1
|
Köprü ÇZ, Baba B, Yonar D. Zerumbone Induces Apoptosis in Non-Small-Cell Lung Cancer via Biomolecular Alterations: A Microscopic and Spectroscopic Study. JOURNAL OF BIOPHOTONICS 2025; 18:e202400500. [PMID: 39807038 DOI: 10.1002/jbio.202400500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Zerumbone is a sesquiterpene phytochemical with cytotoxic activity against cancer. This study aimed to evaluate the effect of zerumbone on cell viability by WST-1 test, apoptosis by TUNEL, lipid peroxidation markers (malondialdehyde, MDA, and 4-hydroxynonenal, HNE) by using assay kits, and biomolecular changes by ATR-FTIR spectroscopy in A549 cells. After zerumbone (0-100 μM) incubation for 24, 48, and 72 h, the number of TUNEL-positive cells was found to be higher in zerumbone-treated cells than in controls, in consistent with cell morphology results. MDA levels increased significantly, although HNE levels increased non-significantly in zerumbone-treated cells. Spectral analyses revealed that the zerumbone-treated groups had higher levels of total saturated and unsaturated lipids as well as comparatively shorter-chain lipids. On the contrary, reduced RNA/DNA ratio, total nucleic acid, and protein content were found in zerumbone-treated groups. Consequently, zerumbone-induced apoptosis was accompanied by increased aldehyde products during lipid peroxidation as well as biomolecular alterations.
Collapse
Affiliation(s)
- Çağla Zübeyde Köprü
- Faculty of Medicine, Department of Histology and Embryology, Yuksek Ihtisas University, Ankara, Türkiye
| | - Burcu Baba
- Faculty of Medicine, Department of Medical Biochemistry, Yuksek Ihtisas University, Ankara, Türkiye
| | - Dilek Yonar
- Faculty of Medicine, Department of Biophysics, Yuksek Ihtisas University, Ankara, Türkiye
| |
Collapse
|
2
|
Xu H, Brown JL, Bhaskaran S, Van Remmen H. Reactive oxygen species in the pathogenesis of sarcopenia. Free Radic Biol Med 2025; 227:446-458. [PMID: 39613046 PMCID: PMC11816180 DOI: 10.1016/j.freeradbiomed.2024.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
One of the most critical factors impacting healthspan in the elderly is the loss of muscle mass and function, clinically referred to as sarcopenia. Muscle atrophy and weakness lead to loss of mobility, increased risk of injury, metabolic changes and loss of independence. Thus, defining the underlying mechanisms of sarcopenia is imperative to enable the development of effective interventions to preserve muscle function and quality in the elderly and improve healthspan. Over the past few decades, understanding the roles of mitochondrial dysfunction and oxidative stress has been a major focus of studies seeking to reveal critical molecular pathways impacted during aging. In this review, we will highlight how oxidative stress might contribute to sarcopenia by discussing the impact of oxidative stress on the loss of innervation and alteration in the neuromuscular junction (NMJ), on muscle mitochondrial function and atrophy pathways, and finally on muscle contractile function.
Collapse
Affiliation(s)
- Hongyang Xu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States
| | - Jacob L Brown
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States; Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, United States
| | - Shylesh Bhaskaran
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States; Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, United States.
| |
Collapse
|
3
|
Brown JL, Xu H, Duggan E, Rosenfeld CS, Remmen HV. Pharmacological reduction of lipid hydroperoxides as a potential modulator of sarcopenia. J Physiol 2025; 603:837-854. [PMID: 39777675 PMCID: PMC12042244 DOI: 10.1113/jp287090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
We previously reported that elevated expression of phospholipid hydroperoxide glutathione peroxidase 4, an enzyme that regulates membrane lipid hydroperoxides, can mitigate sarcopenia in mice. However, it is still unknown whether a pharmacological intervention designed to modulate lipid hydroperoxides might be an effective strategy to reduce sarcopenia in aged mice. Here we asked whether a newly developed compound, CMD-35647 (CMD), can reduce muscle atrophy induced by sciatic nerve transection. We treated mice daily with vehicle or CMD (15 mg/kg, i.p. injection) starting 1 day prior to denervation. CMD treatment reduced hydroperoxide generation and blunted muscle atrophy by over 17% in denervated muscle. To test whether CMD can reduce ageing-induced muscle atrophy and weakness, we treated mice with either vehicle or CMD (15 mg/kg, i.p. injection) 3 days per week for 8 months, starting at 18 months of age until 26 months of age. We measured muscle mass, functional status of neuromuscular junctions, muscle contractile function and mitochondrial function in control and CMD-treated 26-month-old female mice. Treatment with CMD conferred protection against muscle atrophy in both tibialis anterior and extensor digitorum longus that was associated with maintenance of fibre size of MHC 2b and 2x fibres. Mitochondrial respiration was also protected in CMD-treated mice. We also found that muscle force generation was protected with CMD treatment despite denervation in ∼25% of the muscle fibres. Overall, this study shows that pharmacological interventions designed to reduce lipid hydroperoxides might be effective for preventing sarcopenia. KEY POINTS: Sarcopenia in aged mice is associated with muscle loss, contractile dysfunction, denervation, and reduced mitochondrial respiration. CMD-35647 is a pharmocological compound that can neutralize lipid hydroperoxides. 8 month treatment of CMD-35647 mitigated muscle atrophy in tibialis anterior and extensor digitorum longus. 8 month treatment of CMD-35647 improved muscle function in aged mice independent of the neuromuscular junction. Aged mice treated with CMD-35647 had greater respiration in red gastrocnemius muscle when compared to vehicle treated mice.
Collapse
Affiliation(s)
- Jacob L. Brown
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
- Oklahoma City VA Medical Center, Oklahoma City, OK 73104, United States
| | - Hongyang Xu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
| | - Elizabeth Duggan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
- Oklahoma City VA Medical Center, Oklahoma City, OK 73104, United States
| | | | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
- Oklahoma City VA Medical Center, Oklahoma City, OK 73104, United States
| |
Collapse
|
4
|
Amiresmaili S, Rajizadeh MA, Jafari E, Bejeshk MA, Salimi F, Moslemizadeh A, Najafipour H. Myrtenol ameliorates inflammatory, oxidative, apoptotic, and hyperplasic effects of urethane-induced atypical adenomatous hyperplasia in the rat lung. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1785-1797. [PMID: 39177787 DOI: 10.1007/s00210-024-03375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Lung atypical adenomatous hyperplasia (AAH) is a forerunner of pulmonary adenocarcinoma. The drugs being utilized in the remediation of this type of hyperplasia have some adverse impacts. The present research focused on the potential anti-hyperplasia effect of myrtenol, an herbal terpenoid, on urethane-induced lung AAH in rats. Rats were injected with urethane (1.5 g/kg) thrice at 48 h intervals, and 20 weeks later, the animals were treated with 50 mg/kg myrtenol intraperitoneally once a day for 1 week. The ELISA method was used to measure inflammatory cytokines and oxidative parameters in the lung tissue and bronchoalveolar lavage fluid (BALF). The expression of NFκB and apoptotic/antiapoptotic factors (P53/Bcl-2) was evaluated by western blot and immunohistochemistry, respectively. H&E staining was performed for histopathological investigation. Histopathology confirmed the anti-hyperplasia effect of myrtenol, which was evidenced by the reduction of bronchoalveolar wall thickness and inflammation score. It also decreased hyperplasia progression by reducing Bcl-2, IL-10, p53, and Ki67. Compared with the urethane group, myrtenol normalized the activity of the oxidative stress markers malondialdehyde (MDA), total antioxidant capacity (TAC), glutathione peroxidase (GPX), and superoxide dismutase (SOD). Moreover, it showed an anti-inflammatory effect by decreasing lung and BALF IL-1β levels and NFκB expression. Myrtenol may have a promising effect on lung cancer treatment by counteracting lung hyperplasia via modulation of inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Department of Pathology, Pathology and Stem Cell Research Center, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Department of Physiology, Bam University of Medical Sciences, Bam, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Fouzieh Salimi
- Department of Clinical Biochemistry, Medical Faculty, and Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Amirhossein Moslemizadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Najafipour
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Liu Y, Wang C, Li M, Zhu Y, Liu K, Liu Y, Luo M, Zhang C. Natural ingredients in the regulation of abnormal lipid peroxidation: a potential therapy for pulmonary diseases. Front Pharmacol 2024; 15:1507194. [PMID: 39759448 PMCID: PMC11695318 DOI: 10.3389/fphar.2024.1507194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Pulmonary diseases are a major category of diseases that pose a threat to human health. The most common drugs currently used to treat lung diseases are still chemical drugs, but this may lead to drug resistance and damage to healthy organs in the body. Therefore, developing new drugs is an urgent task. Lipid peroxidation is caused by the disruption of redox homeostasis, accumulation of reactive oxygen species (ROS), depletion of glutathione (GSH), and inactivation of glutathione peroxidase 4 (GPX4). Lipid peroxidation is closely related to the occurrence and progression of respiratory diseases, including acute lung injury, asthma, pulmonary fibrosis, pulmonary hypertension, chronic obstructive pulmonary disease, and lung cancer. Natural ingredients have high safety, high availability, and low cost, and can regulate lipid peroxidation through multiple pathways and targets, making them valuable new drugs. This article aims to summarize the pharmacology and mechanism of natural ingredients targeting lipid peroxidation in the treatment of lung diseases. The reviewed data indicate that natural ingredients are a promising anti-lipid peroxidation drug, mainly alleviating lipid peroxidation through the cystine/glutamate antiporter (System Xc -)/GSH/GPX4 axis, Nrf2 pathway, and ROS pathway. In the future, it will still be necessary to further study the mechanisms of natural products in treating pulmonary diseases through lipid peroxidation and conduct multi-center, large-sample clinical trials to promote the development of new drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Rojas-Solé C, Pinilla-González V, Lillo-Moya J, González-Fernández T, Saso L, Rodrigo R. Integrated approach to reducing polypharmacy in older people: exploring the role of oxidative stress and antioxidant potential therapy. Redox Rep 2024; 29:2289740. [PMID: 38108325 PMCID: PMC10732214 DOI: 10.1080/13510002.2023.2289740] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Increased life expectancy, attributed to improved access to healthcare and drug development, has led to an increase in multimorbidity, a key contributor to polypharmacy. Polypharmacy is characterised by its association with a variety of adverse events in the older persons. The mechanisms involved in the development of age-related chronic diseases are largely unknown; however, altered redox homeostasis due to ageing is one of the main theories. In this context, the present review explores the development and interaction between different age-related diseases, mainly linked by oxidative stress. In addition, drug interactions in the treatment of various diseases are described, emphasising that the holistic management of older people and their pathologies should prevail over the individual treatment of each condition.
Collapse
Affiliation(s)
- Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Víctor Pinilla-González
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - José Lillo-Moya
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Tommy González-Fernández
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, Rome, Italy
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
7
|
Sun D, Lu J, Zhao W, Chen X, Xiao C, Hua F, Hydbring P, Gabazza EC, Tartarone A, Zhao X, Yang W. Construction and validation of a prognostic model based on oxidative stress-related genes in non-small cell lung cancer (NSCLC): predicting patient outcomes and therapy responses. Transl Lung Cancer Res 2024; 13:3152-3174. [PMID: 39669999 PMCID: PMC11632443 DOI: 10.21037/tlcr-24-888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024]
Abstract
Background Non-small cell lung cancer (NSCLC) is a significant health concern. The prognostic value of oxidative stress (OS)-related genes in NSCLC remains unclear. The study aimed to explore the prognostic significance of OS-genes in NSCLC using extensive datasets from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Methods The research used the expression data and clinical information of NSCLC patients to develop a risk-score model. A total of 74 OS-related differentially expressed genes (DEGs) were identified by comparing NSCLC and control samples. Univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analyses were employed to identify the prognostic biomarkers. A risk-score model was constructed and validated with receiver operating characteristic (ROC) curves in TCGA and GSE72094 datasets. The model's accuracy was further verified by univariate and multivariate Cox regression. Results The identified biomarkers, including lactate dehydrogenase A (LDHA), protein tyrosine phosphatase receptor type N (PTPRN), and transient receptor potential cation channel subfamily A (TRPA1) demonstrated prognostic significance in NSCLC. The risk-score model showed good predictive accuracy, with 1-year area under the curves (AUC) of 0.661, 3-year AUC of 0.648, and 5-year AUC of 0.634 in the TCGA dataset, and 1-year AUC of 0.643, 3-year AUC of 0.648, and 5-year AUC of 0.662 in the GSE72094 dataset. A nomogram integrating risk score and tumor node metastasis (TNM) stage was developed. The signature effectively distinguished between patient responses to immunotherapy. High-risk groups were characterized by an immunosuppressive microenvironment and an increased tumor mutational burden (TMB), marked by a higher incidence of mutations in genes such as TP53, DCP1B, ELN, and MAGI2. Organoid drug sensitivity testing revealed that NSCLC patients with a low-risk score responded better to chemotherapy. Conclusions This study successfully developed a robust model for predicting patient prognosis in NSCLC, highlighting the critical prognostic value of OS-genes. These findings hold significant potential to refine treatment strategies, and enhance survival outcomes for NSCLC patients. By enabling a personalized therapeutic approach tailored to individual risk scores, this model may facilitate more precise decisions concerning immunotherapy and chemotherapy, thereby optimizing patient management and treatment efficacy.
Collapse
Affiliation(s)
- Dongfeng Sun
- Department of Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Shandong Academy of Medical Science, Jinan, China
| | - Jie Lu
- Department of Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Shandong Academy of Medical Science, Jinan, China
| | - Wenhua Zhao
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Xiaozheng Chen
- Department of Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Shandong Academy of Medical Science, Jinan, China
| | - Changyan Xiao
- Department of Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Shandong Academy of Medical Science, Jinan, China
| | - Feng Hua
- Department of Thoracic Surgery, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, China
| | - Per Hydbring
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Esteban C. Gabazza
- Department of Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Alfredo Tartarone
- Division of Medical Oncology, Department of Onco-Hematology, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture (PZ), Italy
| | - Xiaoming Zhao
- Department of Thoracic Surgery, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, China
| | - Wenfeng Yang
- Department of Thoracic Surgery, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, China
| |
Collapse
|
8
|
Zheng PP, Zhang LW, Sheng D, Wang MZ, Li R, Zhao WL, Liu R, Xiu X, Zhao YS, Min X, Wang ZK, Liu ZC. Impact of Vitamin E Supplementation on High-Density Lipoprotein in Patients With Haptoglobin Genotype-Stratified Diabetes: A Systematic Review of Randomized Controlled Trials. J Diabetes Res 2024; 2024:6645595. [PMID: 39474248 PMCID: PMC11519069 DOI: 10.1155/2024/6645595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 05/14/2024] [Accepted: 09/05/2024] [Indexed: 11/15/2024] Open
Abstract
Background: Vitamin E, an essential micronutrient with antioxidant potential, can dramatically reduce the cardiovascular risk in individuals with haptoglobin (Hp) 2-2 genotype diabetes; however, the underlying mechanism remains unclear. Objective: The objective of this study is to evaluate the effect of vitamin E supplementation on high-density lipoprotein (HDL) levels and function in individuals with diabetes stratified by Hp genotype. Methods: All relevant studies published up to May 2023 were systematically reviewed using PubMed, Cochrane Library, Web of Science, Chinese Wanfang, China Science and Technology Journal, and Chinese National Knowledge Infrastructure databases. Randomized controlled trials that evaluated the effects of vitamin E supplementation on HDL levels were included. The outcomes assessed were changes in HDL concentrations, cholesterol efflux, and HDL-associated lipid peroxides. Results: In total, 163 publications were selected. Based on inclusion and exclusion selection and quality assessment, five studies with 463 participants were included. Vitamin E supplementation did not exert any effect on HDL levels in individuals with diabetes with any Hp genotype. Three of the five studies revealed that vitamin E improved cholesterol efflux and HDL lipid peroxides in individuals with Hp2-2 diabetes but did not positively impact HDL function in Hp1 carriers. Conclusions: Although vitamin E supplementation did not significantly impact HDL levels in individuals with diabetes of any Hp genotype, it may improve HDL function in individuals with Hp2-2 diabetes. These findings indicate a pharmacogenetic interaction between vitamin E and the Hp genotype on HDL function. Moreover, vitamin E supplementation may be an effective strategy for specific individuals with diabetes.
Collapse
Affiliation(s)
- Pan-pan Zheng
- Hebei Key Laboratory of Basic Medicine for Diabetes, The Second Hospital of Shijiazhuang 050000, Shijiazhuang, Hebei, China
| | - Li-wen Zhang
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University 050017, Shijiazhuang, Hebei, China
| | - Dan Sheng
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University 730030, Lanzhou, Gansu, China
| | - Min-zhen Wang
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University 730030, Lanzhou, Gansu, China
| | - Rong Li
- Hebei Key Laboratory of Basic Medicine for Diabetes, The Second Hospital of Shijiazhuang 050000, Shijiazhuang, Hebei, China
| | - Wei-li Zhao
- Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Second Hospital of Shijiazhuang 050000, Shijiazhuang, Hebei, China
| | - Rongmei Liu
- Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Second Hospital of Shijiazhuang 050000, Shijiazhuang, Hebei, China
| | - Xian Xiu
- Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Second Hospital of Shijiazhuang 050000, Shijiazhuang, Hebei, China
| | - Yu-sha Zhao
- Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Second Hospital of Shijiazhuang 050000, Shijiazhuang, Hebei, China
| | - Xi Min
- Department of Clinical Laboratories, Gaoxin District Changjiang Community Health Center 050000, Shijiazhuang, Hebei, China
| | - Zhi-kai Wang
- School of Clinical Medicine, Hebei Medical University 050017, Shijiazhuang, Hebei, China
| | - Zan-chao Liu
- Hebei Key Laboratory of Basic Medicine for Diabetes, The Second Hospital of Shijiazhuang 050000, Shijiazhuang, Hebei, China
| |
Collapse
|
9
|
Ahn HS, Lee SY, Kang MJ, Hong SB, Song JW, Do KH, Yeom J, Yu J, Oh Y, Hong JY, Chung EH, Kim K, Hong SJ. Polyhexamethylene guanidine aerosol causes irreversible changes in blood proteins that associated with the severity of lung injury. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135359. [PMID: 39126856 DOI: 10.1016/j.jhazmat.2024.135359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Polyhexamethylene guanidine (PHMG) is a positively charged polymer used as a disinfectant that kills microbes but can cause pulmonary fibrosis if inhaled. After the long-term risks were confirmed in South Korea, it became crucial to measure toxicity through diverse surrogate biomarkers, not only proteins, especially after these hazardous chemicals had cleared from the body. These biomarkers, identified by their biological functions rather than simple numerical calculations, effectively explained the imbalance of pulmonary surfactant caused by fibrosis from PHMG exposure. These long-term studies on children exposed to PHMG has shown that blood protein indicators, primarily related to apolipoproteins and extracellular matrix, can distinguish the degree of exposure to humidifier disinfectants (HDs). We defined the extreme gradient boosting models and computed reflection scores based on just ten selected proteins, which were also verified in adult women exposed to HD. The reflection scores successfully discriminated between the HD-exposed and unexposed groups in both children and adult females (AUROC: 0.957 and 0.974, respectively) and had a strong negative correlation with lung function indicators. Even after an average of more than 10 years, blood is still considered a meaningful specimen for assessing the impact of environmental exposure to toxic substances, with proteins providing in identifying the pathological severity of such conditions.
Collapse
Affiliation(s)
- Hee-Sung Ahn
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Seoul, South Korea.
| | - So-Yeon Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Mi-Jin Kang
- Humidifier Disinfectant Health Center, Asan Medical Center, Seoul, South Korea.
| | - Sang Bum Hong
- Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| | - Jin Woo Song
- Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Kyung Hyun Do
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| | - Jeounghun Yeom
- Prometabio Research Institute, prometabio co., ltd., Gyeonggi-do, South Korea.
| | - Jiyoung Yu
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Seoul, South Korea.
| | - Yumi Oh
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| | - Jeong Yeon Hong
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| | - Eun Hee Chung
- Department of Pediatrics, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea.
| | - Kyunggon Kim
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Seoul, South Korea; Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
10
|
Sonkar AB, Verma A, Yadav S, Kumar R, Singh J, Keshari AK, Rani S, Kumar A, Kumar D, Shrivastava NK, Rastogi S, Alamoudi MK, Ansari MN, Saeedan AS, Kaithwas G, Saha S. Antiproliferative effect of indeno[1,2-d]thiazolo[3,2-a]pyrimidine analogues on IL-6 mediated STAT3 and role of the apoptotic pathway in albino Wistar rats of ethyl carbamate-induced lung carcinoma: In-silico, In-vitro, and In-vivo study. Cancer Cell Int 2024; 24:219. [PMID: 38926695 PMCID: PMC11201866 DOI: 10.1186/s12935-024-03390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Lung cancer (LC) ranks second most prevalent cancer in females after breast cancer and second in males after prostate cancer. Based on the GLOBOCAN 2020 report, India represented 5.9% of LC cases and 8.1% of deaths caused by the disease. Several clinical studies have shown that LC occurs because of biological and morphological abnormalities and the involvement of altered level of antioxidants, cytokines, and apoptotic markers. In the present study, we explored the antiproliferative activity of indeno[1,2-d]thiazolo[3,2-a]pyrimidine analogues against LC using in-vitro, in-silico, and in-vivo models. In-vitro screening against A549 cells revealed compounds 9B (8-methoxy-5-(3,4,5-trimethoxyphenyl)-5,6-dihydroindeno[1,2-d]thiazolo[3,2-a]pyrimidine) and 12B (5-(4-chlorophenyl)-5,6-dihydroindeno[1,2-d]thiazolo[3,2-a]pyrimidine) as potential pyrimidine analogues against LC. Compounds 9B and 12B were docked with different molecular targets IL-6, Cyt-C, Caspase9, and Caspase3 using AutoDock Vina 4.1 to evaluate the binding affinity. Subsequently, in-vivo studies were conducted in albino Wistar rats through ethyl-carbamate (EC)- induced LC. 9B and 12B imparted significant effects on physiological (weight variation), and biochemical (anti-oxidant [TBAR's, SOD, ProC, and GSH), lipid (TC, TG, LDL, VLDL, and HDL)], and cytokine (IL-2, IL-6, IL-10, and IL-1β) markers in EC-induced LC in albino Wistar rats. Morphological examination (SEM and H&E) and western blotting (IL-6, STAT3, Cyt-C, BAX, Bcl-2, Caspase3, and caspase9) showed that compounds 9B and 12B had antiproliferative effects. Accordingly, from the in-vitro, in-silico, and in-vivo experimental findings, we concluded that 9B and 12B have significant antiproliferative potential and are potential candidates for further evaluation to meet the requirements of investigation of new drug application.
Collapse
Affiliation(s)
- Archana Bharti Sonkar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Abhishek Verma
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Sneha Yadav
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Rohit Kumar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Jyoti Singh
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Amit K Keshari
- Amity Institute of Pharmacy, Amity University, Lucknow campus, Lucknow, Uttar Pradesh, 226028, India
| | - Soniya Rani
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Anurag Kumar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Dharmendra Kumar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Neeraj Kumar Shrivastava
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Shubham Rastogi
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Mariam K Alamoudi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India.
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| |
Collapse
|
11
|
Katic L, Choi J, Diaz Saravia S, Silverman A, Nagourney A, Torelli V, Gupta S, Glavan M, Gulati A, Khurana S, Tsyvkin E. The Interplay Between Cardiovascular Disease and Lung Cancer. Cureus 2024; 16:e62953. [PMID: 39044884 PMCID: PMC11265258 DOI: 10.7759/cureus.62953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2024] [Indexed: 07/25/2024] Open
Abstract
Cardiovascular disease (CVD) and lung cancer are among the leading causes of mortality worldwide, with a significant interplay that complicates patient management and treatment outcomes. This review explores the complex relationship between various forms of CVD - such as coronary artery disease, heart failure (HF), arrhythmias, and valvular heart disease - and lung cancer. Shared risk factors, including smoking, aging, and chronic inflammation, contribute to the co-occurrence of these conditions. Additionally, treatments for lung cancer, particularly chemotherapy and radiation therapy, can exacerbate CVD, necessitating a multidisciplinary approach to patient care. We delve into specific CVD-related impacts on lung cancer prognosis and vice versa, examining mechanisms, clinical outcomes, and management strategies. Our findings highlight the need for integrated care involving oncologists, cardiologists, and other healthcare providers to optimize treatment plans and improve patient outcomes. Emphasizing comprehensive cardiovascular risk management in lung cancer patients, we advocate for further research to deepen our understanding and develop novel therapeutic approaches, ultimately enhancing the quality of life and survival rates in patients suffering from both CVD and lung cancer.
Collapse
Affiliation(s)
- Luka Katic
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - James Choi
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sara Diaz Saravia
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | | | - Vincent Torelli
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Soumya Gupta
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Amit Gulati
- Cardiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sakshi Khurana
- Radiology, New York Presbyterian-Columbia University Irving Medical Center, New York, USA
| | - Elina Tsyvkin
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
12
|
Moerland JA, Liby KT. The Triterpenoid CDDO-Methyl Ester Reduces Tumor Burden, Reprograms the Immune Microenvironment, and Protects from Chemotherapy-Induced Toxicity in a Preclinical Mouse Model of Established Lung Cancer. Antioxidants (Basel) 2024; 13:621. [PMID: 38929060 PMCID: PMC11201246 DOI: 10.3390/antiox13060621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
NRF2 activation protects epithelial cells from malignancy, but cancer cells can upregulate the pathway to promote survival. NRF2 activators including CDDO-Methyl ester (CDDO-Me) inhibit cancer in preclinical models, suggesting NRF2 activation in other cell types may promote anti-tumor activity. However, the immunomodulatory effects of NRF2 activation remain poorly understood in the context of cancer. To test CDDO-Me in a murine model of established lung cancer, tumor-bearing wildtype (WT) and Nrf2 knockout (KO) mice were treated with 50-100 mg CDDO-Me/kg diet, alone or combined with carboplatin/paclitaxel (C/P) for 8-12 weeks. CDDO-Me decreased tumor burden in an Nrf2-dependent manner. The combination of CDDO-Me plus C/P was significantly (p < 0.05) more effective than either drug alone, reducing tumor burden by 84% in WT mice. CDDO-Me reduced the histopathological grade of WT tumors, with a significantly (p < 0.05) higher proportion of low-grade tumors and a lower proportion of high-grade tumors. These changes were augmented by combination with C/P. CDDO-Me also protected WT mice from C/P-induced toxicity and improved macrophage and T cell phenotypes in WT mice, reducing the expression of CD206 and PD-L1 on macrophages, decreasing immunosuppressive FoxP3+ CD4+ T cells, and increasing activation of CD8+ T cells in a Nrf2-dependent manner.
Collapse
Affiliation(s)
- Jessica A. Moerland
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI 48824, USA;
| | - Karen T. Liby
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, 980 W. Walnut Street, Indianapolis, IN 46202, USA
| |
Collapse
|
13
|
Godzien J, Lopez-Lopez A, Sieminska J, Jablonowski K, Pietrowska K, Kisluk J, Mojsak M, Dzieciol-Anikiej Z, Barbas C, Reszec J, Kozlowski M, Moniuszko M, Kretowski A, Niklinski J, Ciborowski M. Exploration of oxidized phosphocholine profile in non-small-cell lung cancer. Front Mol Biosci 2024; 10:1279645. [PMID: 38288337 PMCID: PMC10824250 DOI: 10.3389/fmolb.2023.1279645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024] Open
Abstract
Introduction: Lung cancer is one of the most frequently studied types of cancer and represents the most common and lethal neoplasm. Our previous research on non-small cell lung cancer (NSCLC) has revealed deep lipid profile reprogramming and redox status disruption in cancer patients. Lung cell membranes are rich in phospholipids that are susceptible to oxidation, leading to the formation of bioactive oxidized phosphatidylcholines (oxPCs). Persistent and elevated levels of oxPCs have been shown to induce chronic inflammation, leading to detrimental effects. However, recent reports suggest that certain oxPCs possess anti-inflammatory, pro-survival, and endothelial barrier-protective properties. Thus, we aimed to measure the levels of oxPCs in NSCLC patients and investigate their potential role in lung cancer. Methods: To explore the oxPCs profiles in lung cancer, we performed in-depth, multi-level metabolomic analyses of nearly 350 plasma and lung tissue samples from 200 patients with NSCLC, including adenocarcinoma (ADC) and squamous cell carcinoma (SCC), the two most prevalent NSCLC subtypes and COPD patients as a control group. First, we performed oxPC profiling of plasma samples. Second, we analyzed tumor and non-cancerous lung tissues collected during the surgical removal of NSCLC tumors. Because of tumor tissue heterogeneity, subsequent analyses covered the surrounding healthy tissue and peripheral and central tumors. To assess whether the observed phenotypic changes in the patients were associated with measured oxPC levels, metabolomics data were augmented with data from medical records. Results: We observed a predominance of long-chain oxPCs in plasma samples and of short-chain oxPCs in tissue samples from patients with NSCLC. The highest concentration of oxPCs was observed in the central tumor region. ADC patients showed higher levels of oxPCs compared to the control group, than patients with SCC. Conclusion: The detrimental effects associated with the accumulation of short-chain oxPCs suggest that these molecules may have greater therapeutic utility than diagnostic value, especially given that elevated oxPC levels are a hallmark of multiple types of cancer.
Collapse
Affiliation(s)
- Joanna Godzien
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Angeles Lopez-Lopez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Julia Sieminska
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Kacper Jablonowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Karolina Pietrowska
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Kisluk
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Malgorzata Mojsak
- Independent Laboratory of Molecular Imaging, Medical University of Bialystok, Bialystok, Poland
| | | | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Joanna Reszec
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Miroslaw Kozlowski
- Department of Thoracic Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
14
|
Jiang Y, Chen R, Xu S, Ding Y, Zhang M, Bao M, He B, Li S. Endocrine and metabolic factors and the risk of idiopathic pulmonary fibrosis: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 14:1321576. [PMID: 38260151 PMCID: PMC10801027 DOI: 10.3389/fendo.2023.1321576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Background Previous observational studies have investigated the association between endocrine and metabolic factors and idiopathic pulmonary fibrosis (IPF), yet have produced inconsistent results. Therefore, it is imperative to employ the Mendelian randomization (MR) analysis method to conduct a more comprehensive investigation into the impact of endocrine and metabolic factors on IPF. Methods The instrumental variables (IVs) for 53 endocrine and metabolic factors were sourced from publicly accessible genome-wide association study (GWAS) databases, with GWAS summary statistics pertaining to IPF employed as the dependent variables. Causal inference analysis encompassed the utilization of three methods: inverse-variance weighted (IVW), weighted median (WM), and MR-Egger. Sensitivity analysis incorporated the implementation of MR-PRESSO and leave-one-out techniques to identify potential pleiotropy and outliers. The presence of horizontal pleiotropy and heterogeneity was evaluated through the MR-Egger intercept and Cochran's Q statistic, respectively. Results The IVW method results reveal correlations between 11 traits and IPF. After correcting for multiple comparisons, seven traits remain statistically significant. These factors include: "Weight" (OR= 1.44; 95% CI: 1.16, 1.78; P=8.71×10-4), "Body mass index (BMI)" (OR= 1.35; 95% CI: 1.13, 1.62; P=1×10-3), "Whole body fat mass" (OR= 1.40; 95% CI: 1.14, 1.74; P=1.72×10-3), "Waist circumference (WC)" (OR= 1.54; 95% CI: 1.16, 2.05; P=3.08×10-3), "Trunk fat mass (TFM)" (OR=1.35; 95% CI: 1.10,1.65; P=3.45×10-3), "Body fat percentage (BFP)" (OR= 1.55; 95% CI: 1.15,2.08; P=3.86×10-3), "Apoliprotein B (ApoB)" (OR= 0.78; 95% CI: 0.65,0.93; P=5.47×10-3). Additionally, the sensitivity analysis results confirmed the reliability of the MR results. Conclusion The present study identified causal relationships between seven traits and IPF. Specifically, ApoB exhibited a negative impact on IPF, while the remaining six factors demonstrated a positive impact. These findings offer novel insights into the underlying etiopathological mechanisms associated with IPF.
Collapse
Affiliation(s)
- Yan Jiang
- School of Basic Medicine, Changsha Medical University, Changsha, China
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Rumeng Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Shuling Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yining Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Mengling Zhang
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Meihua Bao
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Binsheng He
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
15
|
Wu A, Zhao Y, Yu R, Zhou J, Tuo Y. Untargeted metabolomics analysis reveals the metabolic disturbances and exacerbation of oxidative stress in recurrent spontaneous abortion. PLoS One 2023; 18:e0296122. [PMID: 38127925 PMCID: PMC10735046 DOI: 10.1371/journal.pone.0296122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Recurrent spontaneous abortion (RSA) is characterized by the occurrence of two or more consecutive spontaneous abortions, with a rising prevalence among pregnant women and significant implications for their physical and mental well-being. The multifaceted etiology of RSA has posed challenges in unraveling the molecular mechanisms underlying that underlie its pathogenesis. Oxidative stress and immune response have been identified as pivotal factors in the development of its condition. METHODS Eleven serum samples from healthy pregnant women and 17 from RSA were subjected to liquid chromatography/mass spectrometry (LC-MS) analysis. Multivariate statistical analysis was employed to excavate system-level characterization of the serum metabolome. The measurement of seven oxidative stress products, namely superoxide dismutase (SOD), catalase (CAT), malonaldehyde (MDA), glutathione (GPx), glutathione peroxidase (GSH), oxidized glutathione (GSSG), heme oxygenase (HO-1), was carried out using ELISA. RESULTS Through the monitoring of metabolic and lipid alternations during RSA events, we have identified 816 biomarkers that were implicated in various metabolic pathways, including glutathione metabolism, phosphonate and phosphinate metabolism, nucleotide metabolism, sphingolipid metabolism, lysine degradation and purine metabolism, etc. These pathways have been found to be closely associated with the progression of the disease. Our finding indicated that the levels of MDA and HO-1 were elevated in the RSA group compared to the control group, whereas SOD, CAT and GPx exhibited a contrary pattern. However, no slight difference was observed in GSH and GSSG levels between the RSA group and the control group. CONCLUSION The manifestation of RSA elicited discernible temporal alternations in the serum metabolome and biochemical markers linked to the metabolic pathways of oxidative stress and immune response. Our investigation furnished a more comprehensive analytical framework encompassing metabolites and enzymes associated with oxidative stress. This inquiry furnished a more nuanced comprehension of the pathogenesis of RSA and established the ground work for prognostication and prophylaxis.
Collapse
Affiliation(s)
- AiNing Wu
- Obstetrics and Gynecology, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - YanHui Zhao
- Obstetrics department, Chifeng Municipal Hospital, Chifeng, China
| | - RongXin Yu
- Obstetrics and Gynecology, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - JianXing Zhou
- Department of Reproductive Medicine Centre, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Ya Tuo
- Department of Reproductive Medicine Centre, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| |
Collapse
|
16
|
Peter RM, Chou PJ, Shannar A, Patel K, Pan Y, Dave PD, Xu J, Sarwar MS, Kong ANT. An Update on Potential Molecular Biomarkers of Dietary Phytochemicals Targeting Lung Cancer Interception and Prevention. Pharm Res 2023; 40:2699-2714. [PMID: 37726406 DOI: 10.1007/s11095-023-03595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023]
Abstract
Since ancient times, dietary phytochemicals are known for their medicinal properties. They are broadly classified into polyphenols, terpenoids, alkaloids, phytosterols, and organosulfur compounds. Currently, there is considerable interest in their potential health effects against various diseases, including lung cancer. Lung cancer is the leading cause of cancer deaths with an average of five-year survival rate of lung cancer patients limited to just 14%. Identifying potential early molecular biomarkers of pre-malignant lung cancer cells may provide a strong basis to develop early cancer detection and interception methods. In this review, we will discuss molecular changes, including genetic alterations, inflammation, signal transduction pathways, redox imbalance, epigenetic and proteomic signatures associated with initiation and progression of lung carcinoma. We will also highlight molecular targets of phytochemicals during lung cancer development. These targets mainly consist of cellular signaling pathways, epigenetic regulators and metabolic reprogramming. With growing interest in natural products research, translation of these compounds into new cancer prevention approaches to medical care will be urgently needed. In this context, we will also discuss the overall pharmacokinetic challenges of phytochemicals in translating to humans. Lastly, we will discuss clinical trials of phytochemicals in lung cancer patients.
Collapse
Affiliation(s)
- Rebecca Mary Peter
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Pochung Jordan Chou
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ahmad Shannar
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Komal Patel
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Yuxin Pan
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Parv Dushyant Dave
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jiawei Xu
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Md Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
17
|
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 2023; 97:2499-2574. [PMID: 37597078 PMCID: PMC10475008 DOI: 10.1007/s00204-023-03562-9] [Citation(s) in RCA: 631] [Impact Index Per Article: 315.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
A physiological level of oxygen/nitrogen free radicals and non-radical reactive species (collectively known as ROS/RNS) is termed oxidative eustress or "good stress" and is characterized by low to mild levels of oxidants involved in the regulation of various biochemical transformations such as carboxylation, hydroxylation, peroxidation, or modulation of signal transduction pathways such as Nuclear factor-κB (NF-κB), Mitogen-activated protein kinase (MAPK) cascade, phosphoinositide-3-kinase, nuclear factor erythroid 2-related factor 2 (Nrf2) and other processes. Increased levels of ROS/RNS, generated from both endogenous (mitochondria, NADPH oxidases) and/or exogenous sources (radiation, certain drugs, foods, cigarette smoking, pollution) result in a harmful condition termed oxidative stress ("bad stress"). Although it is widely accepted, that many chronic diseases are multifactorial in origin, they share oxidative stress as a common denominator. Here we review the importance of oxidative stress and the mechanisms through which oxidative stress contributes to the pathological states of an organism. Attention is focused on the chemistry of ROS and RNS (e.g. superoxide radical, hydrogen peroxide, hydroxyl radicals, peroxyl radicals, nitric oxide, peroxynitrite), and their role in oxidative damage of DNA, proteins, and membrane lipids. Quantitative and qualitative assessment of oxidative stress biomarkers is also discussed. Oxidative stress contributes to the pathology of cancer, cardiovascular diseases, diabetes, neurological disorders (Alzheimer's and Parkinson's diseases, Down syndrome), psychiatric diseases (depression, schizophrenia, bipolar disorder), renal disease, lung disease (chronic pulmonary obstruction, lung cancer), and aging. The concerted action of antioxidants to ameliorate the harmful effect of oxidative stress is achieved by antioxidant enzymes (Superoxide dismutases-SODs, catalase, glutathione peroxidase-GPx), and small molecular weight antioxidants (vitamins C and E, flavonoids, carotenoids, melatonin, ergothioneine, and others). Perhaps one of the most effective low molecular weight antioxidants is vitamin E, the first line of defense against the peroxidation of lipids. A promising approach appears to be the use of certain antioxidants (e.g. flavonoids), showing weak prooxidant properties that may boost cellular antioxidant systems and thus act as preventive anticancer agents. Redox metal-based enzyme mimetic compounds as potential pharmaceutical interventions and sirtuins as promising therapeutic targets for age-related diseases and anti-aging strategies are discussed.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Renata Raptova
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia.
| |
Collapse
|
18
|
Zvintzou E, Xepapadaki E, Skroubis G, Mparnia V, Giannatou K, Benabdellah K, Kypreos KE. High-Density Lipoprotein in Metabolic Disorders and Beyond: An Exciting New World Full of Challenges and Opportunities. Pharmaceuticals (Basel) 2023; 16:855. [PMID: 37375802 DOI: 10.3390/ph16060855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
High-density lipoprotein (HDL) is an enigmatic member of the plasma lipid and lipoprotein transport system, best known for its ability to promote the reverse cholesterol efflux and the unloading of excess cholesterol from peripheral tissues. More recently, data in experimental mice and humans suggest that HDL may play important novel roles in other physiological processes associated with various metabolic disorders. Important parameters in the HDL functions are its apolipoprotein and lipid content, further reinforcing the principle that HDL structure defines its functionality. Thus, based on current evidence, low levels of HDL-cholesterol (HDL-C) or dysfunctional HDL particles contribute to the development of metabolic diseases such as morbid obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease. Interestingly, low levels of HDL-C and dysfunctional HDL particles are observed in patients with multiple myeloma and other types of cancer. Therefore, adjusting HDL-C levels within the optimal range and improving HDL particle functionality is expected to benefit such pathological conditions. The failure of previous clinical trials testing various HDL-C-raising pharmaceuticals does not preclude a significant role for HDL in the treatment of atherosclerosis and related metabolic disorders. Those trials were designed on the principle of "the more the better", ignoring the U-shape relationship between HDL-C levels and morbidity and mortality. Thus, many of these pharmaceuticals should be retested in appropriately designed clinical trials. Novel gene-editing-based pharmaceuticals aiming at altering the apolipoprotein composition of HDL are expected to revolutionize the treatment strategies, improving the functionality of dysfunctional HDL.
Collapse
Affiliation(s)
- Evangelia Zvintzou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Eva Xepapadaki
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - George Skroubis
- Morbid Obesity Unit, Department of Surgery, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Victoria Mparnia
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Katerina Giannatou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Karim Benabdellah
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Avda. de la Ilustración 114, 18016 Granada, Spain
| | - Kyriakos E Kypreos
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| |
Collapse
|
19
|
Wu R, Jiang W, Sun Y, Wu L, Di Y, Wang J, Zhong S, Wang W. Indicators of Oxidative Stress in the Prediction of Coronary Artery Lesions in Patients With Kawasaki Disease. J Clin Rheumatol 2023; 29:126-131. [PMID: 36730421 DOI: 10.1097/rhu.0000000000001925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The aim of this study was to examine the clinical significance of oxidative stress (OS)-related indices, including inflammatory markers and lipid and platelet (PLT) parameter, in coronary artery lesions (CALs) in Kawasaki disease (KD). METHODS Clinical data of 952 KD patients diagnosed between January 2019 and March 2022 were collected and divided into CAL and NCAL groups. All the KD patients were randomly divided into training set and verification set. The univariate analysis and multivariate logistic regression analysis of training set were used to identify the OS-related independent risk factors of CALs, which were then used to construct a predictive nomogram. Calibration curve and receiver operating characteristic curve were used to evaluate the performance of the model. The predictive nomogram was further validated on verification set. RESULTS In the training set, 137 KD patients (18.0%) showed CALs. C-reactive protein, serum amyloid A, PLT count, monocyte-to-high-density lipoprotein (HDL) ratio, and PLT-to-lymphocyte ratio were significantly higher, whereas HDL was lower in the CAL group than the NCAL group. Increased C-reactive protein, serum amyloid A, PLT, and decreased HDL were identified as independent risk factors. The nomogram constructed using these factors showed satisfactory calibration degree and discriminatory power (the area under the curve, 0.887). In the verification set, the area under the curve was 0.795. CONCLUSION The predictive nomogram constructed using 4 OS-related risk factors associated with CALs in patients with KD could be a useful tool for early diagnosis of CALs in KD.
Collapse
Affiliation(s)
- Rouyi Wu
- From the School of Medicine, Ningbo University
| | - Wei Jiang
- Department of Pediatric Rheumatoid Immunity, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Yangkai Sun
- From the School of Medicine, Ningbo University
| | - Ling Wu
- Department of Pediatric Rheumatoid Immunity, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Yazhen Di
- Department of Pediatric Rheumatoid Immunity, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Jiapei Wang
- Department of Pediatric Rheumatoid Immunity, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Shiling Zhong
- Department of Pediatric Rheumatoid Immunity, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Wenbo Wang
- From the School of Medicine, Ningbo University
| |
Collapse
|
20
|
de Lima-Souza RA, Scarini JF, Lavareze L, Emerick C, Crescencio LR, Domingues RR, Paes Leme AF, Mariz BALA, Bastos DC, Machado RA, Tincani AJ, Del Negro A, Chone CT, Kowalski LP, Egal ESA, Altemani A, Mariano FV. Discovery proteomics reveals potential protein signature associated with malignant phenotype acquisition in pleomorphic adenoma. Oral Dis 2023; 29:1017-1027. [PMID: 34902207 DOI: 10.1111/odi.14102] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To analyze the proteomic profile of salivary pleomorphic adenoma (PA) and carcinoma ex pleomorphic adenoma (CXPA) samples and correlate them with the malignant transformation of the PA. MATERIALS AND METHODS Thirty samples (10 PA, 16 CXPA, and 4 residual PA) were microdissected and submitted to liquid chromatography-tandem mass spectrometry (LC-MS/MS). The proteomic data and protein identification were analyzed through LC-MS/MS spectra using the MaxQuant software. RESULTS The proteomic analysis identified and quantified a total of 240 proteins in which 135 were found in PA, residual PA, and CXPA. The shared proteins were divided into six subgroups, and the proteins that showed statistically significant differences (p > 0.05) and fold-change > or <2.5 in one subgroup to another subgroup were included. Seven proteins (Apolipoprotein A-I-APOA1, haptoglobin-HP, protein of the synaptonemal complex 1-SYCP1, anion transport protein of band 3-SLC4A1, subunit μ1 of AP-1 complex-AP1M1, beta subunit of hemoglobin-HBB, and dermcidin-DCD) were classified as potential protein signatures, being HP, AP1M1, and HBB with higher abundance for PA to residual PA, APOA1 with higher abundance for PA to CXPA, SLC4A1 with lower abundance in the PA to CXPA, SYCP1with lower abundance for residual PA to CXPA, and DCD with higher abundance in the CXPA with epithelial differentiation to myoepithelial differentiation. CONCLUSIONS In this work, we demonstrated the comparative proteomic profiling of PA, residual PA, and CXPA, and seven were proposed as protein signatures, some of which may be associated with the malignant phenotype acquisition.
Collapse
Affiliation(s)
- Reydson Alcides de Lima-Souza
- Oral Diagnosis Department, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Brazil
- Pathology Department, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - João Figueira Scarini
- Oral Diagnosis Department, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Brazil
- Pathology Department, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Luccas Lavareze
- Oral Diagnosis Department, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Brazil
- Pathology Department, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Carolina Emerick
- Oral Diagnosis Department, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Brazil
- Pathology Department, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Lívia Ramalho Crescencio
- Oral Diagnosis Department, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Brazil
- Pathology Department, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Romênia Ramos Domingues
- Mass Spectrometry Laboratory, Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Adriana Franco Paes Leme
- Mass Spectrometry Laboratory, Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | | | - Débora Campanella Bastos
- Morphology Department, Piracicaba Dental School, State University of Campinas, (UNICAMP), Piracicaba, Brazil
| | - Renato Assis Machado
- Oral Diagnosis Department, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Brazil
- Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo (HRAC/USP), Bauru, Brazil
| | - Alfio José Tincani
- Surgery Department, Head and Neck Surgery, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - André Del Negro
- Surgery Department, Head and Neck Surgery, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Carlos Takahiro Chone
- Ophthalmology and Otorhinolaryngology Department, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Luiz Paulo Kowalski
- Head and Neck Surgery and Otorhinolaryngology Department, Hospital do Câncer A.C. Camargo, São Paulo, Brazil
| | - Erika Said Abu Egal
- Pathology Department, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
- Pathology Department, School of Medicine, University of Utah (UU), Salt Lake City, Utah, USA
| | - Albina Altemani
- Pathology Department, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Fernanda Viviane Mariano
- Pathology Department, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
21
|
Sanhueza S, Simón L, Cifuentes M, Quest AFG. The Adipocyte-Macrophage Relationship in Cancer: A Potential Target for Antioxidant Therapy. Antioxidants (Basel) 2023; 12:126. [PMID: 36670988 PMCID: PMC9855200 DOI: 10.3390/antiox12010126] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Obesity has emerged as a major public health concern with a staggering 39% worldwide prevalence as of 2021. Given the magnitude of the problem and considering its association with chronic low-grade systemic inflammation, it does not come as a surprise that obesity is now considered one of the major risk factors for the development of several chronic diseases, such as diabetes, cardiovascular problems, and cancer. Adipose tissue dysfunction in obesity has taken center stage in understanding how changes in its components, particularly adipocytes and macrophages, participate in such processes. In this review, we will initially focus on how changes in adipose tissue upon excess fat accumulation generate endocrine signals that promote cancer development. Moreover, the tumor microenvironment or stroma, which is also critical in cancer development, contains macrophages and adipocytes, which, in reciprocal paracrine communication with cancer cells, generate relevant signals. We will discuss how paracrine signaling in the tumor microenvironment between cancer cells, macrophages, and adipocytes favors cancer development and progression. Finally, as reactive oxygen species participate in many of these signaling pathways, we will summarize the information available on how antioxidants can limit the effects of endocrine and paracrine signaling due to dysfunctional adipose tissue components in obesity.
Collapse
Affiliation(s)
- Sofía Sanhueza
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380492, Chile
- Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago 7830490, Chile
| | - Layla Simón
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380492, Chile
- Escuela de Nutrición y Dietética, Universidad Finis Terrae, Santiago 7501015, Chile
| | - Mariana Cifuentes
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380492, Chile
- Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago 7830490, Chile
| | - Andrew F. G. Quest
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380492, Chile
| |
Collapse
|
22
|
Novickij V, Rembiałkowska N, Kasperkiewicz-Wasilewska P, Baczyńska D, Rzechonek A, Błasiak P, Kulbacka J. Pulsed electric fields with calcium ions stimulate oxidative alternations and lipid peroxidation in human non-small cell lung cancer. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184055. [PMID: 36152727 DOI: 10.1016/j.bbamem.2022.184055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/19/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Pulsed electric fields (PEFs) are commonly used to facilitate the delivery of various molecules, including pharmaceuticals, into living cells. However, the applied protocols still require optimization regarding the conditions of the permeabilization process, i.e., pulse waveform, voltage, duration, and the number of pulses in a burst. This study highlights the importance of electrochemical processes involved in the electropermeabilization process, known as electroporation. This research investigated the effects of electroporation on human non-small cell lung cancer cells (A549) in potassium (SKM) and HEPES-based buffers (SHM) using sub-microsecond and microsecond range pulses. The experiments were performed using 100 ns - 100 μs (0.6-15 kV/cm) bursts with 8 pulses in a sequence. It was shown that depending on the buffer composition, the susceptibility of cells to PEF varies, while calcium enhances the cytotoxic effects of PEF, if high cell membrane permeabilization is triggered. It was also determined that electroporation with calcium ions induces oxidative stress in cells, including lipid peroxidation (LPO), generation of reactive oxygen species (ROS), and neutral lipid droplets. Here, we demonstrated that calcium ions and optimized pulse parameters could potentiate PEF efficacy and oxidative alternations in lung cancer cells. Thus, the anticancer efficacy of PEF in lung cancers in combination with standard cytostatic drugs or calcium ions should be considered, but this issue still requires in-depth detailed studies with in vivo models.
Collapse
Affiliation(s)
- Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | | | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Adam Rzechonek
- Department of Thoracic Surgery, Wroclaw Medical University, Grabiszynska 105, 53-430 Wroclaw, Poland
| | - Piotr Błasiak
- Department of Thoracic Surgery, Wroclaw Medical University, Grabiszynska 105, 53-430 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| |
Collapse
|
23
|
Brown JL, Peelor FF, Georgescu C, Wren JD, Kinter M, Tyrrell VJ, O'Donnell VB, Miller BF, Van Remmen H. Lipid hydroperoxides and oxylipins are mediators of denervation induced muscle atrophy. Redox Biol 2022; 57:102518. [PMID: 36283174 PMCID: PMC9593840 DOI: 10.1016/j.redox.2022.102518] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/14/2023] Open
Abstract
Loss of innervation is a key driver of age associated muscle atrophy and weakness (sarcopenia). Our laboratory has previously shown that denervation induced atrophy is associated with the generation of mitochondrial hydroperoxides and lipid mediators produced downstream of cPLA2 and 12/15 lipoxygenase (12/15-LOX). To define the pathological impact of lipid hydroperoxides generated in denervation-induced atrophy in vivo, we treated mice with liproxstatin-1, a lipid hydroperoxide scavenger. We treated adult male mice with 5 mg/kg liproxstain-1 or vehicle one day prior to sciatic nerve transection and daily for 7 days post-denervation before tissue analysis. Liproxstatin-1 treatment protected gastrocnemius mass and fiber cross sectional area (∼40% less atrophy post-denervation in treated versus untreated mice). Mitochondrial hydroperoxide generation was reduced 80% in vitro and by over 65% in vivo by liproxstatin-1 treatment in denervated permeabilized muscle fibers and decreased the content of 4-HNE by ∼25% post-denervation. Lipidomic analysis revealed detectable levels of 25 oxylipins in denervated gastrocnemius muscle and significantly increased levels for eight oxylipins that are generated by metabolism of fatty acids through 12/15-LOX. Liproxstatin-1 treatment reduced the level of three of the eight denervation-induced oxylipins, specifically 15-HEPE, 13-HOTrE and 17-HDOHE. Denervation elevated protein degradation rates in muscle and treatment with liproxstatin-1 reduced rates of protein breakdown in denervated muscle. In contrast, protein synthesis rates were unchanged by denervation. Targeted proteomics revealed a number of proteins with altered expression after denervation but no effect of liproxstain-1. Transcriptomic analysis revealed 203 differentially expressed genes in denervated muscle from vehicle or liproxstatin-1 treated mice, including ER stress, nitric oxide signaling, Gαi signaling, glucocorticoid receptor signaling, and other pathways. Overall, these data suggest lipid hydroperoxides and oxylipins are key drivers of increased protein breakdown and muscle loss associated with denervation induced atrophy and a potential target for sarcopenia intervention.
Collapse
Affiliation(s)
- Jacob L Brown
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States; Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, United States
| | - Fredrick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States
| | - Constantin Georgescu
- Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States
| | - Jonathan D Wren
- Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States
| | - Victoria J Tyrrell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| | - Valerie B O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States; Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, United States
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States; Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, United States.
| |
Collapse
|
24
|
Clinical implications of lipid peroxides levels in plasma and tumor tissue in breast cancer patients. Prostaglandins Other Lipid Mediat 2022; 161:106639. [PMID: 35550168 DOI: 10.1016/j.prostaglandins.2022.106639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022]
Abstract
Oxidative stress can promote the oxidation of lipoproteins and polyunsaturated fatty acids present in cell membranes; an event known as lipid peroxidation (LPO). LPO has been associated with carcinogenesis and cancer progression, however, its meaning concerning the clinicopathological aspects of human breast cancer is not clear. This study investigated LPO profiles in tumor and plasma samples from breast cancer patients (n = 140) considering their clinicopathological features (age at diagnosis, menopausal status, body mass index, tumor histological grade, tumor size, ki-67 proliferation index, presence of metastasis, chemotherapy response, the molecular subtype of cancer and overall survival status). LPO levels were estimated by tert-butyl hydroperoxide-initiated chemiluminescence. High LPO levels were found regarding poor prognosis parameters as young age at diagnosis (p = 0.006 in tissue), premenopausal patients (p = 0.012 in tissue), high-grade tumors (p = 0.010 in tissue and p = 0.002 in plasma), metastatic disease (p = 0.046 in tissue), chemoresistant tumors (p = 0.041 in tissue), disease relapse (p = 0.018 in tissue and p = 0.009 in plasma) and overall survival status (p = 0.001 in plasma). Our findings point out the clinical meaning of LPO and highlight it as an oxidative stress event linked to poor prognosis and disease aggressiveness in breast cancer patients.
Collapse
|
25
|
Rodak K, Kokot I, Kryla A, Kratz EM. The Examination of the Influence of Caffeinated Coffee Consumption on the Concentrations of Serum Prolactin and Selected Parameters of the Oxidative-Antioxidant Balance in Young Adults: A Preliminary Report. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1735204. [PMID: 35923861 PMCID: PMC9343215 DOI: 10.1155/2022/1735204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/15/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022]
Abstract
We verified whether caffeinated coffee consumption influenced the concentrations of prolactin (PRL) and oxidative stress parameters: total antioxidant status (TAS), ferric reducing antioxidant power (FRAP), total oxidant status (TOS), oxidative stress index (OSI), advanced oxidation protein products (AOPP), uric acid (UA), total bilirubin (T-Bil), albumin (ALB), iron (Fe), calcium (Ca), magnesium (Mg), and inflammatory marker C-reactive protein (CRP)-in blood sera obtained at 15, 60, and 120 minutes after caffeinated coffee intake, in relation to the fasting point. The study participants were 33 young, healthy, nonsmoking volunteers (15 men, 18 women) aged 19-29 years. PRL concentrations significantly decreased (p < 0.05) after consumption, except at time point 15' in men (p > 0.05). In women, FRAP levels significantly increased over time, and significant changes were also observed for UA at 120' and ALB at 15'. In men, significant changes were found for levels of AOPP at 15', T-Bil and ALB at 15', iron at 60' and 120', and calcium at 120'. There were no significant differences in the levels of other examined parameters between the defined time points. In conclusion, the substances contained in caffeinated coffee decrease the level of prolactin and may also have an impact on selected parameters of oxidative stress, which could be the basis of future research focused on the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Kamil Rodak
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland
| | - Izabela Kokot
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland
| | - Aleksandra Kryla
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland
| | - Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
26
|
Quan L, Liu Y, Cui W, Wang X, Zhang W, Wang Z, Guo C, Lu C, Hu F, Chen X. The associations between serum high-density lipoprotein cholesterol levels and malignant behavior in pancreatic neuroendocrine neoplasms. Lipids Health Dis 2022; 21:58. [PMID: 35842659 PMCID: PMC9287928 DOI: 10.1186/s12944-022-01669-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023] Open
Abstract
Background The role of serum high-density lipoprotein cholesterol (HDL-c) in tumorigenesis are observed in several endocrine-related cancers. However, its role in pancreatic neuroendocrine neoplasms (PNENs) has not been understood. In the current study, the relationship between HDL-c levels and malignant behavior in PNENs was explored. Methods One hundred ninety-seven patients with histopathology confirmed PNENs were included. PNENs were divided into three grades (G1, G2 and G3) as 2017 WHO classification based on ki67 index and mitosis count. The demographic data, clinical information, tumor morphological and pathological features (organs invasion, lymph node metastasis, vascular invasion and perineural invasion), and serum tumor biomarkers were collected. The relationships between HDL-c levels and malignant behaviors in PNENs were analyzed using logistic regression analysis. Models were also developed for the identification of high grade PNENs. Results The levels of serum HDL-c in G2/G3 tumor were significantly lower than that in G1 tumor (P = 0.031). However, no such difference was found between G3 and G1/G2. The proportions of low HDL-c (≤ 0.9 mmol/L) were higher in high-grade PNENs (G2/G3 or G3) than those in low-grade (G1 or G1/G2) (29.0 vs 15.2%, P = 0.032; 37.0 vs 20.5%, P = 0.023). The risk of G2/G3 tumors in patients with high serum HDL-c levels was decreased (odds ratio (OR) = 0.35, 95% confidence interval (CI): 0.12–0.99). Similarly, the risk of G3 PNENs increased in patients with low HDL-c levels (OR = 2.51, 95%CI:1.12–5.60). HDL-c level was also associated with a high ki67 index (> 55%) (OR = 0.10, 95%CI: 0.02–0.51) and neuroendocrine carcinoma G3 (OR = 0.21, 95%CI: 0.06–0.80). The area under the curve (AUC) of HDL-c + tumor size + age was 0.85 (95% CI: 0.79–0.91) in identifying G2/G3 PNENs, and HDL-c (> 0.9 mmol/L) + tumor size + age had an AUC of 0.77 (95% CI: 0.70–0.84) in identifying G3 PNENs. HDL-c level was associated with lymph node metastasis (OR = 0.24, 95%CI:0.08–0.99). Conclusion Serum HDL-c levels were significantly associated with malignant behaviors in PNENs, in particular to tumor grade and lymph node metastasis.
Collapse
Affiliation(s)
- Li Quan
- Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yongkang Liu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Wenjing Cui
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xinru Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Weixiao Zhang
- Department of Radiology, Nanjing Sir Run Run Hospital, Nanjing Medical University, 210029, Nanjing, China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Chuangen Guo
- Department of Radiology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Chao Lu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Feixiang Hu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Xiao Chen
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China. .,Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
27
|
Choueiry F, Barham A, Zhu J. Analyses of lung cancer-derived volatiles in exhaled breath and in vitro models. Exp Biol Med (Maywood) 2022; 247:1179-1190. [PMID: 35410512 PMCID: PMC9335511 DOI: 10.1177/15353702221082634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer incidence and cancer-related deaths in the world. Early diagnosis of pulmonary tumors results in improved survival compared to diagnosis with more advanced disease, yet early disease is not reliably indicated by symptoms. Despite of the improved testing and monitoring techniques for lung cancer in the past decades, most diagnostic tests, such as sputum cytology or tissue biopsies, are invasive and risky, rendering them unfeasible for large population screening. The non-invasive analysis of exhaled breath has gained attentions as an innovative screening method to measure chemical alterations within the human volatilome profile as a result of oncogenesis. More importantly, volatile organic compounds (VOCs) have been correlated to the pathophysiology of disease since the source of volatile compounds relies mostly on endogenous metabolic processes that are altered as a result of disease onset. Therefore, studying VOCs emitted from human breath may assist lung cancer diagnosis, treatment monitoring, and other surveillance of this devastating disease. In this mini review, we evaluated recent human studies that have attempted to identify lung cancer-derived volatiles in exhaled breath of patients. We also examined reported volatiles in cell cultures of lung cancer to better understand the origins of cancer-associated VOCs. We highlight the metabolic processes of lung cancer that could be responsible for the endogenous synthesis of these VOCs and pinpoint the protein-encoding genes involved in these pathways. Finally, we highlight the potential value of a breath test in lung cancer and propose prominent areas for future research required for the incorporation of VOCs-based testing into clinical settings.
Collapse
Affiliation(s)
- Fouad Choueiry
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210-1132, USA
| | - Addison Barham
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210-1132, USA
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210-1132, USA,James Comprehensive Cancer Center, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA,Jiangjiang Zhu.
| |
Collapse
|
28
|
Pedersen S, Jensen KP, Honoré B, Kristensen SR, Pedersen CH, Szejniuk WM, Maltesen RG, Falkmer U. Circulating microvesicles and exosomes in small cell lung cancer by quantitative proteomics. Clin Proteomics 2022; 19:2. [PMID: 34996345 PMCID: PMC8903681 DOI: 10.1186/s12014-021-09339-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Early detection of small cell lung cancer (SCLC) crucially demands highly reliable markers. Growing evidence suggests that extracellular vesicles carry tumor cell-specific cargo suitable as protein markers in cancer. Quantitative proteomic profiling of circulating microvesicles and exosomes can be a high-throughput platform for discovery of novel molecular insights and putative markers. Hence, this study aimed to investigate proteome dynamics of plasma-derived microvesicles and exosomes in newly diagnosed SCLC patients to improve early detection. METHODS Plasma-derived microvesicles and exosomes from 24 healthy controls and 24 SCLC patients were isolated from plasma by either high-speed- or ultracentrifugation. Proteins derived from these extracellular vesicles were quantified using label-free mass spectrometry and statistical analysis was carried out aiming at identifying significantly altered protein expressions between SCLC patients and healthy controls. Furthermore, significantly expressed proteins were subjected to functional enrichment analysis to identify biological pathways implicated in SCLC pathogenesis. RESULTS Based on fold change (FC) ≥ 2 or ≤ 0.5 and AUC ≥ 0.70 (p < 0.05), we identified 10 common and 16 and 17 unique proteins for microvesicles and exosomes, respectively. Among these proteins, we found dysregulation of coagulation factor XIII A (Log2 FC = - 1.1, p = 0.0003, AUC = 0.82, 95% CI: 0.69-0.96) and complement factor H-related protein 4 (Log2 FC = 1.2, p = 0.0005, AUC = 0.82, 95% CI; 0.67-0.97) in SCLC patients compared to healthy individuals. Our data may indicate a novel tumor-suppressing role of blood coagulation and involvement of complement activation in SCLC pathogenesis. CONCLUSIONS In comparing SCLC patients and healthy individuals, several differentially expressed proteins were identified. This is the first study showing that circulating extracellular vesicles may encompass specific proteins with potential diagnostic attributes for SCLC, thereby opening new opportunities as novel non-invasive markers.
Collapse
Affiliation(s)
- Shona Pedersen
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, 2713, Doha, Qatar.
| | - Katrine Papendick Jensen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Bent Honoré
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Søren Risom Kristensen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | | | - Weronika Maria Szejniuk
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Oncology, Aalborg University Hospital, Aalborg, Denmark
| | - Raluca Georgiana Maltesen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute of Medical Research, Westmead, 2145, Australia
| | - Ursula Falkmer
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Oncology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
29
|
Gündüz MK, Bolat M, Kaymak G, Berikten D, Köse DA. Therapeutic Effects of Newly Synthesized Boron Compounds (BGM and BGD) on Hepatocellular Carcinoma. Biol Trace Elem Res 2022; 200:134-146. [PMID: 33634364 DOI: 10.1007/s12011-021-02647-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/17/2021] [Indexed: 01/08/2023]
Abstract
Boron has an important potential for facilitating biological activity and for use in pharmaceutical drug design. Boron glycine monoester (BGM) and boron glycine diester (BGD) compounds containing boron atoms were synthesized and investigated their cytotoxic, oxidative stress, and antimicrobial activities on the HepG2 cancer cell line. The cytotoxic activity of newly synthesized boron compounds on hepatocellular carcinoma was determined by the MTT method for 48 h. Antioxidant (CAT, GSH), lipid peroxidation (MDA), and enzyme activity (ACP, ALP) analyses were determined by spectrophotometric methods in HepG2 cells. Antimicrobial activity was determined by the disk diffusion method. After 48 h of BGM and BGD application to HepG2 cells, we found the IC50 values as 9.9 mM and 24 mM, respectively. While CAT and ACP enzyme activities decreased in all groups compared to the control, ALP enzyme activity did not change in the BGM group but increased in the BGD group. It was determined that the GSH level did not change in all groups, while the MDA level increased. It has been stated that these IC50 doses of BGM and BGD have antibacterial effects on Staphylococcus aureus ATCC 29213 and Escherichia coli ATCC 25922. Newly synthesized boron compounds, particularly BGM, with their cytotoxic, oxidative stress, and antimicrobial effects, could provide a new therapeutic approach for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
| | - Melda Bolat
- Department of Property Protection and Safety, Technical Sciences Vocational School, Hitit University, Çorum, Turkey
| | - Güllü Kaymak
- Simav Vocational School of Health Services, Kütahya Health Sciences University, Kütahya, Turkey
| | - Derya Berikten
- Training and Research Center, Kütahya Health Sciences University, Kütahya, Turkey
| | - Dursun Ali Köse
- Department of Chemistry, Faculty of Arts and Sciences, Hitit University, Çorum, Turkey
| |
Collapse
|
30
|
Long MJC, Huang KT, Aye Y. The not so identical twins: (dis)similarities between reactive electrophile and oxidant sensing and signaling. Chem Soc Rev 2021; 50:12269-12291. [PMID: 34779447 DOI: 10.1039/d1cs00467k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this tutorial review, we compare and contrast the chemical mechanisms of electrophile/oxidant sensing, and the molecular mechanisms of signal propagation. We critically analyze biological systems in which these different pathways are believed to be manifest and what the data really mean. Finally, we discuss applications of this knowledge to disease treatment and drug development.
Collapse
Affiliation(s)
| | - Kuan-Ting Huang
- Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Yimon Aye
- Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
31
|
Koldemir-Gündüz M, Aydin HE, Berikten D, Kaymak G, Köse DA, Arslantaş A. Synthesis of New Boron Derived Compounds; Anticancer, Antioxidant and Antimicrobial Effect in Vitro Glioblastoma Tumor Model. J Korean Neurosurg Soc 2021; 64:864-872. [PMID: 34571588 PMCID: PMC8590914 DOI: 10.3340/jkns.2021.0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/26/2021] [Indexed: 11/27/2022] Open
Abstract
Objective The aim of our study is to investigate the cytotoxic, antioxidant, and antimicrobial effects of newly synthesized boron compounds in U87MG glioblastoma cell treatment.
Methods We synthesized boron glycine monoester (BGM) and boron glycine diester (BGD) structures containing boron atoms and determined their cytotoxic activities on glioblastoma by the MTT method. The inhibitory concentration 50 (IC50) value was calculated with GraphPad Prism 5.0 program. The IC50 values were administered 48 hours on U87MG glioblastoma cell. Catalase (CAT), acid phosphatase (ACP) and alkaline phosphatase (ALP) enzyme activity, malondialdehyde (MDA), total glutathione (GSH), and total protein levels were detected using spectrophotometric methods. We determined the antimicrobial activities of BGM and BGD with the disc diffusion method. Results After 48 hours of BGM and BGD application to U87MG glioblastoma cells, we found the IC50 value as 6.6 mM and 26 mM, respectively. CAT and ACP enzyme activities were decreased in BGM and BGD groups. MDA which is a metabolite of lipid peroxidation was increased in both boron compounds groups. GSH level was reduced especially in BGD group. BGM and BGD have been found to be antimicrobial effects.
Conclusion Boron compounds, especially the BGM, can provide a new therapeutic approach for the treatment of glioblastoma with their anticancer, antioxidant, and antimicrobial effects.
Collapse
Affiliation(s)
| | - Hasan Emre Aydin
- Department of Neurosurgery, Kutahya Health Sciences University, Kütahya, Turkey
| | - Derya Berikten
- Training and Research Center, Kutahya Health Sciences University, Kütahya, Turkey
| | - Güllü Kaymak
- Training and Research Center, Kutahya Health Sciences University, Kütahya, Turkey
| | | | - Ali Arslantaş
- Department of Neurosurgery, Eskişehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
32
|
Zahra KF, Lefter R, Ali A, Abdellah EC, Trus C, Ciobica A, Timofte D. The Involvement of the Oxidative Stress Status in Cancer Pathology: A Double View on the Role of the Antioxidants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9965916. [PMID: 34394838 PMCID: PMC8360750 DOI: 10.1155/2021/9965916] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
Oxygen-free radicals, reactive oxygen species (ROS) or reactive nitrogen species (RNS), are known by their "double-sided" nature in biological systems. The beneficial effects of ROS involve physiological roles as weapons in the arsenal of the immune system (destroying bacteria within phagocytic cells) and role in programmed cell death (apoptosis). On the other hand, the redox imbalance in favor of the prooxidants results in an overproduction of the ROS/RNS leading to oxidative stress. This imbalance can, therefore, be related to oncogenic stimulation. High levels of ROS disrupt cellular processes by nonspecifically attacking proteins, lipids, and DNA. It appears that DNA damage is the key player in cancer initiation and the formation of 8-OH-G, a potential biomarker for carcinogenesis. The harmful effect of ROS is neutralized by an antioxidant protection treatment as they convert ROS into less reactive species. However, contradictory epidemiological results show that supplementation above physiological doses recommended for antioxidants and taken over a long period can lead to harmful effects and even increase the risk of cancer. Thus, we are describing here some of the latest updates on the involvement of oxidative stress in cancer pathology and a double view on the role of the antioxidants in this context and how this could be relevant in the management and pathology of cancer.
Collapse
Affiliation(s)
- Kamal Fatima Zahra
- Faculty of Sciences and Techniques, Laboratory of Physical Chemistry of Processes and Materials/Agri-Food and Health, Hassan First University, B.P. 539, 26000 Settat, Morocco
| | - Radu Lefter
- Center of Biomedical Research, Romanian Academy, 8th Carol I Avenue, 700506 Iasi, Romania
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098, India
| | - Ech-Chahad Abdellah
- Faculty of Sciences and Techniques, Laboratory of Physical Chemistry of Processes and Materials, Hassan First University, B.P. 539, 26000 Settat, Morocco
| | - Constantin Trus
- Department of Morphological and Functional Sciences, Faculty of Medicine, Dunarea de Jos University, 800008 Galati, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 11th Carol I Avenue, 700506 Iasi, Romania
| | - Daniel Timofte
- Faculty of Medicine, “Grigore T. Popa”, University of Medicine and Pharmacy, Strada Universitatii 16, 700115 Iasi, Romania
| |
Collapse
|
33
|
Ganjali S, Banach M, Pirro M, Fras Z, Sahebkar A. HDL and cancer - causality still needs to be confirmed? Update 2020. Semin Cancer Biol 2021; 73:169-177. [PMID: 33130036 DOI: 10.1016/j.semcancer.2020.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
An inverse correlation between high-density lipoprotein cholesterol (HDL-C) and cancer risk has been shown by several epidemiological studies. Some studies have even suggested that HDL-C can be used as a prognostic marker in patients with certain types of cancer. However, whether reduced HDL-C level is a consequential or causal factor in the development and progression of cancer remains a controversial issue. In this review, we update and summarize recent advances that highlight the role of HDL and some of its components in prognosis, diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Shiva Ganjali
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Zlatko Fras
- Division of Medicine, Department of Vascular Medicine, Centre for Preventive Cardiology, University Medical Centre Ljubljana, Zaloška 7, 1525, Ljubljana, Slovenia; Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Halal Research Center of IRI, FDA, Tehran, Iran.
| |
Collapse
|
34
|
Kehm R, Baldensperger T, Raupbach J, Höhn A. Protein oxidation - Formation mechanisms, detection and relevance as biomarkers in human diseases. Redox Biol 2021; 42:101901. [PMID: 33744200 PMCID: PMC8113053 DOI: 10.1016/j.redox.2021.101901] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/06/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
Generation of reactive oxygen species and related oxidants is an inevitable consequence of life. Proteins are major targets for oxidation reactions, because of their rapid reaction rates with oxidants and their high abundance in cells, extracellular tissues, and body fluids. Additionally, oxidative stress is able to degrade lipids and carbohydrates to highly reactive intermediates, which eventually attack proteins at various functional sites. Consequently, a wide variety of distinct posttranslational protein modifications is formed by protein oxidation, glycoxidation, and lipoxidation. Reversible modifications are relevant in physiological processes and constitute signaling mechanisms ("redox signaling"), while non-reversible modifications may contribute to pathological situations and several diseases. A rising number of publications provide evidence for their involvement in the onset and progression of diseases as well as aging processes. Certain protein oxidation products are chemically stable and formed in large quantity, which makes them promising candidates to become biomarkers of oxidative damage. Moreover, progress in the development of detection and quantification methods facilitates analysis time and effort and contributes to their future applicability in clinical routine. The present review outlines the most important classes and selected examples of oxidative protein modifications, elucidates the chemistry beyond their formation and discusses available methods for detection and analysis. Furthermore, the relevance and potential of protein modifications as biomarkers in the context of disease and aging is summarized.
Collapse
Affiliation(s)
- Richard Kehm
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Tim Baldensperger
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Jana Raupbach
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| |
Collapse
|
35
|
Shi J, Yu T, Song K, Du S, He S, Hu X, Li X, Li H, Dong S, Zhang Y, Xie Z, Li C, Yu J. Dexmedetomidine ameliorates endotoxin-induced acute lung injury in vivo and in vitro by preserving mitochondrial dynamic equilibrium through the HIF-1a/HO-1 signaling pathway. Redox Biol 2021; 41:101954. [PMID: 33774474 PMCID: PMC8027777 DOI: 10.1016/j.redox.2021.101954] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing lines of evidence identified that dexmedetomidine (DEX) exerted protective effects against sepsis-stimulated acute lung injury via anti-inflammation, anti-oxidation and anti-apoptosis. However, the mechanisms remain unclear. Herein, we investigated whether DEX afforded lung protection by regulating the process of mitochondrial dynamics through the HIF-1a/HO-1 pathway in vivo and in vitro. Using C57BL/6J mice exposed to lipopolysaccharide, it was initially observed that preemptive administration of DEX (50μg/kg) alleviated lung pathologic injury, reduced oxidative stress indices (OSI), improved mitochondrial dysfunction, upregulated the expression of HIF-1α and HO-1, accompanied by shifting the dynamic course of mitochondria into fusion. Moreover, HO-1-knockout mice or HO-1 siRNA transfected NR8383 cells were pretreated with HIF-1α stabilizer DMOG and DEX to validate the effect of HIF-1a/HO-1 pathway on DEX-mediated mitochondrial dynamics in a model of endotoxin-induced lung injury. We found that pretreatment with DEX and DMOG distinctly relieved lung injury, decreased the levels of mitochondrial ROS and mtDNA, reduced OSI, increased nuclear accumulation of HIF-1a and HO-1 protein in wild type mice but not HO-1 KO mice. Similar observations were recapitulated in NC siRNA transfected NR8383 cells after LPS stimulation but not HO-1 siRNA transfected cells. Concertedly, DEX reversed the impaired mitochondrial morphology in LPS stimulated-wild type mice or NC siRNA transfected NR8383 cells, upregulated the expression of mitochondrial fusion protein, while downregulated the expression of fission protein in HIF-1a/HO-1 dependent pathway. Altogether, our data both in vivo and in vitro certified that DEX treatment ameliorated endotoxin-induced acute lung injury by preserving the dynamic equilibrium of mitochondrial fusion/fission through the regulation of HIF-1a/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Jia Shi
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Tianxi Yu
- Department of Sanitary Inspection and Quarantine, Kunming Medical University, YunNan, China
| | - Kai Song
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shihan Du
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Simeng He
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Nankai University, Tianjin, China
| | - Xinxin Hu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xiangyun Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Haibo Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shuan Dong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yuan Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Zilei Xie
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Cui Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jianbo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
36
|
Fazli HR, Moradzadeh M, Mehrbakhsh Z, Sharafkhah M, Masoudi S, Pourshams A, Mohamadkhani A. Diagnostic Significance of Serum Fatty Acid Synthase in Patients with Pancreatic Cancer. Middle East J Dig Dis 2021; 13:115-120. [PMID: 34712449 PMCID: PMC8531924 DOI: 10.34172/mejdd.2021.214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Pancreatic cancer is considered as the most deadly tumor among gastrointestinal cancers because of its poor prognosis. The frequently deregulated pathway in the cancer cell is associated with an increased expression of various genes, including the synthesis of fatty acids. We aimed to evaluate the level of serum fatty acid synthase (FASN) as a diagnostic marker for early diagnosis of pancreatic cancer. METHODS Serum FASN levels were measured by ELISA in 92 patients with pancreatic adenocarcinomas and in 92 healthy controls. Logistic regression analysis was used to identify independent predictors of certain diagnostic categories. RESULTS Serum FASN levels were significantly higher in patients with pancreatic cancer than in healthy controls (1.35 [0.98-2.3] ng/mL vs 1.04 [0.19-1.34] ng/mL, p < 0.001) and in smokers compared to non-smokers (1.41 [0.79-2.52] ng/mL vs 1.07 [0.21-1.74] ng/mL, p < 0.001). FASN levels and smoking were associated with increased risk of PC (1.54 [1.1- 2.14] ng/mL, p = 0.011 and 5.69 [2.68-12.09] ng/mL, p < 0.001, respectively). CONCLUSION Elevated serum FASN levels in patients with pancreatic cancer indicate the need for the production of large numbers of lipids for the survival and proliferation of human cancer cells and the diagnostic value of FASN as a new diagnostic biomarker.
Collapse
Affiliation(s)
- Hamid Reza Fazli
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Maliheh Moradzadeh
- Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Mehrbakhsh
- Department of Biostaticstics, School of Health, Hamadan University of Medical sciences, Hamadan, Iran
- Department of Biostaticstics, School of Health, Golestan University of Medical sciences, Gorgan, Iran
| | - Maryam Sharafkhah
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Masoudi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Pourshams
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Chanukuppa V, Taware R, Taunk K, Chatterjee T, Sharma S, Somasundaram V, Rashid F, Malakar D, Santra MK, Rapole S. Proteomic Alterations in Multiple Myeloma: A Comprehensive Study Using Bone Marrow Interstitial Fluid and Serum Samples. Front Oncol 2021; 10:566804. [PMID: 33585190 PMCID: PMC7879980 DOI: 10.3389/fonc.2020.566804] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell-associated cancer and exists as the second most common hematological malignancy worldwide. Although researchers have been working on MM, a comprehensive quantitative Bone Marrow Interstitial Fluid (BMIF) and serum proteomic analysis from the same patients’ samples is not yet reported. The present study involves the investigation of alterations in the BMIF and serum proteome of MM patients compared to controls using multipronged quantitative proteomic approaches viz., 2D-DIGE, iTRAQ, and SWATH-MS. A total of 279 non-redundant statistically significant differentially abundant proteins were identified by the combination of three proteomic approaches in MM BMIF, while in the case of serum 116 such differentially abundant proteins were identified. The biological context of these dysregulated proteins was deciphered using various bioinformatic tools. Verification experiments were performed in a fresh independent cohort of samples using immunoblotting and mass spectrometry based SRM assays. Thorough data evaluation led to the identification of a panel of five proteins viz., haptoglobin, kininogen 1, transferrin, and apolipoprotein A1 along with albumin that was validated using ELISA in a larger cohort of serum samples. This panel of proteins could serve as a useful tool in the diagnosis and understanding of the pathophysiology of MM in the future.
Collapse
Affiliation(s)
- Venkatesh Chanukuppa
- Proteomics Lab, National Centre for Cell Science, Pune, India.,Savitribai Phule Pune University, Pune, India
| | - Ravindra Taware
- Proteomics Lab, National Centre for Cell Science, Pune, India
| | - Khushman Taunk
- Proteomics Lab, National Centre for Cell Science, Pune, India
| | | | | | | | | | | | - Manas K Santra
- Cancer Biology and Epigenetics Lab, National Centre for Cell Science, Pune, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science, Pune, India
| |
Collapse
|
38
|
Wójcik P, Gęgotek A, Žarković N, Skrzydlewska E. Oxidative Stress and Lipid Mediators Modulate Immune Cell Functions in Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms22020723. [PMID: 33450863 PMCID: PMC7828321 DOI: 10.3390/ijms22020723] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Autoimmune diseases, including psoriasis, systemic lupus erythematosus (SLE), and rheumatic arthritis (RA), are caused by a combination of environmental and genetic factors that lead to overactivation of immune cells and chronic inflammation. Since oxidative stress is a common feature of these diseases, which activates leukocytes to intensify inflammation, antioxidants could reduce the severity of these diseases. In addition to activating leukocytes, oxidative stress increases the production of lipid mediators, notably of endocannabinoids and eicosanoids, which are products of enzymatic lipid metabolism that act through specific receptors. Because the anti-inflammatory CB2 receptors are the predominant cannabinoid receptors in leukocytes, endocannabinoids are believed to act as anti-inflammatory factors that regulate compensatory mechanisms in autoimmune diseases. While administration of eicosanoids in vitro leads to the differentiation of lymphocytes into T helper 2 (Th2) cells, eicosanoids are also necessary for the different0iation of Th1 and Th17 cells. Therefore, their antagonists and/or the genetic deletion of their receptors abolish inflammation in animal models of psoriasis—RA and SLE. On the other hand, products of non-enzymatic lipid peroxidation, especially acrolein and 4-hydroxynonenal-protein adducts, mostly generated by an oxidative burst of granulocytes, may enhance inflammation and even acting as autoantigens and extracellular signaling molecules in the vicious circle of autoimmune diseases.
Collapse
Affiliation(s)
- Piotr Wójcik
- Department of Analytical Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland; (P.W.); (A.G.)
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland; (P.W.); (A.G.)
| | - Neven Žarković
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland; (P.W.); (A.G.)
- Correspondence:
| |
Collapse
|
39
|
Mousapasandi A, Loke WSJ, Herbert CA, Thomas PS. Oxidative stress in lung cancer. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Choi JY, Huh DA, Moon KW. Association between blood lead levels and metabolic syndrome considering the effect of the thyroid-stimulating hormone based on the 2013 Korea National health and nutrition examination survey. PLoS One 2020; 15:e0244821. [PMID: 33382832 PMCID: PMC7775085 DOI: 10.1371/journal.pone.0244821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/16/2020] [Indexed: 12/03/2022] Open
Abstract
Imbalances in thyroid-stimulating hormone (TSH) levels are associated with metabolic syndrome (MetS), and the underlying mechanism is partly in alignment with that of lead exposure causing MetS. Many studies have reported the association between lead exposure and MetS, but no study has considered the possibility of TSH mediating lead's effect on MetS. Therefore, we aimed to examine the association between lead exposure and MetS considering TSH as a partial mediator. The data of 1,688 adults (age ≥19 years) from the Korea National Health and Nutrition Examination Survey in 2013 were analyzed. The prevalence of MetS in the Korean population was 21.9%, and the geometric mean of blood lead and serum TSH levels were 1.96 μg/dL and 2.17 μIU/mL, respectively. The associations between blood lead levels, serum TSH levels, and MetS were determined through a multiple logistic regression analysis. Blood lead levels were positively associated with high TSH levels (upper 25%) with an odds ratio (OR) and 95% confidence interval (CI) of 1.79 (1.24, 2.58) per doubled lead levels. The increase in blood lead and serum TSH levels both positively increased the odds of developing MetS. The OR of MetS per doubling of blood lead level was 1.53 (1.00, 2.35), and was not attenuated after adjusting for TSH levels. These findings suggest that higher levels of blood lead are positively associated with serum TSH levels and MetS. By exploring the role of TSH as a partial mediator between lead and MetS, we verified that lead exposure has an independent relationship with MetS, regardless of TSH levels.
Collapse
Affiliation(s)
- Ji Yoon Choi
- Department of Health and Safety Convergence Science, Graduate School at Korea University, Seoul, Republic of Korea
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, Republic of Korea
| | - Da-An Huh
- Department of Health Science, Graduate School at Korea University, Seoul, Republic of Korea
| | - Kyong Whan Moon
- BK21 FOUR R&E Center for Learning Health System & Department of Health and Environmental Science, Korea University, Seoul, Republic of Korea
| |
Collapse
|
41
|
Jaganjac M, Milkovic L, Gegotek A, Cindric M, Zarkovic K, Skrzydlewska E, Zarkovic N. The relevance of pathophysiological alterations in redox signaling of 4-hydroxynonenal for pharmacological therapies of major stress-associated diseases. Free Radic Biol Med 2020; 157:128-153. [PMID: 31756524 DOI: 10.1016/j.freeradbiomed.2019.11.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
Modern analytical methods combined with the modern concepts of redox signaling revealed 4-hydroxy-2-nonenal (4-HNE) as particular growth regulating factor involved in redox signaling under physiological and pathophysiological circumstances. In this review current knowledge of the relevance of 4-HNE as "the second messenger of reactive oxygen species" (ROS) in redox signaling of representative major stress-associated diseases is briefly summarized. The findings presented allow for 4-HNE to be considered not only as second messenger of ROS, but also as one of fundamental factors of the stress- and age-associated diseases. While standard, even modern concepts of molecular medicine and respective therapies in majority of these diseases target mostly the disease-specific symptoms. 4-HNE, especially its protein adducts, might appear to be the bioactive markers that would allow better monitoring of specific pathophysiological processes reflecting their complexity. Eventually that could help development of advanced integrative medicine approach for patients and the diseases they suffer from on the personalized basis implementing biomedical remedies that would optimize beneficial effects of ROS and 4-HNE to prevent the onset and progression of the illness, perhaps even providing the real cure.
Collapse
Affiliation(s)
- Morana Jaganjac
- Qatar Analytics & BioResearch Lab, Anti Doping Lab Qatar, Sport City Street, Doha, Qatar
| | - Lidija Milkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Agnieszka Gegotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Marina Cindric
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Kamelija Zarkovic
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Elzbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia.
| |
Collapse
|
42
|
Kilic D, Guven S. Does systemic inflammation play a role in patients with pterygium? Int Ophthalmol 2020; 40:2307-2314. [PMID: 32419105 DOI: 10.1007/s10792-020-01414-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/02/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE To compare parameters of systemic inflammation and serum lipid levels in patients with pterygium versus healthy individuals. METHODS Thirty-five patients with pterygium and 30 healthy individuals were enrolled as two respective groups in a retrospective study. The participants' complete blood count (CBC) parameters and levels of serum total cholesterol, low-density lipoprotein, high-density lipoprotein (HDL), and triglycerides (TG) were obtained from digital records and compared. Their neutrophil/lymphocyte, platelet/lymphocyte, and monocyte/HDL ratios were calculated and compared as well. As secondary outcomes, longitudinal length (LL), basal length (BL), and total area (TA) of pterygium among the patients were quantitatively measured by using ImageJ software. Correlations between serum parameters and pterygium measurements were analyzed. RESULTS Although between-group differences in CBC parameters and the ratios were not statistically significant, HDL levels were significantly lower (p = 0.014) and TG levels significantly higher (p = 0.031) among patients with pterygium than among the controls. A positive correlation was detected between the patient's age and the pterygium's BL (p = 0.002, r = 0.516), LL (p = 0.00, r = 0.547), and TA (p = 0.00, r = 0.515). Neutrophil levels negatively correlated with LL (p = 0.025, β = - 0.308) and TA (p = 0.002, β = - 0.420). CONCLUSION Local instead of systemic inflammation should be considered in the management of pterygium. Besides, decreased HDL levels may indicate systemic oxidative stress in patients with the condition.
Collapse
Affiliation(s)
- Deniz Kilic
- Department of Ophthalmology, Kayseri City Training and Research Hospital, Health Science University, 38001, Kayseri, Turkey.
| | - Soner Guven
- Department of Ophthalmology, Kayseri City Training and Research Hospital, Health Science University, 38001, Kayseri, Turkey
| |
Collapse
|
43
|
Apolipoprotein A-I (ApoA-I), Immunity, Inflammation and Cancer. Cancers (Basel) 2019; 11:cancers11081097. [PMID: 31374929 PMCID: PMC6721368 DOI: 10.3390/cancers11081097] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Apolipoprotein A-I (ApoA-I), the major protein component of high-density lipoproteins (HDL) is a multifunctional protein, involved in cholesterol traffic and inflammatory and immune response regulation. Many studies revealing alterations of ApoA-I during the development and progression of various types of cancer suggest that serum ApoA-I levels may represent a useful biomarker contributing to better estimation of cancer risk, early cancer diagnosis, follow up, and prognosis stratification of cancer patients. In addition, recent in vitro and animal studies disclose a more direct, tumor suppressive role of ApoA-I in cancer pathogenesis, which involves anti-inflammatory and immune-modulatory mechanisms. Herein, we review recent epidemiologic, clinicopathologic, and mechanistic studies investigating the role of ApoA-I in cancer biology, which suggest that enhancing the tumor suppressive activity of ApoA-I may contribute to better cancer prevention and treatment.
Collapse
|
44
|
Cao R, Wu Q, Li Q, Yao M, Zhou H. A 3-mRNA-based prognostic signature of survival in oral squamous cell carcinoma. PeerJ 2019; 7:e7360. [PMID: 31396442 PMCID: PMC6679650 DOI: 10.7717/peerj.7360] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/26/2019] [Indexed: 12/28/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is the most common type of head and neck squamous cell carcinoma with an unsatisfactory prognosis. The aim of this study was to identify potential prognostic mRNA biomarkers of OSCC based on analysis of The Cancer Genome Atlas (TCGA). Methods Expression profiles and clinical data of OSCC patients were collected from TCGA database. Univariate Cox analysis and the least absolute shrinkage and selection operator Cox (LASSO Cox) regression were used to primarily screen prognostic biomarkers. Then multivariate Cox analysis was performed to build a prognostic model based on the selected prognostic mRNAs. Nomograms were generated to predict the individual’s overall survival at 3 and 5 years. The model performance was assessed by the time-dependent receiver operating characteristic (ROC) curve and calibration plot in both training cohort and validation cohort (GSE41613 from NCBI GEO databases). In addition, machine learning was used to assess the importance of risk factors of OSCC. Finally, in order to explore the potential mechanisms of OSCC, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was completed. Results Three mRNAs (CLEC3B, C6 and CLCN1) were finally identified as a prognostic biomarker pattern. The risk score was imputed as: (−0.38602 × expression level of CLEC3B) + (−0.20632 × expression level of CLCN1) + (0.31541 × expression level of C6). In the TCGA training cohort, the area under the curve (AUC) was 0.705 and 0.711 for 3- and 5-year survival, respectively. In the validation cohort, AUC was 0.718 and 0.717 for 3- and 5-year survival. A satisfactory agreement between predictive values and observation values was demonstrated by the calibration curve in the probabilities of 3- and 5- year survival in both cohorts. Furthermore, machine learning identified the 3-mRNA signature as the most important risk factor to survival of OSCC. Neuroactive ligand-receptor interaction was most enriched mostly in KEGG pathway analysis. Conclusion A 3-mRNA signature (CLEC3B, C6 and CLCN1) successfully predicted the survival of OSCC patients in both training and test cohort. In addition, this signature was an independent and the most important risk factor of OSCC.
Collapse
Affiliation(s)
- Ruoyan Cao
- Department of Prosthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| | - Qiqi Wu
- Department of Endodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| | - Qiulan Li
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mianfeng Yao
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Zhou
- Department of Prosthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
45
|
Schulze AB, Evers G, Kerkhoff A, Mohr M, Schliemann C, Berdel WE, Schmidt LH. Future Options of Molecular-Targeted Therapy in Small Cell Lung Cancer. Cancers (Basel) 2019; 11:E690. [PMID: 31108964 PMCID: PMC6562929 DOI: 10.3390/cancers11050690] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/29/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. With a focus on histology, there are two major subtypes: Non-small cell lung cancer (NSCLC) (the more frequent subtype), and small cell lung cancer (SCLC) (the more aggressive one). Even though SCLC, in general, is a chemosensitive malignancy, relapses following induction therapy are frequent. The standard of care treatment of SCLC consists of platinum-based chemotherapy in combination with etoposide that is subsequently enhanced by PD-L1-inhibiting atezolizumab in the extensive-stage disease, as the addition of immune-checkpoint inhibition yielded improved overall survival. Although there are promising molecular pathways with potential therapeutic impacts, targeted therapies are still not an integral part of routine treatment. Against this background, we evaluated current literature for potential new molecular candidates such as surface markers (e.g., DLL3, TROP-2 or CD56), apoptotic factors (e.g., BCL-2, BET), genetic alterations (e.g., CREBBP, NOTCH or PTEN) or vascular markers (e.g., VEGF, FGFR1 or CD13). Apart from these factors, the application of so-called 'poly-(ADP)-ribose polymerases' (PARP) inhibitors can influence tumor repair mechanisms and thus offer new perspectives for future treatment. Another promising therapeutic concept is the inhibition of 'enhancer of zeste homolog 2' (EZH2) in the loss of function of tumor suppressors or amplification of (proto-) oncogenes. Considering the poor prognosis of SCLC patients, new molecular pathways require further investigation to augment our therapeutic armamentarium in the future.
Collapse
Affiliation(s)
- Arik Bernard Schulze
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Georg Evers
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Andrea Kerkhoff
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Michael Mohr
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Christoph Schliemann
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Wolfgang E Berdel
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Lars Henning Schmidt
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| |
Collapse
|