay, silage, animal feed, fertilizer, or soy/grains, and cleaning grain bins) and 19 pesticide ingredients currently used in the past year, plus 7 persistent banned pesticide ingredients ever used. Results All 6 work tasks were associated with increased within-sample microbial diversity, with a positive dose-response for the sum of tasks (p=0.001). All tasks were associated with altered overall microbial compositions (weighted UniFrac p=0.001) and with higher abundance of specific microbes, including soil-based microbes such as Haloterrigena. Among the 19 pesticides, only current use of glyphosate and past use of lindane were associated with increased within-sample diversity (p=0.02-0.04). Ten currently used pesticides and all 7 banned pesticides were associated with altered microbial composition (p=0.001-0.04). Six pesticides were associated with differential abundance of certain microbes. Discussion Specific farm activities and exposures can impact the dust microbiome inside homes. Our work suggests that occupational farm exposures could impact the health of workers and their families through modifying the indoor environment, specifically the microbial composition of house dust, offering possible future intervention targets.
Collapse
Affiliation(s)
- Kathryn R. Dalton
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Mikyeong Lee
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Ziyue Wang
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Shanshan Zhao
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Christine G. Parks
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Laura E. Beane-Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alison A. Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Stephanie J. London
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| |
Collapse
|
7
|
Seidel J, Magzamen S, Wang YH, Neujahr V, Schaeffer JW. Lessons from Dairy Farmers for Occupational Allergy and Respiratory Disease. Curr Allergy Asthma Rep 2023; 23:325-339. [PMID: 37191901 PMCID: PMC10186320 DOI: 10.1007/s11882-023-01081-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
PURPOSE OF REVIEW Exposure to bioaerosols at dairies has long been associated with allergy, respiratory disease, and decreases in lung function. Recent advancements in exposure assessments have aided our understanding on the size distribution and composition of these bioaerosols, but investigations focusing solely on exposures may overlook important intrinsic factors impacting worker's susceptibility to disease. RECENT FINDINGS In our review, we discuss the most recent studies examining the exposures and genetic factors that contribute to occupational disease in dairy work. We also review more recent concerns in livestock work associated with zoonotic pathogens, antimicrobial resistant genes, and the role of the human microbiome. The studies highlighted in this review demonstrate the need for further research to better understand bioaerosol exposure-response relationships in the context of extrinsic and intrinsic factors, antibiotic-resistant genes, viral pathogens, and the human microbiome to help inform effective interventions that improve respiratory health among dairy farmers.
Collapse
Affiliation(s)
- J Seidel
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1681 Campus Delivery, Fort Collins, CO, 80523-1681, USA
| | - S Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1681 Campus Delivery, Fort Collins, CO, 80523-1681, USA
| | - Y H Wang
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1681 Campus Delivery, Fort Collins, CO, 80523-1681, USA
| | - V Neujahr
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1681 Campus Delivery, Fort Collins, CO, 80523-1681, USA
| | - J W Schaeffer
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1681 Campus Delivery, Fort Collins, CO, 80523-1681, USA.
| |
Collapse
|
8
|
van Kersen W, Bossers A, de Steenhuijsen Piters WAA, de Rooij MMT, Bonten M, Fluit AC, Heederik D, Paganelli FL, Rogers M, Viveen M, Bogaert D, Leavis HL, Smit LAM. Air pollution from livestock farms and the oropharyngeal microbiome of COPD patients and controls. ENVIRONMENT INTERNATIONAL 2022; 169:107497. [PMID: 36088872 DOI: 10.1016/j.envint.2022.107497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/22/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Air pollution from livestock farms is known to affect respiratory health of patients with chronic obstructive pulmonary disease (COPD). The mechanisms behind this relationship, however, remain poorly understood. We hypothesise that air pollutants could influence respiratory health through modulation of the airway microbiome. Therefore, we studied associations between air pollution exposure and the oropharyngeal microbiota (OPM) composition of COPD patients and controls in a livestock-dense area. Oropharyngeal swabs were collected from 99 community-based (mostly mild) COPD cases and 184 controls (baseline), and after 6 and 12 weeks. Participants were non-smokers or former smokers. Annual average livestock-related outdoor air pollution at the home address was predicted using dispersion modelling. OPM composition was analysed using 16S rRNA-based sequencing in all baseline samples and 6-week and 12-week repeated samples of 20 randomly selected subjects (n = 323 samples). A random selection of negative control swabs, taken every sampling day, were also included in the downstream analysis. Both farm-emitted endotoxin and PM10 levels were associated with increased OPM richness in COPD patients (p < 0.05) but not in controls. COPD case-control status was not associated with community structure, while correcting for known confounders (multivariate PERMANOVA p > 0.05). However, members of the genus Streptococcus were more abundant in COPD patients (Benjamini-Hochberg adjusted p < 0.01). Moderate correlation was found between ordinations of 20 subjects analysed at 0, 6, and 12 weeks (Procrustes r = 0.52 to 0.66; p < 0.05; Principal coordinate analysis of Bray-Curtis dissimilarity), indicating that the OPM is relatively stable over a 12 week period and that a single sample sufficiently represents the OPM. Air pollution from livestock farms is associated with OPM richness of COPD patients, suggesting that the OPM of COPD patients is susceptible to alterations induced by exposure to air pollutants.
Collapse
Affiliation(s)
- Warner van Kersen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Alex Bossers
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Wouter A A de Steenhuijsen Piters
- University Medical Center Utrecht, Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Myrna M T de Rooij
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Marc Bonten
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ad C Fluit
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dick Heederik
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Malbert Rogers
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marco Viveen
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Debby Bogaert
- University Medical Center Utrecht, Utrecht, the Netherlands; University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen L Leavis
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
9
|
Ding D, Zhu J, Gao Y, Yang F, Ma Y, Cheng X, Li J, Dong P, Yang H, Chen S. Effect of cattle farm exposure on oropharyngeal and gut microbial communities and antibiotic resistance genes in workers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150685. [PMID: 34600986 DOI: 10.1016/j.scitotenv.2021.150685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Livestock farms are recognized as the main sources of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) with potential implications for human health. In this study, we systematically analyzed microbiome composition, distribution of ARGs and mobile genetic elements (MGEs) in the oropharynx and gut of workers in cattle farms and surrounding villagers, cattle feces and farm air, and the relationship of microbial communities among farm air, cattle feces and farmworkers (oropharynx and gut). Exposure to the farm environment may have remodeled farmworkers' oropharynx and gut microbiota, with reduced microbial diversity (P < 0.05) and enrichment of some opportunistic pathogenic bacteria like Shigella, Streptococcus, and Neisseria in the oropharynx. Meanwhile, compared with villagers, ARG abundance in oropharynx of farmworkers increased significantly (P < 0.05), but, no significant difference in gut (P > 0.05). Microbial composition and ARG profile in farmworkers might be influenced by working time and work type, ARG abundance in farmworkers' gut was positively correlated with working time (P < 0.01), and higher ARG abundance was found in the oropharynx of drovers. The network analysis revealed that 4 MGEs (tnpA-01, tnpA-04, Tp614, and IS613), 5 phyla (e.g. Bacteroidetes, Fusobacteria, and TM7), and 6 genera were significantly associated with 37 ARGs (ρ > 0.6, P < 0.01). Overall, our results indicated that farm exposure may have affected the microbial composition and increased ARG abundance of farmworkers. Transmission of some ARGs may have occurred among the environment, animals and humans via host bacteria, which might pose a potential threat to human health.
Collapse
Affiliation(s)
- Dong Ding
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jingyuan Zhu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yanling Gao
- Henan Vocational College of Agriculture, Zhengzhou 450001, Henan, China; Henan Institute of Veterinary Drug and Feed Control, Zhengzhou 450001, Henan, China
| | - Fan Yang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yan Ma
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xuemin Cheng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jinlei Li
- Henan Institute of Veterinary Drug and Feed Control, Zhengzhou 450001, Henan, China
| | - Peng Dong
- Henan Institute of Veterinary Drug and Feed Control, Zhengzhou 450001, Henan, China
| | - Haiyan Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
10
|
Mucci N, Tommasi E, Chiarelli A, Lulli LG, Traversini V, Galea RP, Arcangeli G. WORKbiota: A Systematic Review about the Effects of Occupational Exposure on Microbiota and Workers' Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1043. [PMID: 35162072 PMCID: PMC8834335 DOI: 10.3390/ijerph19031043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022]
Abstract
The characterization of human microbiota and the impact of its modifications on the health of individuals represent a current topic of great interest for the world scientific community. Scientific evidence is emerging regarding the role that microbiota has in the onset of important chronic illnesses. Since individuals spend most of their life at work, occupational exposures may have an impact on the organism's microbiota. The purpose of this review is to explore the influence that different occupational exposures have on human microbiota in order to set a new basis for workers' health protection and disease prevention. The literature search was performed in PubMed, Cochrane, and Scopus. A total of 5818 references emerged from the online search, and 31 articles were included in the systematic review (26 original articles and 5 reviews). Exposure to biological agents (in particular direct contact with animals) was the most occupational risk factor studied, and it was found involved in modifications of the microbiota of workers. Changes in microbiota were also found in workers exposed to chemical agents or subjected to work-related stress and altered dietary habits caused by specific microclimate characteristics or long trips. Two studies evaluated the role of microbiota changes on the development of occupational lung diseases. Occupational factors can interface with the biological rhythms of the bacteria of the microbiota and can contribute to its modifications and to the possible development of diseases. Future studies are needed to better understand the role of the microbiota and its connection with occupational exposure to promote projects for the prevention and protection of global health.
Collapse
Affiliation(s)
- Nicola Mucci
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.M.); (V.T.); (G.A.)
| | - Eleonora Tommasi
- Postgraduate Medical Training Programme in Cardiology, University of Perugia, 1 Piazza dell’Università, 06123 Perugia, Italy;
| | - Annarita Chiarelli
- Occupational Medicine Unit, Careggi University Hospital, 50134 Florence, Italy;
| | | | - Veronica Traversini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.M.); (V.T.); (G.A.)
| | - Raymond Paul Galea
- Faculty of Medicine & Surgery, University of Malta, MSD 2090 Msida, Malta;
- The Malta Postgraduate Medical Training Programme, Mater Dei Hospital Msida, MSD 2090 Msida, Malta
| | - Giulio Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.M.); (V.T.); (G.A.)
| |
Collapse
|
11
|
Chauhan NS. Lung Microbiome in Human Health and Diseases. COMPREHENSIVE GUT MICROBIOTA 2022:497-507. [DOI: 10.1016/b978-0-12-819265-8.00077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Abdalhamed AM, Ghazy AA, Ibrahim ES, Arafa AA, Zeedan GSG. Therapeutic effect of biosynthetic gold nanoparticles on multidrug-resistant Escherichia coli and Salmonella species isolated from ruminants. Vet World 2021; 14:3200-3210. [PMID: 35153413 PMCID: PMC8829404 DOI: 10.14202/vetworld.2021.3200-3210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/22/2021] [Indexed: 12/31/2022] Open
Abstract
Background and Aim: Multidrug-resistant (MDR) pathogenic microorganisms have become a global problem in ruminants as a result of the intensive use of antibiotics, causing the development of resistance among gut microbiota. The antibiotic-resistant microorganisms can be transferred from diseased animals to humans. This study aimed to determine the prevalence of MDR Escherichia coli and Salmonella spp. isolated from cattle, buffaloes, sheep, and goats suffering from respiratory signs, diarrhea, and mastitis and to screen the antibiotic sensitivity of selected isolated bacteria. It also detected antibiotic-resistance genes by polymerase chain reaction (PCR), produced green gold nanoparticles (AuNPs) using plant extracts (Artemisia herba-alba and Morus alba), and evaluated the antimicrobial activities of these biosynthesized nanoparticles on selected pathogens (E. coli and Salmonella spp.). Materials and Methods: MDR E. coli and Salmonella spp. were investigated using fecal samples (n=408), nasal swabs (n=358), and milk samples (n=227) of cattle, buffaloes, sheep, and goats with or without clinical signs, including respiratory manifestations, pneumonia, diarrhea, and mastitis, from different governorates in Egypt. E. coli and Salmonella spp. were isolated and identified on selective media, which were confirmed by biochemical reactions and PCR. Antimicrobial susceptibility testing against 10 commonly used antibiotics was performed using the Kirby-Bauer disk diffusion method. Antibiotic resistance genes blaTEM, blaSHV, blaOXA, and blaCTX−M were detected by PCR. The antibacterial effect of the biosynthesized AuNPs was evaluated by MIC and well diffusion assay. The biosynthesized AuNPs were also characterized by ultraviolet-visible spectrophotometry and transmission electron microscopy (TEM). Results: Among all fecal samples, the prevalence of E. coli was 18.4% (183/993) and that of Salmonella spp. was 16.7% (66/408), as determined by cultural and molecular tests. All isolates of E. coli and Salmonella spp. were 100% resistant to ampicillin (AM) and amoxicillin and highly resistant to cefoxitin and AM-sulbactam. The total rate of resistance genes in E. coli was 61.2% (112/183), while that in Salmonella was 63.6% (42/66) for pathogens isolated from ruminants with respiratory manifestations, pneumonia, diarrhea, and mastitis. Among the resistance genes, blaTEM had the highest prevalence rate in E. coli (25.9%, 21/81) while blaSHV had the lowest (9.8%, 8/81) in fecal swabs. AuNPs were successfully synthesized using aqueous leaf extract of A. herba-alba and M. alba as bioreducing agents. TEM analysis showed particle size of 10-42 nm for A. herba-alba and M. alba AuNPs. The biosynthesized AuNPs showed antibacterial activity against MDR E. coli and Salmonella spp. Conclusion: Rapid and accurate diagnostic methods are the cornerstone for effective treatment to reduce the risk of antimicrobial-resistant pathogenic microorganisms. This is particularly important for overcoming the increasing rate of MDR in ruminants with respiratory manifestations, pneumonia, diarrhea, and mastitis. This can be complemented by the development of AuNPs synthesized in an environmentally friendly manner AuNPs using natural plant extracts for the treatment of antibiotic-resistant microorganisms.
Collapse
Affiliation(s)
- Abeer M. Abdalhamed
- Department of Parasitology and Animal Diseases, National Research Centre, Dokki, Egypt
| | - Alaa A. Ghazy
- Department of Parasitology and Animal Diseases, National Research Centre, Dokki, Egypt
| | - Eman S. Ibrahim
- Department of Microbiology and Immunology, National Research Centre, Dokki, Egypt
| | - Amany A. Arafa
- Department of Microbiology and Immunology, National Research Centre, Dokki, Egypt
| | - Gamil S. G. Zeedan
- Department of Parasitology and Animal Diseases, National Research Centre, Dokki, Egypt
| |
Collapse
|
13
|
Dynamic distribution of nasal microbial community in yaks (Bos grunniens) at different ages. Trop Anim Health Prod 2021; 53:555. [PMID: 34853935 DOI: 10.1007/s11250-021-02996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/11/2021] [Indexed: 12/09/2022]
Abstract
The significance of microbial community structure has been extensively recognized due to its key roles in metabolism, immunity, and health maintenance. Importantly, increasing evidence indicated that the dynamic distribution of microbial community structure can be used for evaluating the health condition of host. Yaks (Bos grunniens), mainly inhabiting in high-altitude hypoxic environment, are characterized by excellent adaptability and strong resistance. Currently, it has been determined that yaks possessed the complicated gastrointestinal microbial ecosystem, whereas not much is known about the nasal microbial community structure of yaks. Therefore, this study was performed to compare and analyze the differences in nasal microbiota of yaks with different ages by high-throughput sequencing. In this study, a total of 487,168 and 486,498 high-quality sequences were achieved from YYG (1-month-old yaks) and AYG (1-year-old yaks), respectively. Additionally, 5,340 operational taxonomic units (OTUs) were identified and 657 OTUs were in common among all samples. Proteobacteria and Firmicutes were the two most predominant phyla in all samples. Moreover, Actinobacteria and Bacteroidetes were the tertiary dominant phyla in YYG and AYG, respectively. At the level of genus, Moraxella, Faucicola, and Mannheimia were the most preponderant bacterial genera in the young and adult yaks. As compared to the AYG, the proportions of Actinobacillus, Parabacteroides, and Haemophilus in the YYG were significantly increased, whereas the Rhizobacter was decreased. In conclusion, this study firstly compared and investigated the distribution of nasal microbiota in yaks with different ages. Results demonstrated that age was an important factor affecting the nasal microbiota. Moreover, the current study will provide a theoretical basis for the further study on the microbial community structure of yaks.
Collapse
|
14
|
Habibi N, Mustafa AS, Khan MW. Composition of nasal bacterial community and its seasonal variation in health care workers stationed in a clinical research laboratory. PLoS One 2021; 16:e0260314. [PMID: 34818371 PMCID: PMC8612574 DOI: 10.1371/journal.pone.0260314] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/07/2021] [Indexed: 12/21/2022] Open
Abstract
The microorganisms at the workplace contribute towards a large portion of the biodiversity a person encounters in his or her life. Health care professionals are often at risk due to their frontline nature of work. Competition and cooperation between nasal bacterial communities of individuals working in a health care setting have been shown to mediate pathogenic microbes. Therefore, we investigated the nasal bacterial community of 47 healthy individuals working in a clinical research laboratory in Kuwait. The taxonomic profiling and core microbiome analysis identified three pre-dominant genera as Corynebacterium (15.0%), Staphylococcus (10.3%) and, Moraxella (10.0%). All the bacterial genera exhibited seasonal variations in summer, winter, autumn and spring. SparCC correlation network analysis revealed positive and negative correlations among the classified genera. A rich set of 16 genera (q < 0.05) were significantly differentially abundant (LEfSe) across the four seasons. The highest species counts, richness and evenness (P < 0.005) were recorded in autumn. Community structure profiling indicated that the entire bacterial population followed a seasonal distribution (R2-0.371; P < 0.001). Other demographic factors such as age, gender and, ethnicity contributed minimally towards community clustering in a closed indoor laboratory setting. Intra-personal diversity also witnessed rich species variety (maximum 6.8 folds). Seasonal changes in the indoor working place in conjunction with the outdoor atmosphere seems to be important for the variations in the nasal bacterial communities of professionals working in a health care setting.
Collapse
Affiliation(s)
- Nazima Habibi
- OMICS Research Unit and Research Core Facility, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| | - Abu Salim Mustafa
- OMICS Research Unit and Research Core Facility, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| | - Mohd Wasif Khan
- OMICS Research Unit and Research Core Facility, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
15
|
The Effect of Immunobiotic/Psychobiotic Lactobacillus acidophilus Strain INMIA 9602 Er 317/402 Narine on Gut Prevotella in Familial Mediterranean Fever: Gender-Associated Effects. Probiotics Antimicrob Proteins 2021; 13:1306-1315. [PMID: 34132998 DOI: 10.1007/s12602-021-09779-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Possible mechanisms involved in sex-dependent differences in the gut microbiota have a growing interest worldwide, but the effects of probiotics dependence on the gender of the host have remained outside of researchers' attention until now. Previously, our research data described gender-specific differences in the gut microbiota of Armenian Familial Mediterranean fever (FMF) patients. Taking into account the possible association of Prevotella spp. with depressive disorders, the aim of the current investigations was an evaluation of changes in the abundance of gut Prevotella of FMF patients in association with the patient's depression and gender. The differences between healthy and FMF diseased gut microbiota in terms of Prevotella abundance were revealed. In addition, the gender-dependent effects of immunobiotic/psychobiotic Narine on the abundance of gut Prevotella of FMF patients and patients' depression scores were shown by us in this study.
Collapse
|
16
|
Dos Anjos Magri C, Garófallo Garcia R, Binotto E, Duarte da Silva Lima N, de Alencar Nääs I, Sgavioli S, de Castro Burbarelli MF. Occupational risk factors in health of broiler-farm workers: A systematic review. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2020; 76:482-493. [PMID: 33054688 DOI: 10.1080/19338244.2020.1832036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The present study aimed to identify gaps in literature regarding occupational risks to broiler farming workers. A systematic review was performed in which inclusion criteria were workers in poultry farms. The search was done between May and June 2019 with online papers. Keywords were "poultry farmer," "poultry worker," and "poultry workers" as terms of an axis of a theoretical framework. Results indicated as predominant topics lung diseases, nasal mucosa or paranasal sinus contamination, and aflatoxicosis. The identified gaps in scientific publications are related to mitigation of occupational risks. Prevalent described risks are associated to exposure to chemicals gases, vapors and aerosols, biological hazards (micro-organisms), ergonomic risks, wrong working posture, excessive body movement and inadequate behaviors. Preventive policies about poultry farmer's health and safety needs to be adopted to reduce potentially dangerous risk factors and increase productivity.
Collapse
Affiliation(s)
- Claudia Dos Anjos Magri
- Agribusiness Postgraduate Program, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Rodrigo Garófallo Garcia
- Agribusiness Postgraduate Program, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
- Animal Science Postgraduate Program, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Erlaine Binotto
- Agribusiness Postgraduate Program, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | | | | | - Sarah Sgavioli
- Department of Veterinary Medicine, Brazil University, Descalvado, São Paulo, Brazil
| | | |
Collapse
|