1
|
Mariadoss AVA, Wang CZ. Exploring the Cellular and Molecular Mechanism of Discoidin Domain Receptors (DDR1 and DDR2) in Bone Formation, Regeneration, and Its Associated Disease Conditions. Int J Mol Sci 2023; 24:14895. [PMID: 37834343 PMCID: PMC10573612 DOI: 10.3390/ijms241914895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
The tyrosine kinase family receptor of discoidin domain receptors (DDR1 and DDR2) is known to be activated by extracellular matrix collagen catalytic binding protein receptors. They play a remarkable role in cell proliferation, differentiation, migration, and cell survival. DDR1 of the DDR family regulates matrix-metalloproteinase, which causes extracellular matrix (ECM) remodeling and reconstruction during unbalanced homeostasis. Collagenous-rich DDR1 triggers the ECM of cartilage to regenerate the cartilage tissue in osteoarthritis (OA) and temporomandibular disorder (TMD). Moreover, DDR2 is prominently present in the fibroblasts, smooth muscle cells, myofibroblasts, and chondrocytes. It is crucial in generating and breaking collagen vital cellular activities like proliferation, differentiation, and adhesion mechanisms. However, the deficiency of DDR1 rather than DDR2 was detrimental in cases of OA and TMDs. DDR1 stimulated the ECM cartilage and improved bone regeneration. Based on the above information, we made an effort to outline the advancement of the utmost promising DDR1 and DDR2 regulation in bone and cartilage, also summarizing their structural, biological activity, and selectivity.
Collapse
Affiliation(s)
| | - Chau-Zen Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| |
Collapse
|
2
|
Poulsen RC, Jain L, Dalbeth N. Re-thinking osteoarthritis pathogenesis: what can we learn (and what do we need to unlearn) from mouse models about the mechanisms involved in disease development. Arthritis Res Ther 2023; 25:59. [PMID: 37046337 PMCID: PMC10100340 DOI: 10.1186/s13075-023-03042-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Efforts to develop effective disease-modifying drugs to treat osteoarthritis have so far proved unsuccessful with a number of promising drug candidates from pre-clinical studies failing to show efficacy in clinical trials. It is therefore timely to re-evaluate our current understanding of osteoarthritis pathogenesis and the similarities and differences in disease development between commonly used pre-clinical mouse models and human patients. There is substantial heterogeneity between patients presenting with osteoarthritis and mounting evidence that the pathways involved in osteoarthritis (e.g. Wnt signalling) differ between patient sub-groups. There is also emerging evidence that the pathways involved in osteoarthritis differ between the STR/ort mouse model (the most extensively studied mouse model of spontaneously occurring osteoarthritis) and injury-induced osteoarthritis mouse models. For instance, while canonical Wnt signalling is upregulated in the synovium and cartilage at an early stage of disease in injury-induced osteoarthritis mouse models, this does not appear to be the case in the STR/ort mouse. Such findings may prove insightful for understanding the heterogeneity in mechanisms involved in osteoarthritis pathogenesis in human disease. However, it is important to recognise that there are differences between mice and humans in osteoarthritis pathogenesis. A much more extensive array of pathological changes are evident in osteoarthritic joints in individual mice with osteoarthritis compared to individual patients. There are also specified differences in the pathways involved in disease development. For instance, although increased TGF-β signalling is implicated in osteoarthritis development in both mouse models of osteoarthritis and human disease, in mice, this is mainly mediated through TGF-β3 whereas in humans, it is through TGF-β1. Studies in other tissues have shown TGF-β1 is more potent than TGF-β3 in inducing the switch to SMAD1/5 signalling that occurs in osteoarthritic cartilage and that TGF-β1 and TGF-β3 have opposing effects on fibrosis. It is therefore possible that the relative contribution of TGF-β signalling to joint pathology in osteoarthritis differs between murine models and humans. Understanding the similarities and differences in osteoarthritis pathogenesis between mouse models and humans is critical for understanding the translational potential of findings from pre-clinical studies.
Collapse
Affiliation(s)
- Raewyn C Poulsen
- Department of Pharmacology & Clinical Pharmacology, Faculty of Medical & Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand.
| | - Lekha Jain
- Department of Pharmacology & Clinical Pharmacology, Faculty of Medical & Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Evans LAE, Pitsillides AA. Structural clues to articular calcified cartilage function: A descriptive review of this crucial interface tissue. J Anat 2022; 241:875-895. [PMID: 35866709 PMCID: PMC9482704 DOI: 10.1111/joa.13728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022] Open
Abstract
Articular calcified cartilage (ACC) has been dismissed, by some, as a remnant of endochondral ossification without functional relevance to joint articulation or weight-bearing. Recent research indicates that morphologic and metabolic ACC features may be important, reflecting knee joint osteoarthritis (OA) predisposition. ACC is less investigated than neighbouring joint tissues, with its component chondrocytes and mineralised matrix often being either ignored or integrated into analyses of hyaline articular cartilage and subchondral bone tissue respectively. Anatomical variation in ACC is recognised between species, individuals and age groups, but the selective pressures underlying this variation are unknown. Consequently, optimal ACC biomechanical features are also unknown as are any potential locomotory roles. This review collates descriptions of ACC anatomy and biology in health and disease, with a view to revealing its structure/function relationship and highlighting potential future research avenues. Mouse models of healthy and OA joint ageing have shown disparities in ACC load-induced deformations at the knee joint. This raises the hypothesis that ACC response to locomotor forces over time may influence, or even underlie, the bony and hyaline cartilage symptoms characteristic of OA. To effectively investigate the ACC, greater resolution of joint imaging and merging of hierarchical scale data will be required. An appreciation of OA as a 'whole joint disease' is expanding, as is the possibility that the ACC may be a key player in healthy ageing and in the transition to OA joint pathology.
Collapse
Affiliation(s)
- Lucinda A. E. Evans
- Department of Comparative Biomedical SciencesRoyal Veterinary College, University of LondonLondonUK
| | - Andrew A. Pitsillides
- Department of Comparative Biomedical SciencesRoyal Veterinary College, University of LondonLondonUK
| |
Collapse
|
4
|
Li J, Wang Y, Chen D, Liu-Bryan R. Oral administration of berberine limits post-traumatic osteoarthritis development and associated pain via AMP-activated protein kinase (AMPK) in mice. Osteoarthritis Cartilage 2022; 30:160-171. [PMID: 34687898 PMCID: PMC8712393 DOI: 10.1016/j.joca.2021.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We investigated the effect of berberine, a natural plant product that can activate AMP-activated protein kinase (AMPK), on Osteoarthritis (OA) development and associated pain in mice. DESIGN Human primary knee chondrocytes were utilized to investigate how AMPK is activated by berberine. Both global knockout (KO) of AMPKα1 and congenic wild type (WT) mice were subjected to the post-traumatic OA through destabilization of medial meniscus (DMM) surgery. Two weeks after surgery, the mice were randomly divided into two groups with one group receiving berberine chloride daily via drinking water and were sacrificed at 6 and 12 weeks after surgery. OA severity was assessed by histological and histomorphometric analyses of cartilage degradation, synovitis, and osteophyte formation. OA-associated pain behavior was also determined. Immunohistochemistry (IHC) analyses were carried out to examine changes in AMPK signaling. RESULTS Berberine induced phosphorylation of AMPKα (Thr172) via liver kinase B1 (LKB1), the major upstream kinase of AMPK, in chondrocytes in vitro. Both WT and AMPKα1KO developed OA and associated pain post DMM surgery. However, treatment with berberine significantly reduced severity of OA and associated pain in WT but not AMPKα1KO mice. IHC analysis of WT DMM knee cartilage further revealed that berberine inhibited concomitant loss of expression and phosphorylation of AMPKα and expression of SIRT1 and SIRT3, suggesting an important role of activation of AMPK signaling in mediating beneficial effect of berberine. CONCLUSIONS Berberine acts through AMPK to reduce joint structural damage and pain associated with post-traumatic OA in mice in vivo.
Collapse
Affiliation(s)
- Jun Li
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Yun Wang
- Department of Medicine, University of California San Diego, La Jolla, USA.,Present address: Valo Health, Lexington, MA, USA
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA.,Present address: Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ru Liu-Bryan
- VA San Diego Healthcare System, San Diego, USA.,Department of Medicine, University of California San Diego, La Jolla, USA.,Correspondence to: Ru Liu-Bryan, VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA 92161. Telephone: 858 552 8585. Fax: 858 552 7425. , or Di Chen, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China. Telephone: 86-0755-8658-5255. Fax: 86-0755-8639-2299.
| |
Collapse
|
5
|
Bansal S, Meadows KD, Miller LM, Saleh KS, Patel JM, Stoeckl BD, Lemmon EA, Hast MW, Zgonis MH, Scanzello CR, Elliott DM, Mauck RL. Six-Month Outcomes of Clinically Relevant Meniscal Injury in a Large-Animal Model. Orthop J Sports Med 2021; 9:23259671211035444. [PMID: 34796238 PMCID: PMC8593308 DOI: 10.1177/23259671211035444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/04/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The corrective procedures for meniscal injury are dependent on tear type, severity, and location. Vertical longitudinal tears are common in young and active individuals, but their natural progression and impact on osteoarthritis (OA) development are not known. Root tears are challenging and they often indicate poor outcomes, although the timing and mechanisms of initiation of joint dysfunction are poorly understood, particularly in large-animal and human models. PURPOSE/HYPOTHESIS In this study, vertical longitudinal and root tears were made in a large-animal model to determine the progression of joint-wide dysfunction. We hypothesized that OA onset and progression would depend on the extent of injury-based load disruption in the tissue, such that root tears would cause earlier and more severe changes to the joint. STUDY DESIGN Controlled laboratory study. METHODS Sham surgeries and procedures to create either vertical longitudinal or root tears were performed in juvenile Yucatan mini pigs through randomized and bilateral arthroscopic procedures. Animals were sacrificed at 1, 3, or 6 months after injury and assessed at the joint and tissue level for evidence of OA. Functional measures of joint load transfer, cartilage indentation mechanics, and meniscal tensile properties were performed, as well as histological evaluation of the cartilage, meniscus, and synovium. RESULTS Outcomes suggested a progressive and sustained degeneration of the knee joint and meniscus after root tear, as evidenced by histological analysis of the cartilage and meniscus. This occurred in spite of spontaneous reattachment of the root, suggesting that this reattachment did not fully restore the function of the native attachment. In contrast, the vertical longitudinal tear did not cause significant changes to the joint, with only mild differences compared with sham surgery at the 6-month time point. CONCLUSION Given that the root tear, which severs circumferential connectivity and load transfer, caused more intense OA compared with the circumferentially stable vertical longitudinal tear, our findings suggest that without timely and mechanically competent fixation, root tears may cause irreversible joint damage. CLINICAL RELEVANCE More generally, this new model can serve as a test bed for experimental surgical, scaffold-based, and small molecule-driven interventions after injury to prevent OA progression.
Collapse
Affiliation(s)
- Sonia Bansal
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kyle D. Meadows
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Liane M. Miller
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Kamiel S. Saleh
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Jay M. Patel
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Brendan D. Stoeckl
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Elisabeth A. Lemmon
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Michael W. Hast
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Biedermann Lab for Orthopaedic Research, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Miltiadis H. Zgonis
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Carla R. Scanzello
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Division of Rheumatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dawn M. Elliott
- Biedermann Lab for Orthopaedic Research, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Sunkara V, Heinz GA, Heinrich FF, Durek P, Mobasheri A, Mashreghi MF, Lang A. Combining segmental bulk- and single-cell RNA-sequencing to define the chondrocyte gene expression signature in the murine knee joint. Osteoarthritis Cartilage 2021; 29:905-914. [PMID: 33762205 DOI: 10.1016/j.joca.2021.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 02/01/2021] [Accepted: 03/10/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Due to the small size of the murine knee joint, extracting the chondrocyte transcriptome from articular cartilage (AC) is a major technical challenge. In this study, we demonstrate a new pragmatic approach of combining bulk RNA-sequencing (RNA-seq) and single cell (sc)RNA-seq to address this problem. DESIGN We propose a new cutting strategy for the murine femur which produces three segments with a predictable mixed cell population, where one segment contains AC and growth plate (GP) chondrocytes, another GP chondrocytes, and the last segment only bone and bone marrow. We analysed the bulk RNA-seq of the different segments to find distinct genes between the segments. The segment containing AC chondrocytes was digested and analysed via scRNA-seq. RESULTS Differential expression analysis using bulk RNA-seq identified 350 candidate chondrocyte gene in the AC segment. Gene set enrichment analysis of these genes revealed biological processes related- and non-related to chondrocytes, including, cartilage development (adj. P-value: 3.45E-17) and endochondral bone growth (adj. P-value 1.22E-4), respectively. ScRNA-seq of the AC segment found a cluster of 131 cells containing mainly chondrocytes. This cluster had 759 differentially expressed genes which enriched for extracellular matrix organisation (adj. P-value 7.76E-40) and other joint development processes. The intersection of the gene sets of bulk- and scRNA-seq contained 75 genes. CONCLUSIONS Based on our results, we conclude that the combination of the two RNA-seq methods is necessary to precisely delineate the chondrocyte transcriptome and to study the disease phenotypes of chondrocytes in murine OA models in the future.
Collapse
Affiliation(s)
- V Sunkara
- Explainable A.I. for Biology, Zuse Institute Berlin, Berlin, Germany; Department of Mathematics and Computer Science, Freie Universität Berlin, Germany.
| | - G A Heinz
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, Berlin, Germany
| | - F F Heinrich
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, Berlin, Germany
| | - P Durek
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, Berlin, Germany
| | - A Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Regenerative Medicine, State Research Institute, Centre for Innovative Medicine, Vilnius, Lithuania; University Medical Center Utrecht, Departments of Orthopedics, Rheumatology and Clinical Immunology, Utrecht, the Netherlands; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - M-F Mashreghi
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatrics, Division of Pulmonology, Immunology and Critical Care Medicine, Berlin, Germany; Department BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - A Lang
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany.
| |
Collapse
|
7
|
Schulze-Tanzil G. Experimental Therapeutics for the Treatment of Osteoarthritis. J Exp Pharmacol 2021; 13:101-125. [PMID: 33603501 PMCID: PMC7887204 DOI: 10.2147/jep.s237479] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) therapy remains a large challenge since no causative treatment options are so far available. Despite some main pathways contributing to OA are identified its pathogenesis is still rudimentary understood. A plethora of therapeutically promising agents are currently tested in experimental OA research to find an opportunity to reverse OA-associated joint damage and prevent its progression. Hence, this review aims to summarize novelly emerging experimental approaches for OA. Due to the diversity of strategies shown only main aspects could be summarized here including herbal medicines, nanoparticular compounds, growth factors, hormones, antibody-, cell- and extracellular vesicle (EV)-based approaches, optimized tools for joint viscosupplementation, genetic regulators such as si- or miRNAs and promising combinations. An abundant multitude of compounds obtained from plants, environmental, autologous or synthetic sources have been identified with anabolic, anti-inflammatory, -catabolic and anti-apoptotic properties. Some ubiquitous signaling pathways such as wingless and Integration site-1 (Wnt), Sirtuin, Toll-like receptor (TLR), mammalian target of rapamycin (mTOR), Nuclear Factor (NF)-κB and complement are involved in OA and addressed by them. Hyaluronan (HA) provided benefit in OA since many decades, and novel HA formulations have been developed now with higher HA content and long-term stability achieved by cross-linking suitable to be combined with other agents such as components from herbals or chemokines to attract regenerative cells. pH- or inflammation-sensitive nanoparticular compounds could serve as versatile slow-release systems of active compounds, for example, miRNAs. Some light has been brought into the intimate regulatory network of small RNAs in the pathogenesis of OA which might be a novel avenue for OA therapy in future. Attraction of autologous regenerative cells by chemokines and exosome-based treatment strategies could also innovate OA therapy.
Collapse
Affiliation(s)
- Gundula Schulze-Tanzil
- Department of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg, Bavaria, Germany
| |
Collapse
|
8
|
Huang K, Cai HL, Zhang PL, Wu LD. Comparison between two rabbit models of posttraumatic osteoarthritis: A longitudinal tear in the medial meniscus and anterior cruciate ligament transection. J Orthop Res 2020; 38:2721-2730. [PMID: 32129514 DOI: 10.1002/jor.24645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/21/2020] [Accepted: 02/29/2020] [Indexed: 02/04/2023]
Abstract
Animal osteoarthritis (OA) models have been developed to understand OA progression and evaluate new OA therapies. However, individual variations in joint lesions remain a critical problem in most current OA models. We established a novel rabbit model by creating a longitudinal tear in the medial meniscus body that was reproducible and similar to posttraumatic biomechanical disturbances in human OA. New Zealand rabbits underwent surgery and were assessed for 9 weeks. The rabbits were randomized into the sham control, medial meniscal tear (MMT), and anterior cruciate ligament transection (ACLT) groups. The animals were sacrificed at 4, 6, and 9 weeks posttreatment. The knee joints were harvested for histological and gene expression assessments. Both the MMT and ACLT procedures led to time-dependent degenerative changes in the femoral condyle cartilage. At each time point, the MMT group cartilage showed more severe degenerative changes than did the ACLT group cartilage. Consistently, inflammatory cytokine and catabolic gene expression were significantly higher, and anabolic gene expression was significantly lower in the MMT group than in the ACLT group. MMT treatment caused more severe structural damage to the cartilage and higher catabolic gene expression levels than the ACLT model at each time point. The MMT model may be highly beneficial in investigating posttraumatic OA (PTOA) development, especially PTOA from a meniscal injury. The MMT model replicated key features of human PTOA, including meniscal lesions, inflammatory responses, and the progression to osteoarthritic cartilage degeneration, thereby providing an exciting new avenue for translating promising treatments to clinical practice.
Collapse
Affiliation(s)
- Kai Huang
- Department of Orthopedic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Hai-Li Cai
- Department of Ultrasound, The 903rd Hospital of PLA, Hangzhou, China
| | - Peng-Li Zhang
- Department of Orthopedic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Li-Dong Wu
- Department of Orthopedic Surgery, The Second Hospital of Medical College, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Weber MC, Fischer L, Damerau A, Ponomarev I, Pfeiffenberger M, Gaber T, Götschel S, Lang J, Röblitz S, Buttgereit F, Ehrig R, Lang A. Macroscale mesenchymal condensation to study cytokine-driven cellular and matrix-related changes during cartilage degradation. Biofabrication 2020; 12:045016. [PMID: 32598334 DOI: 10.1088/1758-5090/aba08f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding the pathophysiological processes of cartilage degradation requires adequate model systems to develop therapeutic strategies towards osteoarthritis (OA). Although different in vitro or in vivo models have been described, further comprehensive approaches are needed to study specific disease aspects. This study aimed to combine in vitro and in silico modeling based on a tissue-engineering approach using mesenchymal condensation to mimic cytokine-induced cellular and matrix-related changes during cartilage degradation. Thus, scaffold-free cartilage-like constructs (SFCCs) were produced based on self-organization of mesenchymal stromal cells (mesenchymal condensation) and (i) characterized regarding their cellular and matrix composition or secondly (ii) treated with interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα) for 3 weeks to simulate OA-related matrix degradation. In addition, an existing mathematical model based on partial differential equations was optimized and transferred to the underlying settings to simulate the distribution of IL-1β, type II collagen degradation and cell number reduction. By combining in vitro and in silico methods, we aimed to develop a valid, efficient alternative approach to examine and predict disease progression and effects of new therapeutics.
Collapse
Affiliation(s)
- Marie-Christin Weber
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany. These authors contributed equally
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Masson AO, Krawetz RJ. Understanding cartilage protection in OA and injury: a spectrum of possibilities. BMC Musculoskelet Disord 2020; 21:432. [PMID: 32620156 PMCID: PMC7334861 DOI: 10.1186/s12891-020-03363-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent musculoskeletal disease resulting in progressive degeneration of the hyaline articular cartilage within synovial joints. Current repair treatments for OA often result in poor quality tissue that is functionally ineffective compared to the hyaline cartilage and demonstrates increased failure rates post-treatment. Complicating efforts to improve clinical outcomes, animal models used in pre-clinical research show significant heterogeneity in their regenerative and degenerative responses associated with their species, age, genetic/epigenetic traits, and context of cartilage injury or disease. These can lead to variable outcomes when testing and validating novel therapeutic approaches for OA. Furthermore, it remains unclear whether protection against OA among different model systems is driven by inhibition of cartilage degeneration, enhancement of cartilage regeneration, or any combination thereof. MAIN TEXT Understanding the mechanistic basis underlying this context-dependent duality is essential for the rational design of targeted cartilage repair and OA therapies. Here, we discuss some of the critical variables related to the cross-species paradigm of degenerative and regenerative abilities found in pre-clinical animal models, to highlight that a gradient of regenerative competence within cartilage may exist across species and even in the greater human population, and likely influences clinical outcomes. CONCLUSIONS A more complete understanding of the endogenous regenerative potential of cartilage in a species specific context may facilitate the development of effective therapeutic approaches for cartilage injury and/or OA.
Collapse
Affiliation(s)
- Anand O Masson
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Roman J Krawetz
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada. .,Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada. .,Department Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada. .,Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
11
|
To K, Romain K, Mak C, Kamaraj A, Henson F, Khan W. The Treatment of Cartilage Damage Using Human Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Systematic Review of in vivo Studies. Front Bioeng Biotechnol 2020; 8:580. [PMID: 32596228 PMCID: PMC7300288 DOI: 10.3389/fbioe.2020.00580] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Damage to joints through injury or disease can result in cartilage loss, which if left untreated can lead to inflammation and ultimately osteoarthritis. There is currently no cure for osteoarthritis and management focusses on symptom control. End-stage osteoarthritis can be debilitating and ultimately requires joint replacement in order to maintain function. Therefore, there is growing interest in innovative therapies for cartilage repair. In this systematic literature review, we sought to explore the in vivo evidence for the use of human Mesenchymal Stem Cell-derived Extracellular Vesicles (MSC-EVs) for treating cartilage damage. We conducted a systematic literature review in accordance with the PRISMA protocol on the evidence for the treatment of cartilage damage using human MSC-EVs. Studies examining in vivo models of cartilage damage were included. A risk of bias analysis of the studies was conducted using the SYRCLE tool. Ten case-control studies were identified in our review, including a total of 159 murine subjects. MSC-EVs were harvested from a variety of human tissues. Five studies induced osteoarthritis, including cartilage loss through surgical joint destabilization, two studies directly created osteochondral lesions and three studies used collagenase to cause cartilage loss. All studies in this review reported reduced cartilage loss following treatment with MSC-EVs, and without significant complications. We conclude that transplantation of MSC-derived EVs into damaged cartilage can effectively reduce cartilage loss in murine models of cartilage injury. Additional randomized studies in animal models that recapitulates human osteoarthritis will be necessary in order to establish findings that inform clinical safety in humans.
Collapse
Affiliation(s)
- Kendrick To
- Division of Trauma and Orthopaedics, Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Karl Romain
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christopher Mak
- Division of Trauma and Orthopaedics, Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Achi Kamaraj
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Frances Henson
- Division of Trauma and Orthopaedics, Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Wasim Khan
- Division of Trauma and Orthopaedics, Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Temp J, Labuz D, Negrete R, Sunkara V, Machelska H. Pain and knee damage in male and female mice in the medial meniscal transection-induced osteoarthritis. Osteoarthritis Cartilage 2020; 28:475-485. [PMID: 31830592 DOI: 10.1016/j.joca.2019.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/18/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate sex effects on pain-related behaviors in the medial meniscal transection (MMT) knee osteoarthritis (OA) model. METHODS Experiments were performed in male and female C57BL/6J mice (12/group/sex). MMT was induced by transection of the medial collateral ligament and the medial meniscus. Sham-operated and naïve mice served as controls. Mechanical and heat sensitivity in hind paws, hind limb use, and locomotor activity were measured for 3 months. Knee histology was performed on week 12. RESULTS In males, MMT triggered a bi-phasic mechanical hypersensitivity and decreased load on OA limb, with an acute post-operative (1-5 days) and chronic (3-12 weeks) OA phases separated by a remission in the intermediate phase (1-2 weeks). Females showed a less pronounced bi-phasic pattern, with a greater mechanical hypersensitivity, but not poorer limb use, than males in the intermediate phase (maximal difference: 1.1 g, 95% confidence intervals (CI) [0.7, 1.5]). There were no major sex differences in the chronic phase. MMT did not induce heat hypersensitivity or change in locomotor activity in the chronic phase in both sexes. MMT caused more severe cartilage damage in males than in females (maximal difference: 1.1 score points, 95% CI [1.9, 0.3]), and a comparable between sexes osteophyte formation. The knee damage did not correlate with pain. CONCLUSIONS MMT modelled human knee OA well, capturing cartilage destruction and osteophyte formation, mechanical pain, and poorer limb use in both sexes. Sex differences in pain were modality- and time-dependent, reflecting complex sex-related features of human OA.
Collapse
Affiliation(s)
- J Temp
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany.
| | - D Labuz
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany.
| | - R Negrete
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany.
| | - V Sunkara
- Department of Mathematics and Computer Science, Freie Universität Berlin, Germany; Computational Medicine, Zuse Institute Berlin, Germany.
| | - H Machelska
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany.
| |
Collapse
|