1
|
Vancheri C, Quatrana A, Morini E, Mariotti C, Mongelli A, Fichera M, Rufini A, Condò I, Testi R, Novelli G, Malisan F, Amati F. An RNA-seq study in Friedreich ataxia patients identified hsa-miR-148a-3p as a putative prognostic biomarker of the disease. Hum Genomics 2024; 18:50. [PMID: 38778374 PMCID: PMC11110315 DOI: 10.1186/s40246-024-00602-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/26/2024] [Indexed: 05/25/2024] Open
Abstract
Friedreich ataxia (FRDA) is a life-threatening hereditary ataxia; its incidence is 1:50,000 individuals in the Caucasian population. A unique therapeutic drug for FRDA, the antioxidant Omaveloxolone, has been recently approved by the US Food and Drug Administration (FDA). FRDA is a multi-systemic neurodegenerative disease; in addition to a progressive neurodegeneration, FRDA is characterized by hypertrophic cardiomyopathy, diabetes mellitus and musculoskeletal deformities. Cardiomyopathy is the predominant cause of premature death. The onset of FRDA typically occurs between the ages of 5 and 15. Given the complexity and heterogeneity of clinical features and the variability of their onset, the identification of biomarkers capable of assessing disease progression and monitoring the efficacy of treatments is essential to facilitate decision making in clinical practice. We conducted an RNA-seq analysis in peripheral blood mononuclear cells from FRDA patients and healthy donors, identifying a signature of small non-coding RNAs (sncRNAs) capable of distinguishing healthy individuals from the majority of FRDA patients. Among the differentially expressed sncRNAs, microRNAs are a class of small non-coding endogenous RNAs that regulate posttranscriptional silencing of target genes. In FRDA plasma samples, hsa-miR-148a-3p resulted significantly upregulated. The analysis of the Receiver Operating Characteristic (ROC) curve, combining the circulating expression levels of hsa-miR-148a-3p and hsa-miR-223-3p (previously identified by our group), revealed an Area Under the Curve (AUC) of 0.86 (95%, Confidence Interval 0.77-0.95; p-value < 0.0001). An in silico prediction analysis indicated that the IL6ST gene, an interesting marker of neuroinflammation in FRDA, is a common target gene of both miRNAs. Our findings support the evaluation of combined expression levels of different circulating miRNAs as potent epi-biomarkers in FRDA. Moreover, we found hsa-miR-148a-3p significantly over-expressed in Intermediate and Late-Onset Friedreich Ataxia patients' group (IOG and LOG, respectively) compared to healthy individuals, indicating it as a putative prognostic biomarker in this pathology.
Collapse
Affiliation(s)
- Chiara Vancheri
- Department of Biomedicine and Prevention, Genetics Unit, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
| | - Andrea Quatrana
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
- Muscular and Neurodegenerative Diseases Laboratory, Bambino Gesù, Children's Hospital, IRCCS, Rome, Italy
| | - Elena Morini
- Department of Biomedicine and Prevention, Genetics Unit, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, 20133, Italy
| | - Alessia Mongelli
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, 20133, Italy
| | - Mario Fichera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, 20133, Italy
| | - Alessandra Rufini
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
- Saint Camillus International University of Health and Medical Sciences, Rome, 00131, Italy
| | - Ivano Condò
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
| | - Roberto Testi
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Unit, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
- Neuromed Institute, IRCCS, Pozzilli, 86077, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Florence Malisan
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy.
| | - Francesca Amati
- Department of Biomedicine and Prevention, Genetics Unit, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy.
| |
Collapse
|
2
|
Almassabi RF, Mir R, Javid J, AbuDuhier FM, Almotairi R, Alhelali MH, Algehainy N, Alsaedi BSO, Albalawi SO, Elfaki I. Differential Expression of Serum Proinflammatory Cytokine TNF-α and Genetic Determinants of TNF-α, CYP2C19*17, miR-423 Genes and Their Effect on Coronary Artery Disease Predisposition and Progression. Life (Basel) 2023; 13:2142. [PMID: 38004282 PMCID: PMC10672292 DOI: 10.3390/life13112142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death and hospitalization worldwide and represents a problem for public health systems everywhere. In Saudi Arabia, the prevalence of CAD is estimated to be 5.5%. Risk factors for CAD include older age, male gender, obesity, high blood pressure, smoking, diabetes, hyperlipidemia, and genetic factors. Reducing the risk factors in susceptible individuals will decrease the prevalence of CAD. Genome wide association studies have helped to reveal the association of many loci with diseases like CAD. In this study, we examined the link between single nucleotide variations (SNVs) of TNF-α-rs1800629 G>A, CYP2C19*17 (rs12248560) C>T, and miR-423 rs6505162 C>A and the expression of TNF-α with CAD. We used the mutation specific PCR, ARMS-PCR, and ELISA. The results showed that the A allele of the TNF-α rs1800629 G>A SNP is linked to CAD with odd ratio (OR) (95% CI) = 2.10, p-value = 0.0013. The T allele of the CYP2C19*17 (rs12248560) C>T is linked to CAD with OR (95% CI) = 2.02, p-value = 0.003. In addition, the A allele of the miR-423 rs6505162 C>A SNV is linked to CAD with OR (95% CI) = 1.49, p-value = 0.036. The ELISA results indicated that the TNF-α serum levels are significantly increased in CAD patients compared to healthy controls. We conclude the TNF-α rs1800629 G>A, CYP2C19*17, and miR-423 rs6505162 C>A are potential genetic loci for CAD in the Saudi population. These findings require further verification in future studies. After being verified, our results might be utilized in genetic testing to identify individuals that are susceptible to CAD and, therefore, for whom reducing modifiable risk factors (e.g., poor diet, diabetes, obesity, and smoking) would result in prevention or delay of CAD.
Collapse
Affiliation(s)
- Rehab F. Almassabi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Rashid Mir
- Department of Medical Lab Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (J.J.); (F.M.A.); (R.A.); (N.A.)
| | - Jamsheed Javid
- Department of Medical Lab Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (J.J.); (F.M.A.); (R.A.); (N.A.)
| | - Faisel M. AbuDuhier
- Department of Medical Lab Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (J.J.); (F.M.A.); (R.A.); (N.A.)
| | - Reema Almotairi
- Department of Medical Lab Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (J.J.); (F.M.A.); (R.A.); (N.A.)
| | - Marwan H. Alhelali
- Department of Statistics, University of Tabuk, Tabuk 47512, Saudi Arabia; (M.H.A.); (B.S.O.A.)
| | - Naseh Algehainy
- Department of Medical Lab Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (J.J.); (F.M.A.); (R.A.); (N.A.)
| | - Basim S. O. Alsaedi
- Department of Statistics, University of Tabuk, Tabuk 47512, Saudi Arabia; (M.H.A.); (B.S.O.A.)
| | - Salem Owaid Albalawi
- Department of Cardiology, King Fahd Specialist Hospital, Tabuk 71491, Saudi Arabia;
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
3
|
Jiang Y, Zhao Y, Li ZY, Chen S, Fang F, Cai JH. Potential roles of microRNAs and long noncoding RNAs as diagnostic, prognostic and therapeutic biomarkers in coronary artery disease. Int J Cardiol 2023; 384:90-99. [PMID: 37019219 DOI: 10.1016/j.ijcard.2023.03.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
Coronary artery disease (CAD), which is mainly caused by atherosclerotic processes in coronary arteries, became a significant health issue. MicroRNAs (miRNAs), and long noncoding RNAs (lncRNAs), have been shown to be stable in plasma and could thereby be adopted as biomarkers for CAD diagnosis and treatment. MiRNAs can regulate CAD development through different pathways and mechanisms, including modulation of vascular smooth muscle cell (VSMC) activity, inflammatory responses, myocardial injury, angiogenesis, and leukocyte adhesion. Similarly, previous studies have indicated that the causal effects of lncRNAs in CAD pathogenesis and their utility in CAD diagnosis and treatment, has been found to lead to cell cycle transition, proliferation dysregulation, and migration in favour of CAD development. Differential expression of miRNAs and lncRNAs in CAD patients has been identified and served as diagnostic, prognostic and therapeutic biomarkers for the assessment of CAD patients. Thus, in the current review, we summarize the functions of miRNAs and lncRNAs, which aimed to identify novel targets for the CAD diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China.
| | - Ying Zhao
- Department of Cardiology, Jilin Central Hospital, Jilin 132011, China
| | - Zheng-Yi Li
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China
| | - Shuang Chen
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China
| | - Fang Fang
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China.
| | - Jian-Hui Cai
- Department of Clinical Medicine, Jilin Medical University, Jilin 132013, China; Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin 132013, China.
| |
Collapse
|
4
|
Singh DD, Kim Y, Choi SA, Han I, Yadav DK. Clinical Significance of MicroRNAs, Long Non-Coding RNAs, and CircRNAs in Cardiovascular Diseases. Cells 2023; 12:1629. [PMID: 37371099 DOI: 10.3390/cells12121629] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Based on recent research, the non-coding genome is essential for controlling genes and genetic programming during development, as well as for health and cardiovascular diseases (CVDs). The microRNAs (miRNAs), lncRNAs (long ncRNAs), and circRNAs (circular RNAs) with significant regulatory and structural roles make up approximately 99% of the human genome, which does not contain proteins. Non-coding RNAs (ncRNA) have been discovered to be essential novel regulators of cardiovascular risk factors and cellular processes, making them significant prospects for advanced diagnostics and prognosis evaluation. Cases of CVDs are rising due to limitations in the current therapeutic approach; most of the treatment options are based on the coding transcripts that encode proteins. Recently, various investigations have shown the role of nc-RNA in the early diagnosis and treatment of CVDs. Furthermore, the development of novel diagnoses and treatments based on miRNAs, lncRNAs, and circRNAs could be more helpful in the clinical management of patients with CVDs. CVDs are classified into various types of heart diseases, including cardiac hypertrophy (CH), heart failure (HF), rheumatic heart disease (RHD), acute coronary syndrome (ACS), myocardial infarction (MI), atherosclerosis (AS), myocardial fibrosis (MF), arrhythmia (ARR), and pulmonary arterial hypertension (PAH). Here, we discuss the biological and clinical importance of miRNAs, lncRNAs, and circRNAs and their expression profiles and manipulation of non-coding transcripts in CVDs, which will deliver an in-depth knowledge of the role of ncRNAs in CVDs for progressing new clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Youngsun Kim
- Department of Obstetrics and Gynecology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Ah Choi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul 08826, Republic of Korea
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Biodisplay, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Dharmendra Kumar Yadav
- Department of Pharmacy, Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Incheon 21924, Republic of Korea
| |
Collapse
|
5
|
Sæther JC, Vesterbekkmo EK, Taraldsen MD, Gigante B, Follestad T, Røsjø HR, Omland T, Wiseth R, Madssen E, Bye A. Associations between circulating microRNAs and lipid-rich coronary plaques measured with near-infrared spectroscopy. Sci Rep 2023; 13:7580. [PMID: 37165064 PMCID: PMC10172303 DOI: 10.1038/s41598-023-34642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
Lipid-rich coronary atherosclerotic plaques often cause myocardial infarction (MI), and circulating biomarkers that reflect lipid content may predict risk of MI. We investigated the association between circulating microRNAs (miRs) are lipid-rich coronary plaques in 47 statin-treated patients (44 males) with stable coronary artery disease undergoing percutaneous coronary intervention. We assessed lipid content in non-culprit coronary artery lesions with near-infrared spectroscopy and selected the 4 mm segment with the highest measured lipid core burden index (maxLCBI4mm). Lipid-rich plaques were predefined as a lesion with maxLCBI4mm ≥ 324.7. We analyzed 177 circulating miRs with quantitative polymerase chain reaction in plasma samples. The associations between miRs and lipid-rich plaques were analyzed with elastic net. miR-133b was the miR most strongly associated with lipid-rich coronary plaques, with an estimated 18% increase in odds of lipid-rich plaques per unit increase in miR-133b. Assessing the uncertainty by bootstrapping, miR-133b was present in 82.6% of the resampled dataset. Inclusion of established cardiovascular risk factors did not attenuate the association. No evidence was found for an association between the other analyzed miRs and lipid-rich coronary plaques. Even though the evidence for an association was modest, miR-133b could be a potential biomarker of vulnerable coronary plaques and risk of future MI. However, the prognostic value and clinical relevance of miR-133b needs to be assessed in larger cohorts.
Collapse
Affiliation(s)
- Julie Caroline Sæther
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Cardiology, St. Olavs Hospital, Trondheim, Norway.
| | - Elisabeth Kleivhaug Vesterbekkmo
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Cardiology, St. Olavs Hospital, Trondheim, Norway
- National Advisory Unit on Exercise Training as Medicine for Cardiopulmonary Conditions, Trondheim, Norway
| | - Maria Dalen Taraldsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bruna Gigante
- Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Turid Follestad
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Clinical Research Unit Central Norway, St. Olavs Hospital, Trondheim, Norway
| | - Helge Rørvik Røsjø
- Division of Research and Innovation, Akershus University Hospital, Lørenskog, Norway
- K. G. Jebsen Center for Cardiac Biomarkers, University of Oslo, Oslo, Norway
| | - Torbjørn Omland
- Division of Research and Innovation, Akershus University Hospital, Lørenskog, Norway
- K. G. Jebsen Center for Cardiac Biomarkers, University of Oslo, Oslo, Norway
- Department of Cardiology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Rune Wiseth
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Cardiology, St. Olavs Hospital, Trondheim, Norway
| | - Erik Madssen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Cardiology, St. Olavs Hospital, Trondheim, Norway
| | - Anja Bye
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Cardiology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
6
|
Da Fonseca Ferreira A, Wei J, Zhang L, Macon CJ, Degnan B, Jayaweera D, Hare JM, Kolber MA, Bellio M, Khan A, Pan Y, Dykxhoorn DM, Wang L, Dong C. HIV Promotes Atherosclerosis via Circulating Extracellular Vesicle MicroRNAs. Int J Mol Sci 2023; 24:7567. [PMID: 37108729 PMCID: PMC10146407 DOI: 10.3390/ijms24087567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
People living with HIV (PLHIV) are at a higher risk of having cerebrocardiovascular diseases (CVD) compared to HIV negative (HIVneg) individuals. The mechanisms underlying this elevated risk remains elusive. We hypothesize that HIV infection results in modified microRNA (miR) content in plasma extracellular vesicles (EVs), which modulates the functionality of vascular repairing cells, i.e., endothelial colony-forming cells (ECFCs) in humans or lineage negative bone marrow cells (lin- BMCs) in mice, and vascular wall cells. PLHIV (N = 74) have increased atherosclerosis and fewer ECFCs than HIVneg individuals (N = 23). Plasma from PLHIV was fractionated into EVs (HIVposEVs) and plasma depleted of EVs (HIV PLdepEVs). HIVposEVs, but not HIV PLdepEVs or HIVnegEVs (EVs from HIVneg individuals), increased atherosclerosis in apoE-/- mice, which was accompanied by elevated senescence and impaired functionality of arterial cells and lin- BMCs. Small RNA-seq identified EV-miRs overrepresented in HIVposEVs, including let-7b-5p. MSC (mesenchymal stromal cell)-derived tailored EVs (TEVs) loaded with the antagomir for let-7b-5p (miRZip-let-7b) counteracted, while TEVs loaded with let-7b-5p recapitulated the effects of HIVposEVs in vivo. Lin- BMCs overexpressing Hmga2 (a let-7b-5p target gene) lacking the 3'UTR and as such is resistant to miR-mediated regulation showed protection against HIVposEVs-induced changes in lin- BMCs in vitro. Our data provide a mechanism to explain, at least in part, the increased CVD risk seen in PLHIV.
Collapse
Affiliation(s)
- Andrea Da Fonseca Ferreira
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jianqin Wei
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukun Zhang
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Conrad J. Macon
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Bernard Degnan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Dushyantha Jayaweera
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M. Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael A. Kolber
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael Bellio
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yue Pan
- Biostatistics Division, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Derek M. Dykxhoorn
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Liyong Wang
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chunming Dong
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Section of Cardiology, Department of Medicine, Miami VA Health System, University of Miami, Miami, FL 33146, USA
| |
Collapse
|
7
|
Kefayati F, Karimi Babaahmadi A, Mousavi T, Hodjat M, Abdollahi M. Epigenotoxicity: a danger to the future life. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:382-411. [PMID: 36942370 DOI: 10.1080/10934529.2023.2190713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Environmental toxicants can regulate gene expression in the absence of DNA mutations via epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs' (ncRNAs). Here, all three epigenetic modifications for seven important categories of diseases and the impact of eleven main environmental factors on epigenetic modifications were discussed. Epigenetic-related mechanisms are among the factors that could explain the root cause of a wide range of common diseases. Its overall impression on the development of diseases can help us diagnose and treat diseases, and besides, predict transgenerational and intergenerational effects. This comprehensive article attempted to address the relationship between environmental factors and epigenetic modifications that cause diseases in different categories. The studies main gap is that the precise role of environmentally-induced epigenetic alterations in the etiology of the disorders is unknown; thus, still more well-designed researches need to be accomplished to fill this gap. The present review aimed to first summarize the adverse effect of certain chemicals on the epigenome that may involve in the onset of particular disease based on in vitro and in vivo models. Subsequently, the possible adverse epigenetic changes that can lead to many human diseases were discussed.
Collapse
Affiliation(s)
- Farzaneh Kefayati
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atoosa Karimi Babaahmadi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hodjat
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Xu M, Liu D, Gao X, Wang Z, Zhang L, Fan H. MiR-423-5p Inhibition Exerts Protective Effects on Angiotensin II-Induced Cardiomyocyte Hypertrophy. TOHOKU J EXP MED 2023; 259:199-208. [PMID: 36517015 DOI: 10.1620/tjem.2022.j109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Angiotensin II (Ang II) is a kind of bioactive peptide, which can contribute to cardiac hypertrophy. MicroRNAs (miRNAs) play critical role in various heart diseases. The cardioprotective effect of miR-423-5p inhibition has been confirmed by previous studies. But its role in cardiac hypertrophy induced by Ang II is unknown. This study focused on the potential of miR-423-5p in cardiomyocyte hypertrophy under the treatment of Ang II. Our results revealed that miR-423-5p expression was upregulated in Ang II-treated human cardiomyocytes (HCMs). Importantly, miR-423-5p knockdown suppressed Ang II-induced cardiomyocyte hypertrophy and oxidative stress in HCMs. Bioinformatics analysis and luciferase reporter assay confirmed that the suppressor of Ty 6 homolog (SUPT6H) was a target gene of miR-423-5p. Interestingly, SUPT6H knockdown aggravated cardiomyocyte hypertrophy and oxidative stress in Ang II-stimulated HCMs, which were then reversed by silenced miR-423-5p. In conclusion, miR-423-5p knockdown exerts its protective effects on Ang II-induced cardiomyocyte hypertrophy in HCMs via modulating SUPT6H expression.
Collapse
Affiliation(s)
- Meng Xu
- Department of Intensive Care Unit, The Affiliated Hospital of Xuzhou Medical University
| | - Dongchen Liu
- Department of Coronary Care Unit, The Affiliated Hospital of Xuzhou Medical University
| | - Xinyu Gao
- Department of Burn Orthopedics, The Affiliated Hospital of Xuzhou Medical University
| | - Ziwen Wang
- Department of Intensive Care Unit, The Affiliated Hospital of Xuzhou Medical University
| | - Linna Zhang
- Department of Intensive Care Unit, The Affiliated Hospital of Xuzhou Medical University
| | - Hao Fan
- Department of Intensive Care Unit, The Affiliated Hospital of Xuzhou Medical University
| |
Collapse
|
9
|
Vancheri C, Morini E, Prandi FR, Barillà F, Romeo F, Novelli G, Amati F. Downregulation of Circulating Hsa-miR-200c-3p Correlates with Dyslipidemia in Patients with Stable Coronary Artery Disease. Int J Mol Sci 2023; 24:ijms24021112. [PMID: 36674633 PMCID: PMC9865013 DOI: 10.3390/ijms24021112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/19/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
Coronary heart disease (CHD), one of the leading causes of disability and death worldwide, is a multifactorial disease whose early diagnosis is demanding. Thus, biomarkers predicting the occurrence of this pathology are of great importance from a clinical and therapeutic standpoint. By means of a pilot study on peripheral blood cells (PBMCs) of subjects with no coronary lesions (CTR; n = 2) and patients with stable CAD (CAD; n = 2), we revealed 61 differentially methylated regions (DMRs) (18 promoter regions, 24 genes and 19 CpG islands) and 14.997 differentially methylated single CpG sites (DMCs) in CAD patients. MiRNA-seq results displayed a peculiar miRNAs profile in CAD patients with 18 upregulated and 32 downregulated miRNAs (FC ≥ ±1.5, p ≤ 0.05). An integrated analysis of genome-wide DNA methylation and miRNA-seq results indicated a significant downregulation of hsa-miR-200c-3p (FCCAD = −2.97, p ≤ 0.05) associated to the hypermethylation of two sites (genomic coordinates: chr12:7073122-7073122 and chr12:7072599-7072599) located intragenic to the miR-200c/141 genomic locus (encoding hsa-miR-200c-3p) (p-value = 0.009) in CAD patients. We extended the hsa-miR-200c-3p expression study in a larger cohort (CAD = 72, CTR = 24), confirming its reduced expression level in CAD patients (FCCAD = −2; p = 0.02). However, when we analyzed the methylation status of the two CpG sites in the same cohort, we failed to identify significant differences. A ROC curve analysis showed good performance of hsa-miR-200c-3p expression level (AUC = 0.65; p = 0.02) in distinguishing CAD from CTR. Moreover, we found a significant positive correlation between hsa-miR-200c-3p expression and creatinine clearance (R2 = 0.212, p < 0.005, Pearson r = 0.461) in CAD patients. Finally, a phenotypic correlation performed in the CAD group revealed lower hsa-miR-200c-3p expression levels in CAD patients affected by dyslipidemia (+DLP, n = 58) (p < 0.01). These results indicate hsa-miR-200c-3p as potential epi-biomarker for the diagnosis and clinical progression of CAD and highlight the importance of deeper studies on the expression of this miRNA to understand its functional role in coronary artery disease development.
Collapse
Affiliation(s)
- Chiara Vancheri
- Unit of Medical Genetics, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Elena Morini
- Unit of Medical Genetics, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | | | - Francesco Barillà
- Unit of Cardiology, University Hospital “Tor Vergata”, 00133 Rome, Italy
| | - Francesco Romeo
- Unit of Cardiology, University Hospital “Tor Vergata”, 00133 Rome, Italy
- Faculty of Medicine, Unicamillus-Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Giuseppe Novelli
- Unit of Medical Genetics, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Neuromed IRCCS Institute, 86077 Pozzilli, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Francesca Amati
- Unit of Medical Genetics, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
10
|
Kang L, Zhao Q, Jiang K, Yu X, Chao H, Yin L, Wang Y. Uncovering potential diagnostic biomarkers of acute myocardial infarction based on machine learning and analyzing its relationship with immune cells. BMC Cardiovasc Disord 2023; 23:2. [PMID: 36600215 DOI: 10.1186/s12872-022-02999-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a common cardiovascular disease. This study aimed to mine biomarkers associated with AMI to aid in clinical diagnosis and management. METHODS All mRNA and miRNA data were downloaded from public database. Differentially expressed mRNAs (DEmRNAs) and differentially expressed miRNAs (DEmiRNAs) were identified using the metaMA and limma packages, respectively. Functional analysis of the DEmRNAs was performed. In order to explore the relationship between miRNA and mRNA, we construct miRNA-mRNA negative regulatory network. Potential biomarkers were identified based on machine learning. Subsequently, ROC and immune correlation analysis were performed on the identified key DEmRNA biomarkers. RESULTS According to the false discovery rate < 0.05, 92 DEmRNAs and 272 DEmiRNAs were identified. GSEA analysis found that kegg_peroxisome was up-regulated in AMI and kegg_steroid_hormone_biosynthesis was down-regulated in AMI compared to normal controls. 5 key DEmRNA biomarkers were identified based on machine learning, and classification diagnostic models were constructed. The random forests (RF) model has the highest accuracy. This indicates that RF model has high diagnostic value and may contribute to the early diagnosis of AMI. ROC analysis found that the area under curve of 5 key DEmRNA biomarkers were all greater than 0.7. Pearson correlation analysis showed that 5 key DEmRNA biomarkers were correlated with most of the differential infiltrating immune cells. CONCLUSION The identification of new molecular biomarkers provides potential research directions for exploring the molecular mechanism of AMI. Furthermore, it is important to explore new diagnostic genetic biomarkers for the diagnosis and treatment of AMI.
Collapse
Affiliation(s)
- Ling Kang
- Department of Cardiology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China
| | - Qiang Zhao
- Department of Cardiology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China
| | - Ke Jiang
- Department of Cardiology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China.
| | - Xiaoyan Yu
- Coronary Care Unit, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China
| | - Hui Chao
- Coronary Care Unit, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China
| | - Lijuan Yin
- Department of Cardiology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China
| | - Yueqing Wang
- Department of Cardiology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China.
| |
Collapse
|
11
|
de Los Reyes-García AM, Zapata-Martínez L, Águila S, Lozano ML, Martínez C, González-Conejero R. microRNAs as biomarkers of risk of major adverse cardiovascular events in atrial fibrillation. Front Cardiovasc Med 2023; 10:1135127. [PMID: 36895835 PMCID: PMC9988920 DOI: 10.3389/fcvm.2023.1135127] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Atrial fibrillation is a complex and multifactorial disease. Although prophylactic anticoagulation has great benefits in avoiding comorbidities, adverse cardiovascular events still occur and thus in recent decades, many resources have been invested in the identification of useful markers in the prevention of the risk of MACE in these patients. As such, microRNAs, that are small non-coding RNAs whose function is to regulate gene expression post-transcriptionally, have a relevant role in the development of MACE. miRNAs, have been investigated for many years as potential non-invasive biomarkers of several diseases. Different studies have shown their utility in the diagnosis and prognosis of cardiovascular diseases. In particular, some studies have associated the presence of certain miRNAs in plasma with the development of MACE in AF. Despite these results, there are still many efforts to be done to allow the clinical use of miRNAs. The lack of standardization concerning the methodology in purifying and detecting miRNAs, still provides contradictory results. miRNAs also have a functional impact in MACE in AF through the dysregulation of immunothrombosis. Indeed, miRNAs may be a link between MACE and inflammation, through the regulation of neutrophil extracellular traps that are a key element in the establishment and evolution of thrombotic events. The use of miRNAs as therapy against thromboinflammatory processes should also be a future approach to avoid the occurrence of MACE in atrial fibrillation.
Collapse
Affiliation(s)
- Ascensión M de Los Reyes-García
- Servicio de Hematología y Oncología Médica, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia IMIB Pascual Parrilla, Murcia, Spain
| | - Laura Zapata-Martínez
- Servicio de Hematología y Oncología Médica, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia IMIB Pascual Parrilla, Murcia, Spain
| | - Sonia Águila
- Servicio de Hematología y Oncología Médica, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia IMIB Pascual Parrilla, Murcia, Spain
| | - María L Lozano
- Servicio de Hematología y Oncología Médica, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia IMIB Pascual Parrilla, Murcia, Spain
| | - Constantino Martínez
- Servicio de Hematología y Oncología Médica, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia IMIB Pascual Parrilla, Murcia, Spain
| | - Rocío González-Conejero
- Servicio de Hematología y Oncología Médica, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia IMIB Pascual Parrilla, Murcia, Spain
| |
Collapse
|
12
|
Garcia-Padilla C, Lozano-Velasco E, Garcia-Lopez V, Aranega A, Franco D, Garcia-Martinez V, Lopez-Sanchez C. Comparative Analysis of Non-Coding RNA Transcriptomics in Heart Failure. Biomedicines 2022; 10:3076. [PMID: 36551832 PMCID: PMC9775550 DOI: 10.3390/biomedicines10123076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Heart failure constitutes a clinical complex syndrome with different symptomatic characteristics depending on age, sex, race and ethnicity, among others, which has become a major public health issue with an increasing prevalence. One of the most interesting tools seeking to improve prevention, diagnosis, treatment and prognosis of this pathology has focused on finding new molecular biomarkers since heart failure relies on deficient cardiac homeostasis, which is regulated by a strict gene expression. Therefore, currently, analyses of non-coding RNA transcriptomics have been oriented towards human samples. The present review develops a comparative study emphasizing the relevance of microRNAs, long non-coding RNAs and circular RNAs as potential biomarkers in heart failure. Significantly, further studies in this field of research are fundamental to supporting their widespread clinical use. In this sense, the various methodologies used by the authors should be standardized, including larger cohorts, homogeneity of the samples and uniformity of the bioinformatic pipelines used to reach stratification and statistical significance of the results. These basic adjustments could provide promising steps to designing novel strategies for clinical management of patients with heart failure.
Collapse
Affiliation(s)
- Carlos Garcia-Padilla
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
| | - Estefanía Lozano-Velasco
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Medina Foundation, 18016 Granada, Spain
| | - Virginio Garcia-Lopez
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Medina Foundation, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Medina Foundation, 18016 Granada, Spain
| | - Virginio Garcia-Martinez
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Carmen Lopez-Sanchez
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
13
|
Brown C, Mantzaris M, Nicolaou E, Karanasiou G, Papageorgiou E, Curigliano G, Cardinale D, Filippatos G, Memos N, Naka KK, Papakostantinou A, Vogazianos P, Ioulianou E, Shammas C, Constantinidou A, Tozzi F, Fotiadis DI, Antoniades A. A systematic review of miRNAs as biomarkers for chemotherapy-induced cardiotoxicity in breast cancer patients reveals potentially clinically informative panels as well as key challenges in miRNA research. CARDIO-ONCOLOGY 2022; 8:16. [PMID: 36071532 PMCID: PMC9450324 DOI: 10.1186/s40959-022-00142-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022]
Abstract
Breast cancer patients are at a particularly high risk of cardiotoxicity from chemotherapy having a detrimental effect on quality-of-life parameters and increasing the risk of mortality. Prognostic biomarkers would allow the management of therapies to mitigate the risks of cardiotoxicity in vulnerable patients and a key potential candidate for such biomarkers are microRNAs (miRNA). miRNAs are post-transcriptional regulators of gene expression which can also be released into the circulatory system and have been associated with the progression of many chronic diseases including many types of cancer. In this review, the evidence for the potential application of miRNAs as biomarkers for chemotherapy-induced cardiotoxicity (CIC) in breast cancer patientsis evaluated and a simple meta-analysis is performed to confirm the replication status of each reported miRNA. Further selection of miRNAs is performed by reviewing the reported associations of each miRNA with other cardiovascular conditions. Based on this research, the most representative panels targeting specific chemotherapy agents and treatment regimens are suggested, that contain several informative miRNAs, including both general markers of cardiac damage as well as those for the specific cancer treatments.
Collapse
|
14
|
Investigating melanogenesis-related microRNAs as disease biomarkers in vitiligo. Sci Rep 2022; 12:13526. [PMID: 35941163 PMCID: PMC9360006 DOI: 10.1038/s41598-022-17770-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
Vitiligo is considered a disabling disease that affects physical, social, psychological, and occupational aspects of an individual's quality of life. The search for non-invasive and reliable biomarkers for vitiligo's early diagnosis, prognosis, and treatment prediction is under intensive investigation. There is currently an emerging interest in employing miRNAs as biomarkers to predict vitiligo diagnosis and prognosis, inspired by the well-preserved nature of miRNAs in serum or plasma. In the current study, we assessed a panel of 20 melanogenesis pathway-related microRNAs (miRNAs) using quantitative real-time PCR technique in 85 non-segmental vitiligo (NSV) patients compared to 85 normal controls followed by function and pathway enrichment analysis for the miRNAs with significant results. Twelve out of the 20 circulating miRNAs showed significantly higher expression levels in vitiligo patients relative to controls where miR-423 show the highest expression level followed by miR-182, miR-106a, miR-23b, miR-9, miR-124, miR-130a, miR-203a, miR-181, miR-152, and miR-320a. While six miRNAs (miR-224, miR-148a, miR-137, and miR-7, miR-148b, miR-145, miR-374b, and miR-196b) didn’t show significant expression level. The analysis of the receiver operating curve indicated that miR-423, miR-106a, and miR-182 were outstanding biomarkers with the highest areas under the curve in vitiligo. This study is the first Egyptian study to investigate a panel of miRNAs expression profile in the plasma of patients with NSV. Our results suggest that specific circulating miRNAs signature might be implicated in vitiligo pathogenesis and could potentially be used as biomarkers in vitiligo.
Collapse
|
15
|
Transcriptomics of angiotensin II-induced long noncoding and coding RNAs in endothelial cells. J Hypertens 2022; 40:1303-1313. [PMID: 35762471 DOI: 10.1097/hjh.0000000000003140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Angiotensin II (Ang II)-induced endothelial dysfunction plays an important role in the pathogenesis of cardiovascular diseases such as systemic hypertension, cardiac hypertrophy and atherosclerosis. Recently, long noncoding RNAs (lncRNAs) have been shown to play an essential role in the pathobiology of cardiovascular diseases; however, the effect of Ang II on lncRNAs and coding RNAs expression in endothelial cells has not been evaluated. Accordingly, we sought to evaluate the expression profiles of lncRNAs and coding RNAs in endothelial cells following treatment with Ang II. METHODS Human umbilical vein endothelial cells (HUVECs) were cultured and treated with Ang II (10-6 mol/l) for 24 h. The cells were then profiled for the expression of lncRNAs and mRNAs using the Arraystar Human lncRNA Expression Microarray V3.0. RESULTS In HUVECs following Ang II treatment, from a total of 30 584 lncRNA targets screened, 25 targets were significantly upregulated, while 69 were downregulated. In the same HUVECs samples, from 26 106 mRNA targets screened, 28 targets were significantly upregulated and 67 were downregulated. Of the differentially expressed lncRNAs, RP11-354P11.2 and RP11-360F5.1 were the most upregulated (11-fold) and downregulated (three-fold) lncRNAs, respectively. Assigning the differentially regulated genes into functional groups using bioinformatics reveals numerous genes involved in the nucleotide excision repair and ECM-receptor interaction. CONCLUSION This is the first study to profile the Ang II-induced differentially expressed lncRNAs and mRNAs in human endothelial cells. Our results reveal novel targets and substantially extend the list of potential candidate genes involved in Ang II-induced endothelial dysfunction and cardiovascular diseases.
Collapse
|
16
|
Lättekivi F, Guljavina I, Midekessa G, Viil J, Heath PR, Bæk R, Jørgensen MM, Andronowska A, Kingo K, Fazeli A. Profiling Blood Serum Extracellular Vesicles in Plaque Psoriasis and Psoriatic Arthritis Patients Reveals Potential Disease Biomarkers. Int J Mol Sci 2022; 23:ijms23074005. [PMID: 35409365 PMCID: PMC9000144 DOI: 10.3390/ijms23074005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Psoriasis vulgaris (PsV) and psoriatic arthritis (PsA) are inflammatory diseases with unresolved pathophysiological aspects. Extracellular vesicles (EVs) play an important role in intercellular communication. We compared the miRNA contents and surface proteome of the EVs in the blood serum of PsV and PsA patients to healthy controls. Size-exclusion chromatography was used to isolate EVs from the blood serum of 12 PsV patients, 12 PsA patients and 12 healthy control subjects. EV samples were characterized and RNA sequencing was used to identify differentially enriched EV-bound miRNAs. We found 212 differentially enriched EV-bound miRNAs present in both PsV and PsA groups—a total of 13 miRNAs at FDR ≤ 0.05. The predicted target genes of these miRNAs were significantly related to lesser known but potentially disease-relevant pathways. The EV array revealed that PsV patient EV samples were significantly enriched with CD9 EV-marker compared to controls. Analysis of EV-bound miRNAs suggests that signaling via EVs in the blood serum could play a role in the pathophysiological processes of PsV and PsA. EVs may be able to fill the void in clinically applicable diagnostic and prognostic biomarkers for PsV and PsA.
Collapse
Affiliation(s)
- Freddy Lättekivi
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 14b, 50411 Tartu, Estonia; (F.L.); (I.G.); (G.M.)
| | - Irina Guljavina
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 14b, 50411 Tartu, Estonia; (F.L.); (I.G.); (G.M.)
| | - Getnet Midekessa
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 14b, 50411 Tartu, Estonia; (F.L.); (I.G.); (G.M.)
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Janeli Viil
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 14b, 50411 Tartu, Estonia;
| | - Paul R. Heath
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK;
| | - Rikke Bæk
- Department of Clinical Immunology, Aalborg University Hospital, Urbansgade 32-36, 9000 Aalborg, Denmark; (R.B.); (M.M.J.)
| | - Malene Møller Jørgensen
- Department of Clinical Immunology, Aalborg University Hospital, Urbansgade 32-36, 9000 Aalborg, Denmark; (R.B.); (M.M.J.)
- Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, 9220 Aalborg, Denmark
| | - Aneta Andronowska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima St. 10, 10-748 Olsztyn, Poland;
| | - Kulli Kingo
- Clinic of Dermatology, Institute of Clinical Medicine, University of Tartu, Raja 31, 50417 Tartu, Estonia;
- Clinic of Dermatology, Tartu University Hospital, Raja 31, 50417 Tartu, Estonia
| | - Alireza Fazeli
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 14b, 50411 Tartu, Estonia; (F.L.); (I.G.); (G.M.)
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia
- Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield S10 2SF, UK
- Correspondence: ; Tel.: +372-737-4425
| |
Collapse
|
17
|
Maintenance and gene electrotransfer efficiency of antibiotic resistance gene-free plasmids encoding mouse, canine and human interleukin-12 orthologues. Heliyon 2022; 8:e08879. [PMID: 35265755 PMCID: PMC8899673 DOI: 10.1016/j.heliyon.2022.e08879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/29/2021] [Accepted: 01/29/2022] [Indexed: 11/26/2022] Open
Abstract
Interleukin 12 (IL-12) is a cytokine used as a therapeutic molecule in cancer immunotherapy. Gene electrotransfer mediated delivery of IL-12 gene has reached clinical evaluation in the USA using a plasmid that in addition to IL-12 gene also carry an antibiotic resistance gene needed for its production in bacteria. In Europe however, European Medicines Agency recommends against the use of antibiotics during the production of clinical grade plasmids. We have prepared several antibiotic resistance gene-free plasmids using an antibiotic-free selection strategy called operator-repressor titration, including plasmids encoding mouse, canine and human IL-12 orthologues. The aim of this study was to evaluate the maintenance of these plasmids in bacterial culture and test their transfection efficiency using gene electrotransfer. Plasmid maintenance was evaluated by determining plasmid yields and topologies after subculturing transformed bacteria. Transfection efficiency was evaluated by determining the plasmid copy number, expression and cytotoxicity after gene electrotransfer to mouse, canine and human melanoma cells. The results demonstrated that our IL-12 plasmids without an antibiotic resistance gene are stably maintained in bacteria and provide sufficient IL-12 expression after in vitro gene electrotransfer; therefore, they have the potential to proceed to further in vivo evaluation studies.
Collapse
|
18
|
LMWH-induced miRNA changes in peripheral blood mononuclear cells (PBMCs) in pregnancies with unexplained recurrent pregnancy loss. J Reprod Immunol 2022; 151:103502. [DOI: 10.1016/j.jri.2022.103502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 11/20/2022]
|
19
|
Quatrana A, Morini E, Tiano F, Vancheri C, Panarello L, Romano S, Marcotulli C, Casali C, Mariotti C, Mongelli A, Fichera M, Rufini A, Condò I, Novelli G, Testi R, Amati F, Malisan F. Hsa-miR223-3p circulating level is upregulated in Friedreich's ataxia and inversely associated with HCLS1 associated protein X-1, HAX-1. Hum Mol Genet 2022; 31:2010-2022. [PMID: 35015850 DOI: 10.1093/hmg/ddac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 11/12/2022] Open
Abstract
Frataxin (FXN) deficiency is responsible for Friedreich's ataxia (FRDA) in which, besides the characteristic features of spinocerebellar ataxia, two thirds of patients develop hypertrophic cardiomyopathy that often progresses to heart failure and premature death. Different mechanisms might underlie FRDA pathogenesis. Among them, the role of miRNAs deserves investigations. We carried out a miRNA PCR-array analysis of plasma samples of early-, intermediate- and late-onset FRDA groups, defining a set of 30 differentially expressed miRNAs. Hsa-miR223-3p is the only miRNA shared between the three patient groups and appears upregulated in all of them. The upregulation of hsa-miR223-3p was further validated in all enrolled patients (n = 37, Fc = +2.3; p < 0.0001). Using a Receiver Operating Characteristic (ROC) curve analysis, we quantified the predictive value of circulating hsa-miR223-3p for FRDA, obtaining an AUC (Area Under the ROC Curve) value of 0.835 (p < 0.0001) for all patients. Interestingly, we found a significant positive correlation between hsa-miR223-3p expression and cardiac parameters in typical FRDA patients (onset < 25 years). Moreover, a significant negative correlation between hsa-miR223-3p expression and HAX-1 (HCLS1 associated protein X-1) at mRNA and protein level was observed in all FRDA patients. In silico analyses suggested HAX-1 as a target gene of hsa-miR223-3p. Accordingly, we report that HAX-1 is negatively regulated by hsa-miR223-3p in cardiomyocytes (AC16) and neurons (SH-SY5Y), which are critically affected cell types in FRDA. This study describes for the first time the association between hsa-miR223-3p and HAX-1 expression in FRDA, thus supporting a potential role of this microRNA as non-invasive epigenetic biomarker for FRDA.
Collapse
Affiliation(s)
- Andrea Quatrana
- Laboratory of Signal Transduction, Dept. of Biomedicine and Prevention; University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Elena Morini
- Section of Medical Genetics, Dept. of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Francesca Tiano
- Laboratory of Signal Transduction, Dept. of Biomedicine and Prevention; University of Rome "Tor Vergata", 00133 Rome, Italy.,Unit of Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Chiara Vancheri
- Section of Medical Genetics, Dept. of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Luca Panarello
- Laboratory of Signal Transduction, Dept. of Biomedicine and Prevention; University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Silvia Romano
- Neurosciences, Mental Health and Sensory Organs (NESMOS) Department, Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
| | | | - Carlo Casali
- Dept. of Medical Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University of Rome, 04100 Latina, Italy
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Alessia Mongelli
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Mario Fichera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Alessandra Rufini
- Laboratory of Signal Transduction, Dept. of Biomedicine and Prevention; University of Rome "Tor Vergata", 00133 Rome, Italy.,Fratagene Therapeutics Srl, Rome, 00144 Rome, Italy.,Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Ivano Condò
- Laboratory of Signal Transduction, Dept. of Biomedicine and Prevention; University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Giuseppe Novelli
- Section of Medical Genetics, Dept. of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy.,Neuromed Institute, IRCCS, 86077 Pozzilli, Italy
| | - Roberto Testi
- Laboratory of Signal Transduction, Dept. of Biomedicine and Prevention; University of Rome "Tor Vergata", 00133 Rome, Italy.,Fratagene Therapeutics Srl, Rome, 00144 Rome, Italy
| | - Francesca Amati
- Section of Medical Genetics, Dept. of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy.,Department for the Promotion of Human Science and Quality of Life, University San Raffaele, 00166 Rome, Italy
| | - Florence Malisan
- Laboratory of Signal Transduction, Dept. of Biomedicine and Prevention; University of Rome "Tor Vergata", 00133 Rome, Italy
| |
Collapse
|
20
|
Charkiewicz AE, Garley M, Ratajczak-Wrona W, Jabłońska E, Miltyk W, Motyka J, Omeljaniuk WJ. The diagnostic potential of novel biomarkers of hypertension in men. Arch Med Sci 2022; 18:1666-1671. [PMID: 36457990 PMCID: PMC9710276 DOI: 10.5114/aoms/153500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/04/2022] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION The present study aimed to evaluate the diagnostic usefulness of selected novel parameters as biomarkers of hypertension: miR-145-5p, miR-1-3p, miR-423-5p, PCSK9, MyBPC3, NOX1, and CYBb, and NCF2, DNase 1, anti-MPO and anti-PR3 antibodies. METHODS We present the data of men with normal blood pressure, diagnosed hypertension, confirmed hypertension, and hypertension and coexisting coronary artery disease. RESULTS Elevated levels of miR-145-5p, miR-1-3p, and miR-423-5p and high levels of PCSK9, MyBPC3, and DNase 1 were observed in all groups of hypertensive men. We showed decreased levels of NOX1 and CYBb, and an elevated level of NCF2. CONCLUSIONS PCSK9 shows the greatest potential as an early biomarker of screening-detected hypertension.
Collapse
Affiliation(s)
| | - Marzena Garley
- Department of Immunology, Medical University of Bialystok, Bialystok, Poland
| | | | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Motyka
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Wioleta J. Omeljaniuk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
21
|
MicroRNA as a Potential Biomarker and Treatment Strategy for Ischemia-Reperfusion Injury. Int J Genomics 2021; 2021:9098145. [PMID: 34845433 PMCID: PMC8627352 DOI: 10.1155/2021/9098145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury is a progressive injury that aggravates the pathological state when the organ tissue restores blood supply after a certain period of ischemia, including the myocardial, brain, liver, kidney, and intestinal. With growing evidence that microRNAs (miRNAs) play an important role as posttranscription gene silencing mediators in many I/R injury, in this review, we highlight the microRNAs that are related to I/R injury and their regulatory molecular pathways. In addition, we discussed the potential role of miRNA as a biomarker and its role as a target in I/R injury treatment. Developing miRNAs are not without its challenges, but prudent design combined with existing clinical treatments will result in more effective therapies for I/R injury. This review is aimed at providing new research results obtained in this research field. It is hoped that new research on this topic will not only generate new insights into the pathophysiology of miRNA in I/R injury but also can provide a basis for the clinical application of miRNA in I/R.
Collapse
|
22
|
Gao Y, Liang X, Tian Z, Ma Y, Sun C. Betalain exerts cardioprotective and anti-inflammatory effects against the experimental model of heart failure. Hum Exp Toxicol 2021; 40:S16-S28. [PMID: 34189972 DOI: 10.1177/09603271211027933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Betalain is a natural plant pigment known to elicit various biological activities. However, studies on the protective effect of betalain against heart failure have not reported yet. The experimental model of heart failure was created in Wistar rats using isoproterenol (ISO). The animals were randomly assigned into four groups such as sham-control, ISO-induced heart failure, betalain pretreated before ISO induction (50 mg/kg/day), and betalain drug control group were maintained for 6 weeks. At the end of the experimental period, anti-oxidant enzymes, inflammatory markers, matrix proteins, cardiac-specific markers, and micro RNAs were elucidated using RT-PCR, and ELISA analysis. The results demonstrated that the rats induced with ISO displayed an abnormality in cardiac functions, increased oxidative stress markers (p < 0.01), inflammatory cytokines (p < 0.01) while abrogated the expression of miR-18a, and increased miR-199a. While betalain pre-treated rats prevented the cardiac failure significantly (p < 0.01) with improved anti-oxidant enzymes, abrogated the inflammatory signals with restored matrix proteins, cardiac biomarker genes, and attenuated miR-423 and miR-27 compared to heart failure rats. The results of the study suggest that the betalain treatment protected the hearts from failing via microRNA mediated activation the anti-inflammatory signaling and restoring the matrix protein modulation.
Collapse
Affiliation(s)
- Y Gao
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - X Liang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Z Tian
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Y Ma
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - C Sun
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
23
|
Brundin M, Wågsäter D, Alehagen U, Carlhäll CJ. Circulating microRNA-29-5p can add to the discrimination between dilated cardiomyopathy and ischaemic heart disease. ESC Heart Fail 2021; 8:3865-3874. [PMID: 34173728 PMCID: PMC8497385 DOI: 10.1002/ehf2.13458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/30/2021] [Accepted: 05/23/2021] [Indexed: 12/04/2022] Open
Abstract
Aims Heart failure describes a large and heterogeneous spectrum of underlying cardiac diseases. MicroRNAs (miRs) are small non‐coding RNAs that in recent years have been shown to play an important role in the pathogenesis of heart failure. Cardiac magnetic resonance imaging is a powerful imaging modality for the evaluation of cardiac characteristics in heart failure. In this study, we sought to compare heart failure patients with a diagnosis of either idiopathic dilated cardiomyopathy (DCM) or ischaemic heart disease (IHD), in the context of serum levels of certain miRs and also magnetic resonance imaging parameters of cardiac structure and function. Methods and results A total of 135 subjects were studied: 53 patients with DCM (age: 59 ± 12 years, mean ± SD), 34 patients with IHD (66 ± 9 years), and 48 controls (64 ± 5 years). The participants underwent baseline medical examination, blood sampling, and a cardiac magnetic resonance imaging examination at 3 Tesla (Philips Ingenia). The serum levels of seven different miRs were analysed and assessed: 16‐5p, 21‐5p, 29‐5p, 133a‐3p, 191‐5p, 320a, and 423‐5p, all of which have been demonstrated to play potential roles in the pathogenesis of heart failure. The patients in the DCM and IHD groups had left ventricles that had larger end‐diastolic volume (P < 0.001), larger mass (P < 0.001), and lower ejection fraction (P < 0.001) compared with controls. Serum levels of miR‐29‐5p were increased in DCM compared with IHD (P < 0.005) and serum levels of miR‐320a were elevated in DCM compared with healthy controls (P < 0.05). There was no significant association between miR levels and magnetic resonance imaging parameters of left ventricular structure and function. Conclusions Circulating miR‐320a can add to the discrimination between patients with DCM and healthy controls and circulating miR‐29‐5p can add to the discrimination between DCM and IHD.
Collapse
Affiliation(s)
- Martin Brundin
- Department of Clinical Physiology, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Dick Wågsäter
- Division of Drug Research, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Urban Alehagen
- Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Carl-Johan Carlhäll
- Department of Clinical Physiology, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| |
Collapse
|
24
|
Vancheri C, Morini E, Prandi FR, Alkhoury E, Celotto R, Romeo F, Novelli G, Amati F. Two RECK Splice Variants (Long and Short) Are Differentially Expressed in Patients with Stable and Unstable Coronary Artery Disease: A Pilot Study. Genes (Basel) 2021; 12:genes12060939. [PMID: 34205376 PMCID: PMC8234100 DOI: 10.3390/genes12060939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Primary prevention is crucial for coronary heart disease (CAD) and the identification of new reliable biomarkers might help risk stratification or predict adverse coronary events. Alternative splicing (AS) is a less investigated genetic factors implicated in CAD etiology. We performed an RNA-seq study on PBMCs from CAD patients and control subjects (CTR) and observed 113 differentially regulated AS events (24 up and 89 downregulated) in 86 genes. The RECK (Reversion-inducing-cysteine-rich protein with Kazal motifs) gene was further analyzed in a larger case study (24 CTR subjects, 72 CAD and 32 AMI patients) for its Splicing-Index FC (FC = −2.64; p = 0.0217), the AS event involving an exon (exon 18), and its role in vascular inflammation and remodeling. We observed a significant downregulation of Long RECK splice variant (containing exon 18) in PBMCs of AMI compared to CTR subjects (FC = −3.3; p < 0.005). Interestingly, the Short RECK splice variant (lacking exon 18) was under-expressed in AMI compared to both CTR (FC = −4.5; p < 0.0001) and CAD patients (FC = −4.2; p < 0.0001). A ROC curve, constructed combining Long and Short RECK expression data, shows an AUC = 0.81 (p < 0.001) to distinguish AMI from stable CAD patients. A significant negative correlation between Long RECK and triglycerides in CTR group and a positive correlation in the AMI group was found. The combined evaluation of Long and Short RECK expression levels is a potential genomic biomarker for the discrimination of AMI from CAD patients. Our results underline the relevance of deeper studies on the expression of these two splice variants to elucidate their functional role in CAD development and progression.
Collapse
Affiliation(s)
- Chiara Vancheri
- Genetics Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.V.); (E.M.); (G.N.)
| | - Elena Morini
- Genetics Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.V.); (E.M.); (G.N.)
| | - Francesca Romana Prandi
- Unit of Cardiology, University Hospital “Tor Vergata”, 00133 Rome, Italy; (F.R.P.); (E.A.); (R.C.); (F.R.)
| | - Elie Alkhoury
- Unit of Cardiology, University Hospital “Tor Vergata”, 00133 Rome, Italy; (F.R.P.); (E.A.); (R.C.); (F.R.)
| | - Roberto Celotto
- Unit of Cardiology, University Hospital “Tor Vergata”, 00133 Rome, Italy; (F.R.P.); (E.A.); (R.C.); (F.R.)
| | - Francesco Romeo
- Unit of Cardiology, University Hospital “Tor Vergata”, 00133 Rome, Italy; (F.R.P.); (E.A.); (R.C.); (F.R.)
- Unicamillus International Medical University, 00131 Rome, Italy
| | - Giuseppe Novelli
- Genetics Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.V.); (E.M.); (G.N.)
- Medical Genetics Laboratories, Tor Vergata University Hospital, PTV, 00133 Rome, Italy
- Neuromed IRCCS Institute, 86077 Pozzilli, Italy
- School of Medicine, Reno University of Nevada, Reno, NV 1664, USA
| | - Francesca Amati
- Genetics Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.V.); (E.M.); (G.N.)
- Department for the Promotion of Human Science and Quality of Life, University San Raffaele, 00166 Rome, Italy
- Correspondence:
| |
Collapse
|
25
|
Wan J, Liu Y, Long F, Tian J, Zhang C. circPVT1 promotes osteosarcoma glycolysis and metastasis by sponging miR-423-5p to activate Wnt5a/Ror2 signaling. Cancer Sci 2021; 112:1707-1722. [PMID: 33369809 PMCID: PMC8088910 DOI: 10.1111/cas.14787] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma (OS) is the most prevalent form of bone cancer. It has a high metastatic potential and progresses rapidly. The molecular mechanisms of OS remain unclear and this study aims to examine the functional role of circPVT1 and miR‐423‐5p in OS. Quantitative RT‐PCR (qRT‐PCR) and western blotting were used to examine levels of miR‐423‐5p, circPVT1, Wnt5a, Ror2, and glycolysis‐related proteins, including HK2, PKM2, GLUT1, and LDHA. Colony formation and transwell assays were used to test the roles of miR‐423‐5p, circPVT1, and Wnt5a/Ror2 in OS cell proliferation, migration, and invasion. Dual luciferase assay and Ago2‐RIP were used to validate the interactions of miR‐423‐5p/Wnt5a, miR‐423‐5p/Ror2, and circPVT1/miR‐423‐5p. Glucose uptake assay and measurement of lactate production were performed to assess the glycolysis process. A nude mouse xenograft model was used to evaluate the effects of sh‐circPVT1 and miR‐423‐5p mimics on tumor growth and metastasis in vivo. miR‐423‐5p was reduced in both OS tissues and OS cell lines, while Wnt5a/Ror2 and circPVT1 were elevated. miR‐423‐5p bound to 3′‐UTR of Wnt5a and Ror2 mRNA, and inhibited glycolysis and OS cell proliferation, migration, and invasion by targeting Wnt5a and Ror2. circPVT1 interacted with miR‐423‐5p and activated Wnt5a/Ror2 signaling by sponging miR‐423‐5p. Knockdown of circPVT1 or overexpression of miR‐423‐5p suppressed OS tumor growth and metastasis in vivo. miR‐423‐5p inhibited OS glycolysis, proliferation, migration, and metastasis by targeting and suppressing Wnt5a/Ror2 signaling pathway, while circPVT1 promoted those processes by acting as a sponge of miR‐423‐5p.
Collapse
Affiliation(s)
- Jun Wan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yupeng Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Feng Long
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Tian
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Can Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Role of Selected miRNAs as Diagnostic and Prognostic Biomarkers in Cardiovascular Diseases, Including Coronary Artery Disease, Myocardial Infarction and Atherosclerosis. J Cardiovasc Dev Dis 2021; 8:jcdd8020022. [PMID: 33669699 PMCID: PMC7923109 DOI: 10.3390/jcdd8020022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide in different cohorts. It is well known that miRNAs have a crucial role in regulating the development of cardiovascular physiology, thus impacting the pathophysiology of heart diseases. MiRNAs also have been reported to be associated with cardiac reactions, leading to myocardial infarction (MCI) and ultimately heart failure (HF). To prevent these heart diseases, proper and timely diagnosis of cardiac dysfunction is pivotal. Though there are many symptoms associated with an irregular heart condition and though there are some biomarkers available that may indicate heart disease, authentic, specific and sensitive markers are the need of the hour. In recent times, miRNAs have proven to be promising candidates in this regard. They are potent biomarkers as they can be easily detected in body fluids (blood, urine, etc.) due to their remarkable stability and presence in apoptotic bodies and exosomes. Existing studies suggest the role of miRNAs as valuable biomarkers. A single biomarker may be insufficient to diagnose coronary artery disease (CAD) or acute myocardial infarction (AMI); thus, a combination of different miRNAs may prove fruitful. Therefore, this review aims to highlight the role of circulating miRNA as diagnostic and prognostic biomarkers in cardiovascular diseases such as coronary artery disease (CAD), myocardial infarction (MI) and atherosclerosis.
Collapse
|
27
|
Pereira-da-Silva T, Napoleão P, Costa MC, Gabriel AF, Selas M, Silva F, Enguita FJ, Ferreira RC, Carmo MM. Circulating miRNAs Are Associated with the Systemic Extent of Atherosclerosis: Novel Observations for miR-27b and miR-146. Diagnostics (Basel) 2021; 11:318. [PMID: 33669374 PMCID: PMC7920287 DOI: 10.3390/diagnostics11020318] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 12/18/2022] Open
Abstract
The mechanisms that regulate the systemic extent of atherosclerosis are not fully understood. We investigated whether the expression of circulating miRNAs is associated with the extent of stable atherosclerosis to a single territory or multiple territories (polyvascular) and with the severity of atherosclerosis in each territory. Ninety-four participants were prospectively recruited and divided into five age- and sex-matched groups: presenting no atherosclerosis, isolated coronary atherosclerosis, coronary and lower extremity atherosclerosis, coronary and carotid atherosclerosis, and atherosclerosis of the coronary, lower extremity, and carotid territories. The expression of six circulating miRNAs with distinct biological roles was assessed. The expression of miR-27b and miR-146 differed across groups (p < 0.05), showing a decrease in the presence of atherosclerosis, particularly in the three territories. miR-27b and miR-146 expression decreased in association with a higher severity of coronary, lower extremity, and carotid atherosclerosis. Polyvascular atherosclerosis involving the three territories was independently associated with a decreased miR-27b and miR-146 expression. Both miRNAs presented an area under the curve of ≥0.75 for predicting polyvascular atherosclerosis involving the three territories. To conclude, miR-27b and miR-146 were associated with the presence of severe polyvascular atherosclerosis and with the atherosclerosis severity in each territory. Both are potential biomarkers of severe systemic atherosclerosis.
Collapse
Affiliation(s)
- Tiago Pereira-da-Silva
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Patrícia Napoleão
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
| | - Marina C. Costa
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - André F. Gabriel
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Mafalda Selas
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
| | - Filipa Silva
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Rui Cruz Ferreira
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
| | - Miguel Mota Carmo
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal;
| |
Collapse
|
28
|
Yuan Y, Xu L, Geng Z, Liu J, Zhang L, Wu Y, He D, Qu P. The role of non-coding RNA network in atherosclerosis. Life Sci 2020; 265:118756. [PMID: 33189816 DOI: 10.1016/j.lfs.2020.118756] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/29/2020] [Accepted: 11/10/2020] [Indexed: 12/26/2022]
Abstract
Atherosclerosis is the primary culprit of cardiovascular and cerebrovascular diseases. Also, atherogenesis and the development of atherosclerosis involve endothelial cells, monocytes/macrophages, smooth myocytes, and others. Increasingly, studies have found that non-coding RNA (ncRNA) which can regulate apoptosis, pyroptosis, autophagy, proliferation, and monocyte migration participates in atherogenesis and progress of atherosclerosis by the above. The ncRNA networks may be essential in regulating the complicated process of atherosclerosis. Accordingly, this review delves into the regulatory roles of ncRNA, which were introduced previously. The answer above is particularly crucial to explain further the regulatory mechanism of ncRNA in cardiovascular disorders. Furthermore, we discuss the possibility and related research of ncRNAs as a biomarker and therapeutic target for the prevention, diagnosis, and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yuchan Yuan
- Institute of Heart and Vessel Diseases, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116023, People's Republic of China
| | - Ling Xu
- Department of clinical laboratory, Xinhua Hospital Affiliated to Dalian University, Dalian 116021, People's Republic of China
| | - Zhaohong Geng
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, People's Republic of China
| | - Jingjing Liu
- Institute of Heart and Vessel Diseases, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116023, People's Republic of China
| | - Lijiao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, People's Republic of China
| | - Yuhang Wu
- Institute of Heart and Vessel Diseases, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116023, People's Republic of China
| | - Dan He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, People's Republic of China.
| | - Peng Qu
- Institute of Heart and Vessel Diseases, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116023, People's Republic of China; Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, People's Republic of China.
| |
Collapse
|
29
|
Rivera-Caravaca JM, Teruel-Montoya R, Roldán V, Cifuentes-Riquelme R, Crespo-Matas JA, de los Reyes-García AM, Águila S, Fernández-Pérez MP, Reguilón-Gallego L, Zapata-Martínez L, García-Barberá N, Vicente V, Marín F, Martínez C, González-Conejero R. Pilot Study on the Role of Circulating miRNAs for the Improvement of the Predictive Ability of the 2MACE Score in Patients with Atrial Fibrillation. J Clin Med 2020; 9:jcm9113645. [PMID: 33198388 PMCID: PMC7698124 DOI: 10.3390/jcm9113645] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background. Atrial fibrillation (AF) increases the risk for stroke but also for non-stroke major adverse cardiovascular events (MACE). The 2MACE score was recently proposed to predict these events. Since the interest of microRNAs (miRNAs) in cardiovascular diseases is increasing, we aimed to investigate whether miRNA levels may improve the predictive performance of the 2MACE score. Methods. We included consecutive AF patients stable on vitamin K antagonist therapy. Blood samples were drawn at baseline and plasma expression of miRNAs was assessed. During a median of 7.6 (interquartile range (IQR) 5.4–8.0) years, the occurrence of any MACE (nonfatal myocardial infarction/cardiac revascularization and cardiovascular death) was recorded. Results. We conducted a miRNA expression analysis in plasma from 19 patients with and without cardiovascular events. The miRNAs selected (miR-22-3p, miR-107, and miR-146a-5p) were later measured in 166 patients (47% male, median age 77 (IQR 70–81) years) and all were associated with a higher risk of MACE. The addition of miR-107 and miR-146a-5p to the 2MACE score significantly increased the predictive performance (c-indexes: 0.759 vs. 0.694, p = 0.004), and the model with three miRNAs also improved the predictive performance compared to the original score (c-indexes: 0.762 vs. 0.694, p = 0.012). 2MACE models with the addition of miRNAs presented higher net benefit and potential clinical usefulness. Conclusions. Higher miR-22-3p andmiR-107 and lower miR-146a-5p levels were associated with a higher risk of MACE. The addition of these miRNAs to the 2MACE score significantly increased the predictive performance for MACE, which may aid to some extent in the decision-making process about risk stratification in AF.
Collapse
Affiliation(s)
- José Miguel Rivera-Caravaca
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, 30120 Murcia, Spain; (J.M.R.-C.); (F.M.)
| | - Raúl Teruel-Montoya
- Department of Hematology and Medical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain; (R.T.-M.); (V.R.); (R.C.-R.); (J.A.C.-M.); (A.M.d.l.R.-G.); (S.Á.); (M.P.F.-P.); (L.R.-G.); (L.Z.-M.); (N.G.-B.); (V.V.)
- CIBERER (U765), 30003 Murcia, Spain
| | - Vanessa Roldán
- Department of Hematology and Medical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain; (R.T.-M.); (V.R.); (R.C.-R.); (J.A.C.-M.); (A.M.d.l.R.-G.); (S.Á.); (M.P.F.-P.); (L.R.-G.); (L.Z.-M.); (N.G.-B.); (V.V.)
| | - Rosa Cifuentes-Riquelme
- Department of Hematology and Medical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain; (R.T.-M.); (V.R.); (R.C.-R.); (J.A.C.-M.); (A.M.d.l.R.-G.); (S.Á.); (M.P.F.-P.); (L.R.-G.); (L.Z.-M.); (N.G.-B.); (V.V.)
| | - José Antonio Crespo-Matas
- Department of Hematology and Medical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain; (R.T.-M.); (V.R.); (R.C.-R.); (J.A.C.-M.); (A.M.d.l.R.-G.); (S.Á.); (M.P.F.-P.); (L.R.-G.); (L.Z.-M.); (N.G.-B.); (V.V.)
| | - Ascensión María de los Reyes-García
- Department of Hematology and Medical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain; (R.T.-M.); (V.R.); (R.C.-R.); (J.A.C.-M.); (A.M.d.l.R.-G.); (S.Á.); (M.P.F.-P.); (L.R.-G.); (L.Z.-M.); (N.G.-B.); (V.V.)
| | - Sonia Águila
- Department of Hematology and Medical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain; (R.T.-M.); (V.R.); (R.C.-R.); (J.A.C.-M.); (A.M.d.l.R.-G.); (S.Á.); (M.P.F.-P.); (L.R.-G.); (L.Z.-M.); (N.G.-B.); (V.V.)
| | - María Piedad Fernández-Pérez
- Department of Hematology and Medical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain; (R.T.-M.); (V.R.); (R.C.-R.); (J.A.C.-M.); (A.M.d.l.R.-G.); (S.Á.); (M.P.F.-P.); (L.R.-G.); (L.Z.-M.); (N.G.-B.); (V.V.)
| | - Laura Reguilón-Gallego
- Department of Hematology and Medical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain; (R.T.-M.); (V.R.); (R.C.-R.); (J.A.C.-M.); (A.M.d.l.R.-G.); (S.Á.); (M.P.F.-P.); (L.R.-G.); (L.Z.-M.); (N.G.-B.); (V.V.)
| | - Laura Zapata-Martínez
- Department of Hematology and Medical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain; (R.T.-M.); (V.R.); (R.C.-R.); (J.A.C.-M.); (A.M.d.l.R.-G.); (S.Á.); (M.P.F.-P.); (L.R.-G.); (L.Z.-M.); (N.G.-B.); (V.V.)
| | - Nuria García-Barberá
- Department of Hematology and Medical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain; (R.T.-M.); (V.R.); (R.C.-R.); (J.A.C.-M.); (A.M.d.l.R.-G.); (S.Á.); (M.P.F.-P.); (L.R.-G.); (L.Z.-M.); (N.G.-B.); (V.V.)
| | - Vicente Vicente
- Department of Hematology and Medical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain; (R.T.-M.); (V.R.); (R.C.-R.); (J.A.C.-M.); (A.M.d.l.R.-G.); (S.Á.); (M.P.F.-P.); (L.R.-G.); (L.Z.-M.); (N.G.-B.); (V.V.)
- CIBERER (U765), 30003 Murcia, Spain
| | - Francisco Marín
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, 30120 Murcia, Spain; (J.M.R.-C.); (F.M.)
| | - Constantino Martínez
- Department of Hematology and Medical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain; (R.T.-M.); (V.R.); (R.C.-R.); (J.A.C.-M.); (A.M.d.l.R.-G.); (S.Á.); (M.P.F.-P.); (L.R.-G.); (L.Z.-M.); (N.G.-B.); (V.V.)
- Correspondence: (C.M.); (R.G.-C.); Tel.: +34-968-341-990 (C.M. & R.G.-C.); Fax: +34-968-261-914 (C.M. & R.G.-C.)
| | - Rocío González-Conejero
- Department of Hematology and Medical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30003 Murcia, Spain; (R.T.-M.); (V.R.); (R.C.-R.); (J.A.C.-M.); (A.M.d.l.R.-G.); (S.Á.); (M.P.F.-P.); (L.R.-G.); (L.Z.-M.); (N.G.-B.); (V.V.)
- Correspondence: (C.M.); (R.G.-C.); Tel.: +34-968-341-990 (C.M. & R.G.-C.); Fax: +34-968-261-914 (C.M. & R.G.-C.)
| |
Collapse
|
30
|
Xiao Y, Oumarou DB, Wang S, Liu Y. Circular RNA Involved in the Protective Effect of Malva sylvestris L. on Myocardial Ischemic/Re-Perfused Injury. Front Pharmacol 2020; 11:520486. [PMID: 33101012 PMCID: PMC7546788 DOI: 10.3389/fphar.2020.520486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
Ischemic heart disease has become a major health challenge worldwide. Malva sylvestris L. (MS) is a traditional herbal medicine with anti-inflammatory properties and have been used as antioxidant and anti- inflammatory agent in infectious diseases and inflammatory diseases.In this study, we aimed at elucidating the mechanism of MS against ischemia-reperfusion (I/R)–induced injury in vivo and in vitro. The I/R animal model in rats and oxygen glucose deprivation/re-oxygenation (OGD/Re) model in H9c2 cells were used in this study. MS was used to pre-treat the rats and cells. Electrocardiogram, histology staining, qPCR, ELISA, CCK-8, and circRNA microarray were performed. We found that pre-treatment with MS extract attenuate OGD/Re-induced cell apoptosis and cell viability inhibition in H9c2 cells. In addition, pre-treatment with MS protected against I/R injury in vivo. The protective effects of MS pre-treatment were associated with inflammatory genes expression and cytokines release. Further mechanistic investigation revealed that MS protected cardiomyocytes through regulating circular RNA (circRNA). We identified a novel circRNA circ003593 that mediated the protective role of MS in vitro through NLRP3 complex, which was associated with reperfusion injury salvage kinase (RISK) signaling pathway. Conclusion: this study is the first time to demonstrate the protective role of MS on I/R injury. Our findings reveal a novel circRNA circ003593-mediated the protective role of MS through NLRP3 inflammasome. Circ003593 may serve as a potential therapeutic target for ischemic heart diseases.
Collapse
Affiliation(s)
- Yongzhi Xiao
- Department of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Diafara Boureima Oumarou
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Wang
- Department of Medical Research Center and Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Yingzhe Liu
- Xiangya International Medical Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Diagnostic Role of Plasma MicroRNA-21 in Stable and Unstable Angina Patients and Association with Aging. Cardiol Res Pract 2020; 2020:9093151. [PMID: 32351734 PMCID: PMC7174930 DOI: 10.1155/2020/9093151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/22/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
The present study explored the clinical value of plasma microRNA-21 as a novel biomarker for early prediction of stable and unstable angina patients and its relationship with aging. A total of 255 participants, 123 patients with chronic stable angina, 82 patients with unstable angina, and 50 healthy subjects, were included in our study. Stable coronary and unstable coronary patients were confirmed following AHA/ACC clinical protocols. Total RNA was extracted from plasma by using miRNA-based TRIzol reagent. Plasma miR-21 expression levels were determined by real-time polymerase chain reaction. To evaluate the diagnosis accuracy, the receiver operating characteristic (ROC) curves were used. Plasma microRNA-21 concentration levels were significantly elevated in stable and unstable angina patients as compared with control subjects (P < 0.001). The area under the ROC curves of circulating microRNA-21 was accurately distinguished in stable angina patients (AUC 0.921) and unstable angina patients (AUC 0.944) from healthy subjects. MicroRNA-21 expression gradually elevated with increasing aging in all the populations. Moreover, the current study also demonstrated that the expression of plasma miR-21 levels was significantly associated with different age groups within healthy subjects and stable and unstable angina patients (P < 0.001). This research finding suggested that plasma microRNA-21 may be considered as a suitable new biomarker for early detection of stable and unstable angina patients, and it has a strong correlation with aging.
Collapse
|
32
|
Noncoding RNAs as Biomarkers for Acute Coronary Syndrome. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3298696. [PMID: 32337239 PMCID: PMC7154975 DOI: 10.1155/2020/3298696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
Acute coronary syndrome (ACS), consisting of acute myocardial infarction and unstable angina, is the most dangerous and fatal form of coronary heart disease. Acute coronary syndrome has sudden onset and rapid development, which may lead to malignant life-threatening conditions at any time. Therefore, early detection and diagnosis are critical for patients with ACS. Recent studies have found that noncoding RNA is of great significance in the diagnosis and treatment of cardiovascular diseases. In this review, we summarized recent data on circulating noncoding RNAs (including microRNA, long noncoding RNA, and circular RNA) as diagnostic and prognostic markers in ACS including acute myocardial infarction and unstable angina. Specifically, microRNAs (miRNAs) as diagnostic markers are divided into three types: miRNAs of increased expression in ACS, miRNAs of decreased expression in ACS, and miRNAs of contradictory expression in ACS. Moreover, we described these miRNAs of increased expression in ACS based on miRNAs family. This review may result in a great guidance of noncoding RNAs as biomarkers for ACS in clinical practice.
Collapse
|
33
|
Schiano C, Benincasa G, Franzese M, Della Mura N, Pane K, Salvatore M, Napoli C. Epigenetic-sensitive pathways in personalized therapy of major cardiovascular diseases. Pharmacol Ther 2020; 210:107514. [PMID: 32105674 DOI: 10.1016/j.pharmthera.2020.107514] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The complex pathobiology underlying cardiovascular diseases (CVDs) has yet to be explained. Aberrant epigenetic changes may result from alterations in enzymatic activities, which are responsible for putting in and/or out the covalent groups, altering the epigenome and then modulating gene expression. The identification of novel individual epigenetic-sensitive trajectories at single cell level might provide additional opportunities to establish predictive, diagnostic and prognostic biomarkers as well as drug targets in CVDs. To date, most of studies investigated DNA methylation mechanism and miRNA regulation as epigenetics marks. During atherogenesis, big epigenetic changes in DNA methylation and different ncRNAs, such as miR-93, miR-340, miR-433, miR-765, CHROME, were identified into endothelial cells, smooth muscle cells, and macrophages. During man development, lipid metabolism, inflammation and homocysteine homeostasis, alter vascular transcriptional mechanism of fundamental genes such as ABCA1, SREBP2, NOS, HIF1. At histone level, increased HDAC9 was associated with matrix metalloproteinase 1 (MMP1) and MMP2 expression in pro-inflammatory macrophages of human carotid plaque other than to have a positive effect on toll like receptor signaling and innate immunity. HDAC9 deficiency promoted inflammation resolution and reverse cholesterol transport, which might block atherosclerosis progression and promote lesion regression. Here, we describe main human epigenetic mechanisms involved in atherosclerosis, coronary heart disease, ischemic stroke, peripheral artery disease; cardiomyopathy and heart failure. Different epigenetics mechanisms are activated, such as regulation by circular RNAs, as MICRA, and epitranscriptomics at RNA level. Moreover, in order to open new frontiers for precision medicine and personalized therapy, we offer a panoramic view on the most innovative bioinformatic tools designed to identify putative genes and molecular networks underlying CVDs in man.
Collapse
Affiliation(s)
- Concetta Schiano
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Giuditta Benincasa
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | | | | | | | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; IRCCS SDN, Naples, Italy
| |
Collapse
|
34
|
Lee MS, Liu DW, Hung SK, Yu CC, Chi CL, Chiou WY, Chen LC, Lin RI, Huang LW, Chew CH, Hsu FC, Chan MWY, Lin HY. Emerging Challenges of Radiation-Associated Cardiovascular Dysfunction (RACVD) in Modern Radiation Oncology: Clinical Practice, Bench Investigation, and Multidisciplinary Care. Front Cardiovasc Med 2020; 7:16. [PMID: 32154267 PMCID: PMC7047711 DOI: 10.3389/fcvm.2020.00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is a crucial treatment modality in managing cancer patients. However, irradiation dose sprinkling to tumor-adjacent normal tissues is unavoidable, generating treatment toxicities, such as radiation-associated cardiovascular dysfunction (RACVD), particularly for those patients with combined therapies or pre-existing adverse features/comorbidities. Radiation oncologists implement several efforts to decrease heart dose for reducing the risk of RACVD. Even applying the deep-inspiration breath-hold (DIBH) technique, the risk of RACVD is though reduced but still substantial. Besides, available clinical methods are limited for early detecting and managing RACVD. The present study reviewed emerging challenges of RACVD in modern radiation oncology, in terms of clinical practice, bench investigation, and multidisciplinary care. Several molecules are potential for serving as biomarkers and therapeutic targets. Of these, miRNAs, endogenous small non-coding RNAs that function in regulating gene expression, are of particular interest because low-dose irradiation, i.e., 200 mGy (one-tenth of conventional RT daily dose) induces early changes of pro-RACVD miRNA expression. Moreover, several miRNAs, e.g., miR-15b and miR21, involve in the development of RACVD, further demonstrating the potential bio-application in RACVD. Remarkably, many RACVDs are late RT sequelae, characterizing highly irreversible and progressively worse. Thus, multidisciplinary care from oncologists and cardiologists is crucial. Combined managements with commodities control (such as hypertension, hypercholesterolemia, and diabetes), smoking cessation, and close monitoring are recommended. Some agents show abilities for preventing and managing RACVD, such as statins and angiotensin-converting enzyme inhibitors (ACEIs); however, their real roles should be confirmed by further prospective trials.
Collapse
Affiliation(s)
- Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Dai-Wei Liu
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Radiation Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Chih-Chia Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Chen-Lin Chi
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Anatomic Pathology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Liang-Cheng Chen
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Ru-Inn Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Li-Wen Huang
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Chia-Hui Chew
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Feng-Chun Hsu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| |
Collapse
|
35
|
Du L, Xu Z, Wang X, Liu F. Integrated bioinformatics analysis identifies microRNA-376a-3p as a new microRNA biomarker in patient with coronary artery disease. Am J Transl Res 2020; 12:633-648. [PMID: 32194911 PMCID: PMC7061823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Coronary artery disease (CAD) is a major global health problem with high incidence and mortality. Despite many advances in treatment, the prognosis of patients with CAD still remains poor. Therefore, this study aimed to identify potential biomarkers and targets associated with the progression of CAD. METHODS Two gene expression profile datasets (GSE20681 and GSE12288), and two microRNA (miRNA) expression profile datasets (GSE59421 and GSE105449) were downloaded from the Gene Expression Omnibus (GEO) database; R language was used to screen out the differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs), respectively. In addition, five online bioinformatics tools (miRWalk et al.) were used to identify the target genes of DEMs, and miRNA-gene network was constructed using Cytoscape software. Moreover, CCK-8, flow cytometry assays were used to detect the cell proliferation and apoptosis in human umbilical vein endothelial cells (HUVECs). Meanwhile, the dual luciferase reporter system assay was used to explore the interaction of miR-376a-3p and NRIP1 in HUVECs. RESULTS In the present study, 150 common DEGs and 5 common DEMs were screened using a Venn diagram in R language. First, a total of 6812 target genes were identified from the overlapping DEMs. Second, 26 overlapping dysregulated genes from 150 overlapping DEGs and 6812 miRNA target genes were identified. Meanwhile, 43 miRNA-gene regulatory pairs were obtained between the 5 common DEMs and 26 dysregulated genes. Downregulation of miR-376a-3p significantly inhibited the proliferation of HUVECs via inducing apoptosis. Moreover, overexpression of miR-376a-3p markedly inhibited the growth of HUVECs via downregulating NRIP1. CONCLUSION In this study, miR-376a-3p-NRIP1 pair might involve in the progression of CAD, implying that miR-376a-3p may be a therapeutic target for the treatment of CAD.
Collapse
Affiliation(s)
- Lei Du
- Department of Gerontology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai 200092, P. R. China
| | - Zhimin Xu
- Department of Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai 200092, P. R. China
| | - Xuhui Wang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai 200092, P. R. China
| | - Fang Liu
- Department of Gerontology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai 200092, P. R. China
| |
Collapse
|
36
|
Rizzacasa B, Amati F, Romeo F, Novelli G, Mehta JL. Epigenetic Modification in Coronary Atherosclerosis. J Am Coll Cardiol 2019; 74:1352-1365. [DOI: 10.1016/j.jacc.2019.07.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023]
|