1
|
Lu D, Zhang W, Chen K, Feng X. Dual effects of GABA A R agonist anesthetics in neurodevelopment and vulnerable brains: From neurotoxic to therapeutic effects. Neural Regen Res 2026; 21:81-95. [PMID: 39665822 PMCID: PMC12094567 DOI: 10.4103/nrr.nrr-d-24-00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/30/2024] [Accepted: 11/10/2024] [Indexed: 12/13/2024] Open
Abstract
Debates regarding the specific effects of general anesthesia on developing brains have persisted for over 30 years. A consensus has been reached that prolonged, repeated, high-dose exposure to anesthetics is associated with a higher incidence of deficits in behavior and executive function, while single exposure has a relatively minor effect on long-term neurological function. In this review, we summarize the dose-dependent neuroprotective or neurotoxic effects of gamma-aminobutyric acid type A receptor agonists, a representative group of sedatives, on developing brains or central nervous system diseases. Most preclinical research indicates that anesthetics have neurotoxic effects on the developing brain through various signal pathways. However, recent studies on low-dose anesthetics suggest that they may promote neurodevelopment during this critical period. These findings are incomprehensible for the general "dose-effect" principles of pharmacological research, which has attracted researchers' interest and led to the following questions: What is the threshold for the dual effects exerted by anesthetics such as propofol and sevoflurane on the developing brain? To what extent can their protective effects be maximized? What are the underlying mechanisms involved in these effects? Consequently, this issue has essentially become a "mathematical problem." After summarizing the dose-dependent effects of gamma-aminobutyric acid type A receptor agonist sedatives in both the developing brain and the brains of patients with central nervous system diseases, we believe that all such anesthetics exhibit specific threshold effects unique to each drug. These effects range from neuroprotection to neurotoxicity, depending on different brain functional states. However, the exact values of the specific thresholds for different drugs in various brain states, as well as the underlying mechanisms explaining why these thresholds exist, remain unclear. Further in-depth exploration of these issues could significantly enhance the therapeutic translational value of these anesthetics.
Collapse
Affiliation(s)
- Dihan Lu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wen Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Keyu Chen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Li P, Liu J, Wang R, Cao F, Li J, Wang H. Myricetin Mitigated Sevoflurane-induced Cognitive Dysfunction in Aged-mice Through Inhibiting Histone Deacetylase 2/nuclear Factor Erythroid 2-related Factor 2/heme Oxygenase-1 Signalling-mediated Ferroptosis and Mitochondrial Dysfunction. Mol Neurobiol 2025; 62:7776-7791. [PMID: 39937417 DOI: 10.1007/s12035-025-04703-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025]
Abstract
Sevoflurane anaesthesia induces neurotoxicity and postoperative cognitive dysfunction (POCD) after surgery. This study investigated the roles and potential mechanisms of the natural flavonoid myricetin in sevoflurane-induced cognitive dysfunction. Primary hippocampal neurons were treated with 3% sevoflurane to establish a neuron injury model. Neurons was pre-treated with different concentrations of myricetin, and ferroptosis inhibitor ferrostatin-1 (Fer-1) was used as a positive control. Moreover, mice were anaesthetised with 3% sevoflurane to establish an in-vivo model, and they were pre-treated with 50 or 100 m/kg myricetin. Cell viability and death were determined. Ferroptosis-related markers, including intracellular iron content, reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), 4-hydroxy-2-nonenal (4-HNE), glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) protein levels were measured. Myricetin treatment enhanced cell viability and mitigated sevoflurane-induced cell death in the hippocampal neurons. Sevoflurane exposure increased the ROS, MDA and 4-HNE levels and reduced the GSH level, whereas myricetin treatment abrogated these effects. Meanwhile, myricetin treatment restrained sevoflurane-induced increase in intracellular iron content and GPX4 and SLC7A11 protein levels. A high dose of myricetin showed distinct protective effects. Mechanistic studies demonstrated that myricetin treatment reversed sevoflurane-induced histone deacetylase 2 (HDAC2) upregulation and nuclear factor erythroid 2-related factor 2 (Nrf2) deacetylation, thus activating the Nrf2/heme oxygenase-1 (HO-1) signalling. Myricetin treatment mitigated sevoflurane-induced cognitive dysfunction in aged mice by inhibiting hippocampal ferroptosis and mitochondrial dysfunction via the HDAC2/Nrf2/HO-1 signalling pathway. Myricetin may be a treatment option for POCD after surgery.
Collapse
Affiliation(s)
- Peng Li
- Department of Anesthesiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Jingjing Liu
- Department of Anesthesiology, Chinese People's Armed Police Force Hospital of Beijing, Beijing, 100037, China
| | - Rui Wang
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Fuyang Cao
- Department of Anesthesiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Jiannan Li
- Department of Anesthesiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Henglin Wang
- Department of Anesthesiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
3
|
Zhong Y, Zhang C, Li Y, Chen D, Tang C, Zheng X, Zhu Z. MicroRNA-669f-5p targeting deoxycytidinephosphate deaminase contributes to sevoflurane-induced cognitive impairments in aged mice via the TLR2/4-MyD88-NF-κB pathway. Brain Res Bull 2025:111381. [PMID: 40379035 DOI: 10.1016/j.brainresbull.2025.111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/18/2025] [Accepted: 05/08/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a common complication associated with sevoflurane anaesthesia in the aged population. MicroRNAs have been implicated in sevoflurane-induced cognitive deficits; however, the role and underlying mechanism of microRNA (miR)-669f-5p remain unclear. METHODS Eighteen-month-old mice and mouse hippocampal neurons (HT22) were exposed to sevoflurane. Cognitive function was assessed using the Morris water maze test. Neuroapoptosis and cellular proliferation were evaluated by terminal-deoxynucleotidyl transferase-mediated nick end-labelling staining and Cell Counting Kit-8 assays, respectively. The downstream molecular mechanisms of miR-669f-5p were investigated using bioinformatics analysis, western blotting, quantitative real-time polymerase chain reaction, immunofluorescence and dual-luciferase reporter assays. RESULTS Bioinformatics analysis of the Gene Expression Omnibus database revealed upregulation of miR-669f-5p in hippocampal tissue from mice with POCD. Inhibition of miR-669f-5p substantially improved sevoflurane-induced cognitive impairment in aged mice. Deoxycytidinephosphate deaminase (Dctd) was identified as a direct target of miR-669f-5p. Overexpression of Dctd reversed the effects of miR-669f-5p mimics on apoptosis and proliferation in HT22 cells and suppressed activation of the TLR2/4-MyD88-NF-κB signalling pathway. Moreover, Dctd overexpression ameliorated sevoflurane-induced cognitive impairment in aged mice. CONCLUSION MicroRNA-669f-5p contributes to sevoflurane-induced cognitive impairment in aged mice by targeting Dctd and activating the TLR2/4-MyD88-NF-κB pathway. These findings provide new insights into potential therapeutic strategies for anaesthesia-related POCD.
Collapse
Affiliation(s)
- Yuanping Zhong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, PR China
| | - Chao Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, PR China
| | - Yuan Li
- Department of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, PR China
| | - Dongqin Chen
- Department of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, PR China
| | - Chunchun Tang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, PR China
| | - Xue Zheng
- Department of Anesthesiology, Zunyi Maternal And Child Health Care Hospital, 287#, Zhonghua Road, Zunyi 563000, Guizhou Province, PR China
| | - Zhaoqiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, PR China; Early Clinical Research Ward, Affiliated Hospital of Zunyi Medical University,149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, PR China.
| |
Collapse
|
4
|
Lei X, Yan J, Wu Z, Li Q, Liang M, Chen C. GRIA1 Alleviates Sevoflurane-Induced Neurotoxicity by Suppressing Autophagy. J Biochem Mol Toxicol 2025; 39:e70281. [PMID: 40304266 DOI: 10.1002/jbt.70281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/28/2024] [Accepted: 04/16/2025] [Indexed: 05/02/2025]
Abstract
The neurotoxicity caused by inhaled anesthetics has attracted more attention. Sevoflurane (SEV), a common general anesthetic, has a wide range of clinical applications. However, the underlying molecular mechanism of SEV-induced neurotoxicity is blurry.Cell viability and apoptosis were evaluated using CCK-8 and flow cytometry. The abundances of targeted molecules were measured using RT-qPCR, western blot and IF assay. SEV induction reduced cell viability, promoted cell apoptosis and autophagy of HT22 cells, which was positively related with gradually increasing concentrations of SEV. In addition, Glutamate ionotropic receptor AMPA type subunit 1 (GRIA1) expression was evidently decreased by SEV induction and its overexpression abolished SEV-mediated influences on cell viability, apoptosis and autophagy of HT22 cells. Furthermore, the autophagy inducer rapamycin reversed GRIA1 overexpression-mediated promotion of cell viability and suppression of cell apoptosis and autophagy of HT22 cells upon SEV induction. GRIA1 improved SEV-induced neurotoxicity by suppressing autophagy.
Collapse
Affiliation(s)
- Xue Lei
- Department of Anesthesiology, The Third People's Hospital of Chengdu, Southwest Jiaotong University, Chengdu City, Sichuan Province, P.R. China
| | - Jianli Yan
- Department of Neurosurgery, Xinzhou District People's Hospital of Wuhan, Wuhan City, Hubei Province, P.R. China
| | - Zhilin Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, P.R. China
| | - Qiang Li
- Department of Anesthesiology, The Third People's Hospital of Chengdu, Southwest Jiaotong University, Chengdu City, Sichuan Province, P.R. China
| | - Mengqiu Liang
- Department of Anesthesiology, The Third People's Hospital of Chengdu, Southwest Jiaotong University, Chengdu City, Sichuan Province, P.R. China
| | - Chen Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, P.R. China
| |
Collapse
|
5
|
Jiang Y, Zhang H, Shi J, Shan T, Liu M, Wang P, Liang X, Liang H. Nicotinamide riboside alleviates sweeteners-induced brain and cognitive impairments in immature mice. Food Funct 2025; 16:1947-1968. [PMID: 39957299 DOI: 10.1039/d4fo05553e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The consumption of sweeteners is high around the world. Sweet beverages are one of the most important and popular sources of sweeteners. Previous studies have reported that excessive sweeteners might cause health hazards, including cognitive impairment. Nicotinamide riboside (NR), a precursor of NAD+, has been found to alleviate several cognitive impairments. However, the protective effects of NR against sweetener-induced cognitive impairment remain unclear. Hence, we evaluated the effects of sweeteners and NR (400 mg kg-1 d-1) on the brain and cognition of mice by simulating an extreme lifestyle of completely replacing water with sugar-sweetened beverage (simulated with 10% sucrose solution) or sugar-free sweet beverage (simulated with 0.05% aspartame solution) from weaning to adulthood. The results revealed that continuous exposure to sucrose or aspartame for eight weeks did not significantly cause differences in body weight but significantly induced cognitive impairments, including anxiety- and depressive-like behaviours, impairments in learning, memory and sociability. Moreover, sucrose or aspartame exposure induced neuronal injury, reduction of Nissl bodies, overactivation of the TLR4/NF-κB/NLRP3/ASC/Caspase-1 pathway and increased downstream inflammatory cytokines in mouse hippocampus, and also induced an imbalance of oxidative stress, apoptosis and autophagy, large consumptions of intracellular antioxidant factors, and overactivation of the PI3K/Akt/FOXO1 and PI3K/Akt/mTOR pathways in mouse brain. NR treatment increased NAD+ in the brain, and prevented and alleviated these impairments effectively. In summary, we found that NR supplementation protected against cognitive impairment caused by sucrose or aspartame in immature mice, which might be related to increased brain NAD+ level, relieved neuroinflammation and pyroptosis in the hippocampus, and maintained a balance of oxidative stress, apoptosis and autophagy in the brain.
Collapse
Affiliation(s)
- Yushan Jiang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao, China.
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao, China.
| | - Jing Shi
- College of continuing education, Qingdao University, Qingdao, China
| | - Tianhu Shan
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao, China.
| | - Man Liu
- Basic Medical College, Qingdao University, Qingdao, China
| | - Peng Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao, China.
| | - Xi Liang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao, China.
| | - Hui Liang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Borzage MT, Peterson BS. A Scoping Review of the Mechanisms Underlying Developmental Anesthetic Neurotoxicity. Anesth Analg 2025; 140:409-426. [PMID: 38536739 PMCID: PMC11427602 DOI: 10.1213/ane.0000000000006897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 09/28/2024]
Abstract
Although anesthesia makes painful or uncomfortable diagnostic and interventional health care procedures tolerable, it may also disrupt key cellular processes in neurons and glia, harm the developing brain, and thereby impair cognition and behavior in children. Many years of studies using in vitro, animal behavioral, retrospective database studies in humans, and several prospective clinical trials in humans have been invaluable in discerning the potential toxicity of anesthetics. The objective of this scoping review was to synthetize the evidence from preclinical studies for various mechanisms of toxicity across diverse experimental designs and relate their findings to those of recent clinical trials in real-world settings.
Collapse
Affiliation(s)
- Matthew Thomas Borzage
- From the Fetal and Neonatal Institute, Division of Neonatology, Children’s Hospital Los Angeles, Los Angeles, California
| | - Bradley S. Peterson
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
- Institute for the Developing Mind, Children’s Hospital Los Angeles, Los Angeles, California
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, California
| |
Collapse
|
7
|
Sun FW, Tian Y. Intermittent Fasting Improves Sevoflurane-Induced Cognitive Dysfunction in Rats Through SIRT1-Mediated Autophagy. Neurochem Res 2025; 50:81. [PMID: 39831923 DOI: 10.1007/s11064-025-04335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/15/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Perioperative neurocognitive disorders (PND) is a common complication affecting the central nervous system, commonly induced by anesthesia and surgical procedures. PND has garnered considerable attention in recent years, not only due to its high morbidity but also its negative impact on patient prognosis, such as increased rates of dementia and mortality. Sevoflurane, a common volatile anesthetic in clinical practice, is increasingly linked to being a potential risk factor for PND with prolonged inhalation, yet effective prevention and treatment methods remain elusive. Autophagy, a crucial regulatory process for maintaining organism function, has been shown to play a key role in sevoflurane-induced cognitive dysfunction. In recent years, intermittent fasting (IF), a unique dietary pattern, has gained significant recognition. IF has been shown in multiple studies to offer neuroprotective advantages in different central nervous system conditions. disorders. This study aims to explore the potential neuroprotective effects of intermittent fasting preconditioning through the autophagic pathway in sevoflurane-induced cognitive impairment in rats and its underlying mechanisms.
Collapse
Affiliation(s)
- Feng-Wei Sun
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Tian
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Zhang Y, Liu X, Xie L, Hong J, Zhuang Q, Ren L, Li X, Zhang C. Overexpression of Nfs1 Cysteine Desulphurase Relieves Sevoflurane-Induced Neurotoxicity and Cognitive Dysfunction in Neonatal Mice Via Suppressing Oxidative Stress and Ferroptosis. J Biochem Mol Toxicol 2024; 38:e70051. [PMID: 39488760 DOI: 10.1002/jbt.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/03/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Clinical evidence suggests that multiple exposures to sevoflurane in young people may be detrimental to cognitive development. Iron accumulation in the hippocampus is associated with sevoflurane-induced neurotoxicity and cognitive deficits. The cysteine desulphurase, Nfs1, the rate-limiting enzyme for the biosynthesis of iron-sulphur clusters, plays a role in cellular iron homeostasis. However, the impact of Nfs1-mediated ferroptosis on sevoflurane-induced neurotoxicity and cognitive impairments in neonatal mice remains undetermined. Neonatal mice at postnatal Day 6 received 3% sevoflurane daily for 3 consecutive days. Cognitive function was assessed using the Morris water maze test, and neurotoxicity was evaluated through terminal deoxynucleotidyl transferase dUTP nick end labeling and immunofluorescence staining. Here, HT22 hippocampal neurons were employed for in-vitro experiments, and Fe2+ accumulation was measured. Ferroptosis-related genes, including glutathione peroxidase 4 (GPX4), transferrin receptor 1 (TFR1) and ferritin, in the hippocampus and HT22 cells were observed, along with oxidative stress-related indicators such as reactive oxygen species (ROS), methionine adenosyltransferase (MAT), glutathione (GSH) and lipid peroxidation (LPO). Transmission electron microscopy was utilized to examine the mitochondrial microstructure. Sevoflurane exposure significantly decreased Nfs1 expression in the hippocampus of mice and HT22 cells. This exposure resulted in cognitive impairments and neuronal damage in the hippocampus, which were alleviated by overexpression of Nfs1. Intracellular and mitochondrial iron accumulation occurred in HT22 cells following sevoflurane treatment. Sevoflurane exposure also significantly reduced GSH levels and increased levels of malondialdehyde, ROS and LPO in the hippocampus or HT22 cells. Additionally, sevoflurane exposure decreased GPX4 expression but increased TFR1 and ferritin expression in the hippocampus or HT22 cells. Overexpression of Nfs1 reversed the sevoflurane-induced alterations in ferroptosis-related genes and oxidative stress-related indicators. Furthermore, overexpression of Nfs1 alleviated sevoflurane-induced mitochondrial dysfunction. However, Nfs1 knockdown alone did not result in cognitive impairments, ferroptosis or oxidative stress. The overexpression of Nfs1 mitigated sevoflurane-induced neurotoxicity and cognitive impairment by modulating oxidative stress and ferroptosis through the regulation of iron metabolism and transport.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xinru Liu
- Department of Anesthesia, Bengbu Medical University, Bengbu, China
| | - Lijuan Xie
- Department of Anesthesia, Bengbu Medical University, Bengbu, China
| | - Jin Hong
- Department of Anesthesia, Bengbu Medical University, Bengbu, China
| | - Qin Zhuang
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Li Ren
- Department of Clinical Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Xiaohong Li
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Congli Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
9
|
Koo BW, Shin HJ, Jeon S, Bang JH, Do SH, Na HS. Neuroprotective effect of erythropoietin on anesthesia-induced neurotoxicity through the modulation of autophagy in Caenorhabditis elegans. Korean J Anesthesiol 2024; 77:384-391. [PMID: 38356139 PMCID: PMC11150124 DOI: 10.4097/kja.23789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND The anti-oxidative, anti-inflammatory, and anti-apoptotic effects of erythropoietin may provide neuroprotective effects. Erythropoietin also modulates autophagy signaling that may play a role in anesthesia-induced neurotoxicity (AIN). Herein, we investigated whether AIN can be attenuated by the neuroprotective effect of erythropoietin in the Caenorhabditis elegans (C. elegans). METHODS Synchronized worms were divided into the control, Iso, EPO, and EPO-Iso groups. The chemotaxis index (CI) was evaluated when they reached the young adult stage. The lgg-1::GFP-positive puncta per seam cell were used to determine the autophagic events. The erythropoietin-mediated pathway of autophagy was determined by measuring the genetic expression level of let-363, bec-1, atg-7, atg-5, and lgg-3. RESULTS Increased lgg-1::GFP puncta were observed in the Iso, EPO, and EPO-Iso groups. In the Iso group, only the let-363 level decreased significantly as compared to that in the control group (P = 0.009). bec-1 (P < 0.001), atg-5 (P = 0.012), and lgg-3 (P < 0.001) were expressed significantly more in the EPO-Iso group than in the Iso groups. Repeated isoflurane exposure during development decreased the CI. Erythropoietin could restore the decreased CI by isoflurane significantly in the EPO-Iso group. CONCLUSIONS Erythropoietin showed neuroprotective effects against AIN and modulated the autophagic pathway in C. elegans. This experimental evidence of erythropoietin-related neuroprotection against AIN may be correlated with the induced autophagic degradation process that was sufficient for handling enhanced autophagy induction in erythropoietin-treated worms.
Collapse
Affiliation(s)
- Bon-Wook Koo
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Anesthesiology and Pain Medicine, Seoul National University, Seoul, Korea
| | - Hyun-Jung Shin
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Anesthesiology and Pain Medicine, Seoul National University, Seoul, Korea
| | - Sooyoung Jeon
- National Dental Care Center for Persons with Special Needs, Seoul National University Dental Hospital, Seoul, Korea
| | - Jung Hyun Bang
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sang-Hwan Do
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Anesthesiology and Pain Medicine, Seoul National University, Seoul, Korea
| | - Hyo-Seok Na
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Anesthesiology and Pain Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
10
|
Pei MQ, Xu LM, Yang YS, Chen WC, Chen XL, Fang YM, Lin S, He HF. Latest advances and clinical application prospects of resveratrol therapy for neurocognitive disorders. Brain Res 2024; 1830:148821. [PMID: 38401770 DOI: 10.1016/j.brainres.2024.148821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/13/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Neurocognitive disorders, such as Alzheimer's disease, vascular dementia, and postoperative cognitive dysfunction, are non-psychiatric brain syndromes in which a significant decline in cognitive function causes great trauma to the mental status of the patient. The lack of effective treatments for neurocognitive disorders imposes a considerable burden on society, including a substantial economic impact. Over the past few decades, the identification of resveratrol, a natural plant compound, has provided researchers with an opportunity to formulate novel strategies for the treatment of neurocognitive disorders. This is because resveratrol effectively protects the brain of those with neurocognitive disorders by targeting some mechanisms such as inflammation and oxidative stress. This article reviews the status of recent research investigating the use of resveratrol for the treatment of different neurocognitive disorders. By examining the possible mechanisms of action of resveratrol and the shared mechanisms of different neurocognitive disorders, treatments for neurocognitive disorders may be further clarified.
Collapse
Affiliation(s)
- Meng-Qin Pei
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Li-Ming Xu
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Yu-Shen Yang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Wei-Can Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Xin-Li Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Yu-Ming Fang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Shu Lin
- Center of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China; Neuroendocrinology Group, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China.
| |
Collapse
|
11
|
Hu Y, Huang H, Jiang Y, Zhang J, Zhang Y, Tian Y, Zhang Q. Liraglutide improves sevoflurane-induced postoperative cognitive dysfunction via activating autophagy and inhibiting apoptosis. Aging (Albany NY) 2024; 16:3763-3772. [PMID: 38364258 PMCID: PMC10929805 DOI: 10.18632/aging.205558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a common postoperative complication in elderly patients. Liraglutide (LRG) has high homology (97%) with natural glucagon like peptide-1, and it has been proved to be effective in some nervous system diseases. Whether LRG could regulate POCD has not been reported. METHODS Sevoflurane (Sev) was used to simulate postoperative cognitive dysfunction (POCD) model. Morris water maze test was performed to evaluate the memory ability and neurological function of rats. Escape latency, swim distance, crossing platform times, average velocity, and targeting quadrant time were analyzed. The cell apoptosis, mRNA and protein expression were measured through flow cytometry, PCR, and western blotting, respectively. RESULTS LRG significantly improved the memory ability and neurological function of Sev-treated rats, but 3-MA reversed the effects of LRG. LRG remarkably inhibited apoptosis but up-regulated autophagy related proteins both in vivo and in vitro levels. However, knocking down AMPK could markedly reverse the influence of LRG on apoptosis, autophagy, and cell apoptosis. CONCLUSIONS LRG induced autophagy activation can maintain cell homeostasis and promote cell survival by blocking the apoptotic pathway. LRG could improve Sev-induced POCD via activating autophagy, inhibiting apoptosis, and regulating AMPK/mTOR signaling pathway. This study provides a novel therapeutic strategy for the prevention and treatment of POCD.
Collapse
Affiliation(s)
- Ying Hu
- Department of Endocrinology and Metabolism, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang 330006, Jiangxi, China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang 330006, Jiangxi, China
| | - Haijin Huang
- Department of Anesthesiology and Operative medicine, Medical Center of Anesthesiology and Pain, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yao Jiang
- Department of Anesthesiology and Operative medicine, Medical Center of Anesthesiology and Pain, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jingling Zhang
- Department of Anesthesiology and Operative medicine, Medical Center of Anesthesiology and Pain, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yang Zhang
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Ying Tian
- Department of Anesthesiology and Operative medicine, Medical Center of Anesthesiology and Pain, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Qin Zhang
- Department of Anesthesiology and Operative medicine, Medical Center of Anesthesiology and Pain, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
12
|
Gong X, Li Q, Liu Y. Sevoflurane suppresses ALG13 transcription in a CREBBP-dependent manner to induce hippocampal damage and cognitive impairment. Neurosci Lett 2023; 818:137543. [PMID: 39492504 DOI: 10.1016/j.neulet.2023.137543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
BACKGROUND Sevoflurane (Sev) is a common clinical anesthetic but may lead to cognitive impairment. This study aims to deconstruct the underpinning molecular mechanism involved in Sev-induced neurological damage. METHODS Bioinformatics analyses was conducted to investigate candidate cognitive impairment-related physiological substrates of Sev. C57BL/6 mice and SH-SY5Y cells were exposed to Sev to generate animal and cellular models, respectively. Neurological impairment in mice was evaluated by Morris water maze test, modified Longa scoring, and pathological changes and cell apoptosis in the hippocampal tissues. In vitro, viability, apoptosis, and inflammatory cytokine concentration in SH-SY5Y cells were measured. Gain- or loss-of-function studies of CREB binding protein (CREBBP) and its predicted target asparagine-linked glycosylation 13 (ALG13) were performed in mice and in SH-SY5Y cells to investigate their roles in neural damage. RESULTS Sev treatment induced neurological deficit in mice and damage on SH-SY5Y cells, and reduced protein level of CREBBP protein in both models. CREBBP overexpression restored learning and memory ability of mice, reduced neurological deficit score, and reduced cell apoptosis while enhancing neuronal viability in the hippocampus. In vitro, the CREBBP overexpression increased viability while suppressing apoptosis and inflammation in SH-SY5Y cells. CREBBP bound to the ALG13 promoter to increase its transcription. Further knockdown of ALG13 negated the neuro-protective functions of CREBBP in vivo and in vitro. CONCLUSION This study demonstrates that Sev targets CREBBP to inhibit ALG13 transcription to induce hippocampal damage and cognitive impairment.
Collapse
Affiliation(s)
- Xiuping Gong
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Qi Li
- Department of Anesthesiology, South China Hospital Affiliated to Shenzhen University, Shenzhen 518000, Guangdong, PR China
| | - Yang Liu
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China.
| |
Collapse
|
13
|
Hogarth K, Tarazi D, Maynes JT. The effects of general anesthetics on mitochondrial structure and function in the developing brain. Front Neurol 2023; 14:1179823. [PMID: 37533472 PMCID: PMC10390784 DOI: 10.3389/fneur.2023.1179823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
The use of general anesthetics in modern clinical practice is commonly regarded as safe for healthy individuals, but exposures at the extreme ends of the age spectrum have been linked to chronic cognitive impairments and persistent functional and structural alterations to the nervous system. The accumulation of evidence at both the epidemiological and experimental level prompted the addition of a warning label to inhaled anesthetics by the Food and Drug Administration cautioning their use in children under 3 years of age. Though the mechanism by which anesthetics may induce these detrimental changes remains to be fully elucidated, increasing evidence implicates mitochondria as a potential primary target of anesthetic damage, meditating many of the associated neurotoxic effects. Along with their commonly cited role in energy production via oxidative phosphorylation, mitochondria also play a central role in other critical cellular processes including calcium buffering, cell death pathways, and metabolite synthesis. In addition to meeting their immense energy demands, neurons are particularly dependent on the proper function and spatial organization of mitochondria to mediate specialized functions including neurotransmitter trafficking and release. Mitochondrial dependence is further highlighted in the developing brain, requiring spatiotemporally complex and metabolically expensive processes such as neurogenesis, synaptogenesis, and synaptic pruning, making the consequence of functional alterations potentially impactful. To this end, we explore and summarize the current mechanistic understanding of the effects of anesthetic exposure on mitochondria in the developing nervous system. We will specifically focus on the impact of anesthetic agents on mitochondrial dynamics, apoptosis, bioenergetics, stress pathways, and redox homeostasis. In addition, we will highlight critical knowledge gaps, pertinent challenges, and potential therapeutic targets warranting future exploration to guide mechanistic and outcomes research.
Collapse
Affiliation(s)
- Kaley Hogarth
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON, Canada
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Doorsa Tarazi
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Jason T. Maynes
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON, Canada
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Liang JX, Zhang Y, Xiao CH, Cao S, Tian Y, Wang NN, Liu C. Application value of tumor necrosis factor inhibitors in in vitro fertilization-embryo transfer in infertile women with polycystic ovary syndrome. BMC Pregnancy Childbirth 2023; 23:247. [PMID: 37055769 PMCID: PMC10100200 DOI: 10.1186/s12884-023-05546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/24/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Clinical value of tumor necrosis factor (TNF) inhibitors in in vitro fertilization-embryo transfer (IVF-ET) in infertile women with polycystic ovary syndrome (PCOS) was investigated in this study. METHODS A retrospective analysis was performed on the clinical data of 100 PCOS patients who received IVF-ET for the first time at Hebei Institute of reproductive health science and technology from January 2010 to June 2020. The patients were divided into Inhibitor group and Control group according to whether they were treated with or without TNF inhibitors. Next, the two groups were subject to comparison in terms of the days of gonadotropin (Gn) use, total dosage of Gn, trigger time, hormone level and endometrial condition on the day of human chorionic gonadotropin (HCG) injection, the effects of two different regimens on controlled ovarian hyperstimulation (COH) and pregnancy outcomes. RESULTS There were no significant differences in baseline characteristics between the two groups, including age, duration of infertility, body mass index (BMI), ovarian volume, antral follicle count, and basal hormone levels. Compared with the Control group, the days of Gn use and trigger time of patients in the Inhibitor group were significantly shortened, and the total Gn dosage was notably reduced. In terms of sex hormone levels on the HCG injection, the Inhibitor group displayed much lower serum estradiol levels while higher serum luteinizing hormone and progesterone (P) levels than the Control group. Notably, the high-quality embryo rate was also significantly increased with the use of TNF inhibitors. However, significant differences were not observed in endometrial thickness (on the day of HCG injection), proportion of endometrial A, B and C morphology (on the day of HCG injection), cycle cancellation rate, number of oocytes retrieved, fertilization rate, and cleavage rate between the two groups. Importantly, the clinical pregnancy rate in the Inhibitor group was significantly higher than that in the Control group, but there was no significant difference in the biochemical pregnancy rate, early abortion rate, multiple birth rate, ectopic pregnancy rate and number of live births between the two groups. CONCLUSION Collectively, after application of TNF-α inhibitor regimen, superior overall treatment effect can be observed in infertile PCOS patients receiving IVF-ET. Therefore, TNF inhibitors have certain application value in IVF-ET in infertile women with PCOS.
Collapse
Affiliation(s)
- Jun-Xia Liang
- Reproductive Department, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang, 050071, Hebei, China
| | - Yu Zhang
- Reproductive Department, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang, 050071, Hebei, China.
| | - Chun-Hui Xiao
- Obstetrics Department, The Fourth Hospital of Shijiazhuang, Shijiazhuang, 050033, Hebei, China
| | - Shan Cao
- Reproductive Department, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang, 050071, Hebei, China
| | - Ying Tian
- Reproductive Department, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang, 050071, Hebei, China
| | - Na-Na Wang
- Reproductive Department, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang, 050071, Hebei, China
| | - Chong Liu
- Reproductive Department, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang, 050071, Hebei, China
| |
Collapse
|
15
|
Liang J, Han S, Ye C, Zhu H, Wu J, Nie Y, Chai G, Zhao P, Zhang D. Minocycline Attenuates Sevoflurane-Induced Postoperative Cognitive Dysfunction in Aged Mice by Suppressing Hippocampal Apoptosis and the Notch Signaling Pathway-Mediated Neuroinflammation. Brain Sci 2023; 13:brainsci13030512. [PMID: 36979321 PMCID: PMC10046414 DOI: 10.3390/brainsci13030512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD), an important postoperative neurological complication, is very common and has an elevated incidence in elderly patients. Sevoflurane, an inhaled anesthetic, has been demonstrated to be associated with POCD in both clinical and animal studies. However, how to prevent POCD remains unclear. Minocycline, a commonly used antibiotic can cross the blood-brain barrier and exert an inhibitory effect on inflammation in the central nervous system. The present work aimed to examine the protective effect and mechanism of minocycline on sevoflurane-induced POCD in aged mice. We found that 3% sevoflurane administered 2 h a day for 3 consecutive days led to cognitive impairment in aged animals. Further investigation revealed that sevoflurane impaired synapse plasticity by causing apoptosis and neuroinflammation and thus induced cognitive dysfunction. However, minocycline pretreatment (50 mg/kg, i.p, 1 h prior to sevoflurane exposure) significantly attenuated learning and memory impairments associated with sevoflurane in aged animals by suppressing apoptosis and neuroinflammation. Moreover, a mechanistic analysis showed that minocycline suppressed sevoflurane-triggered neuroinflammation by inhibiting Notch signaling. Similar results were also obtained in vitro. Collectively, these findings suggested minocycline may be an effective drug for the prevention of sevoflurane-induced POCD in elderly patients.
Collapse
Affiliation(s)
- Junjie Liang
- Department of Anesthesiology, Wuxi Maternal and Child Health Care Hospital Affiliated to Jiangnan University, Wuxi 214002, China
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Shanshan Han
- Department of Anesthesiology, Wuxi Maternal and Child Health Care Hospital Affiliated to Jiangnan University, Wuxi 214002, China
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Chao Ye
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Haimeng Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jiajun Wu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Gaoshang Chai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Peng Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Dengxin Zhang
- Department of Anesthesiology, Wuxi Maternal and Child Health Care Hospital Affiliated to Jiangnan University, Wuxi 214002, China
| |
Collapse
|
16
|
Wang Y, Li H, Zhao Y, Qin F, Wang L, Jiang L, Wang X, Chen R, He Y, Wei Q, Li S, Chen Y, Xiao Y, Dai Y, Bu Q, Zhao Y, Tian J, Wang H, Cen X. Neonatal exposure to sevoflurane induces adolescent neurobehavioral dysfunction by interfering with hippocampal glycerophoslipid metabolism in rats. Cereb Cortex 2023; 33:1955-1971. [PMID: 35584785 DOI: 10.1093/cercor/bhac185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/12/2022] Open
Abstract
Sevoflurane exposure in the neonatal period causes long-term developmental neuropsychological dysfunction, including memory impairment and anxiety-like behaviors. However, the molecular mechanisms underlying such effects have not been fully elucidated. In this study, we investigated the effect of neonatal exposure to sevoflurane on neurobehavioral profiles in adolescent rats, and applied an integrated approach of lipidomics and proteomics to investigate the molecular network implicated in neurobehavioral dysfunction. We found that neonatal exposure to sevoflurane caused cognitive impairment and social behavior deficits in adolescent rats. Lipidomics analyses revealed that sevoflurane significantly remodeled hippocampal lipid metabolism, including lysophatidylcholine (LPC) metabolism, phospholipid carbon chain length and carbon chain saturation. Through a combined proteomics analysis, we found that neonatal exposure to sevoflurane significantly downregulated the expression of lysophosphatidylcholine acyltransferase 1 (LPCAT1), a key enzyme in the regulation of phospholipid metabolism, in the hippocampus of adolescent rats. Importantly, hippocampal LPCAT1 overexpression restored the dysregulated glycerophospholipid (GP) metabolism and alleviated the learning and memory deficits caused by sevoflurane. Collectively, our evidence that neonatal exposure to sevoflurane downregulates LPCAT1 expression and dysregulates GP metabolism in the hippocampus, which may contribute to the neurobehavioral dysfunction in the adolescent rats.
Collapse
Affiliation(s)
- Yonghai Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation Yantai University, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, #30 Qingquan Road, Laishan District, Yantai 264005, China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Ying Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Feng Qin
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Xiaojie Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Rong Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Yuman He
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Qinfan Wei
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Shu Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Yuanyuan Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Yuzhou Xiao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Yanping Dai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation Yantai University, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, #30 Qingquan Road, Laishan District, Yantai 264005, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation Yantai University, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, #30 Qingquan Road, Laishan District, Yantai 264005, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| |
Collapse
|
17
|
Ma Z, Ma Y, Cao X, Zhang Y, Song T. Avenanthramide-C Activates Nrf2/ARE Pathway and Inhibiting Ferroptosis Pathway to Improve Cognitive Dysfunction in Aging Rats. Neurochem Res 2023; 48:393-403. [PMID: 36222956 DOI: 10.1007/s11064-022-03754-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/15/2022] [Accepted: 09/04/2022] [Indexed: 02/04/2023]
Abstract
Postoperative neurocognitive impairment (POCD) is a common complication after surgery and anesthesia, especially in elderly patients. Avenanthramide-C (AVC) test is a vascular endothelial cell adhesion molecule inhibitor with strong anti-inflammatory and antioxidant effects. The aim of this study was to investigate the effect and mechanism of AVC on POCD in aged rats to clarify the effect of AVC on POCD in aged rats. The aging rat model was established by continuous 200 mg/kg propofol anesthesia. Repeated propofol anesthesia could severely impair spatial learning ability, memory and cognitive function, and could promote hippocampal apoptosis, oxidative stress injury, neuroinflammation and ferroptosis in aging rats. In addition, AVC not only improved cognitive dysfunction, but also significantly inhibited apoptosis, neuroinflammatory response, ferroptosis and oxidative stress level in the hippocampus of aging rats induced by repeated anesthesia. Further mechanistic studies manifested that the above protective effects of AVC on aging rats induced by repeated propofol anesthesia may be achieved by activating Nrf2/ARE pathway activity. AVC pretreatment has a preventive effect on cognitive dysfunction induced by repeated propofol anesthesia in aging rats, and the preventive effect of AVC may be realized by activating the Nrf2/ARE signaling pathway activity. Our results demonstrate that AVC preconditioning reduces postoperative neuronal loss and neuroinflammation, activates the Nrf2/ARE pathway, reduces oxidative stress injury, and improves POCD in aged rats.
Collapse
Affiliation(s)
- Zijian Ma
- Anesthesia Teaching and Research Office, Hebei Medical University, 050017, Shijiazhuang, Hebei, China.,Department of Anesthesiology, South area of the Affiliated Hospital of Chengde Medical College, 067055, Chengde, Hebei, China
| | - Yang Ma
- Department of Anesthesiology, South area of the Affiliated Hospital of Chengde Medical College, 067055, Chengde, Hebei, China
| | - Xuefeng Cao
- Department of Anesthesiology, South area of the Affiliated Hospital of Chengde Medical College, 067055, Chengde, Hebei, China
| | - Yunpeng Zhang
- Department of Anesthesiology, South area of the Affiliated Hospital of Chengde Medical College, 067055, Chengde, Hebei, China
| | - Tieying Song
- Department of Anesthesiology, Shijiazhuang People's Hospital, 050017, Shijiazhuang, Hebei, China.
| |
Collapse
|
18
|
Xie Y, Huang J, Chen Y. Exogenous recombinant Hsp70 attenuates sevoflurane anesthesia-induced cognitive dysfunction in aged mice. Brain Behav 2023; 13:e2861. [PMID: 36573756 PMCID: PMC9847620 DOI: 10.1002/brb3.2861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/18/2022] [Accepted: 12/04/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a severe postoperative neurological sequela in elderly patients, and there is currently no standard treatment for POCD. In this study, whether recombinant human heat shock protein 70 (rHsp70) could alleviate sevoflurane-induced cognitive impairment in aged mice is investigated. METHODS To determine the prophylactic effect of rHsp70 in sevoflurane-induced cognitive dysfunction, aged mice were pretreated with different concentrations of rHsp70 (29.4, 58.8, and 117.6 μg/kg; intranasal injected; N = 12) every day for 1 week; then, 3% sevoflurane was utilized to anesthetize the aged mice. Cognitive function, neurotoxicity, and serum and hippocampal Hsp70 levels in aged mice undergoing sevoflurane anesthesia were assessed by the Morris water maze test and enzyme-linked immunosorbent assay. The effects of rHsp70 on inflammatory response were assessed by proinflammatory cytokine production and nuclear factor-κB (NF-κB) activation assays. RESULTS We found that aged mice exposed to sevoflurane showed reduced learning and memory ability and reduced Hsp70 expression, which were both restored by rHsp70 pretreatment. RHsp70 also reversed sevoflurane-induced up-regulated Bax and Bcl-2 expression and interleukin-1, IL-6, and monocyte chemoattractant protein-1 overproduction. Finally, rHsp70 pretreatment suppressed sevoflurane-induced NF-κB activation. Our study indicated that rHsp70 was sufficient to suppress sevoflurane-induced cognitive decline and neurotoxicity. CONCLUSION Our important finding warrants further study on the clinical application of rHsp70 in elderly patients undergoing anesthesia.
Collapse
Affiliation(s)
- Yongxiang Xie
- Department of Anesthesiology, Longyan People Hospital of Fujian, Longyan, China
| | - Jianzhong Huang
- Department of Anesthesiology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Yijia Chen
- Department of Anesthesiology, Longyan People Hospital of Fujian, Longyan, China
| |
Collapse
|
19
|
Niu Y, Yan J, Jiang H. Anesthesia and developing brain: What have we learned from recent studies. Front Mol Neurosci 2022; 15:1017578. [PMID: 36479527 PMCID: PMC9720124 DOI: 10.3389/fnmol.2022.1017578] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/27/2022] [Indexed: 11/08/2023] Open
Abstract
Anesthesia is unavoidable in surgical procedures. However, whether the general anesthetics are neurotoxic to immature brains remains undefined. Neurodevelopmental impairment induced by anesthesia has been a critical health issue and topic of concern. This review summarizes recent progress made in clinical and preclinical studies to provide useful suggestions and potential therapeutic targets for the protection of the immature brain. On the one hand, clinical researchers continue the debate about the effect of single and multiple exposures to anesthesia on developing brains. On the other hand, preclinical researchers focus on exploring the mechanisms of neurotoxic effects of general anesthesia on immature brains and seeking novel solutions. Rodent models have always been used in preclinical studies, but it is still unclear whether the mechanisms observed in rodent models have clinical relevance. Compared with these models, non-human primates (NHPs) are more genetically similar to humans. However, few research institutions in this area can afford to use NHP models in their studies. One way to address both problems is by combining single-cell sequencing technologies to screen differential gene expression in NHPs and perform in vivo validation in rodents. The mechanism of anesthesia-induced neurotoxicity still requires further elucidation in primates.
Collapse
Affiliation(s)
| | - Jia Yan
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Chen YR, Zhang SX, Fang M, Zhang P, Zhou YF, Yu X, Zhang XN, Chen G. Egr2 contributes to age-dependent vulnerability to sevoflurane-induced cognitive deficits in mice. Acta Pharmacol Sin 2022; 43:2828-2840. [PMID: 35577909 PMCID: PMC9622904 DOI: 10.1038/s41401-022-00915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/18/2022] [Indexed: 01/27/2023]
Abstract
Sevoflurane inhalation is prone to initiate cognitive deficits in infants. The early growth response-2 (Egr-2) gene is DNA-binding transcription factor, involving in cognitive function. In this study we explored the molecular mechanisms underlying the vulnerability to cognitive deficits after sevoflurane administration. Six-day-old (young) and 6-week-old (early adult) mice received anesthesia with 3% sevoflurane for 2 h daily for 3 days. We showed that multiple exposures of sevoflurane induced significant learning ability impairment in young but not early adult mice, assessed in Morris water maze test on postnatal days 65. The integrated differential expression analysis revealed distinct transcription responses of Egr family members in the hippocampus of the young and early adult mice after sevoflurane administration. Particularly, Egr2 was significantly upregulated after sevoflurane exposure only in young mice. Microinjection of Egr2 shRNA recombinant adeno-associated virus into the dentate gyrus alleviated sevoflurane-induced cognitive deficits, and abolished sevoflurane-induced dendritic spins loss and BDNF downregulation in young mice. On the contrary, microinjection of the Egr2 overexpression virus in the dentate gyrus aggravated learning ability impairment induced by sevoflurane in young mice but not early adult mice. Furthermore, we revealed that sevoflurane markedly upregulated the nuclear factors of activated T-cells NFATC1 and NFATC2 in young mice, which were involved in Egr2 regulation. In conclusion, Egr2 serves as a critical factor for age-dependent vulnerability to sevoflurane-induced cognitive deficits.
Collapse
Affiliation(s)
- Ye-Ru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shu-Xia Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Man Fang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - You-Fa Zhou
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xin Yu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Identification and Validation of Ferroptosis-Related Genes in Sevoflurane-Induced Hippocampal Neurotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4435161. [PMID: 36238640 PMCID: PMC9553355 DOI: 10.1155/2022/4435161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
Background Sevoflurane is one of the most popular inhalational anesthetics during perioperative period but presenting neurotoxicity among pediatric and aged populations. Recent experiments in vivo and in vitro have indicated that ferroptosis may contribute to the neurotoxicity of sevoflurane anesthesia. However, the exact mechanism is still unclear. Methods In current study, we explored the differential expressed genes (DEGs) in HT-22 mouse hippocampal neuronal cells after sevoflurane anesthesia using RNA-seq. Differential expressed ferroptosis-related genes (DEFRGs) were screened and analyzed by Gene Ontology (GO) and pathway enrichment analysis. Protein-to-protein interaction (PPI) network was constructed by the Search Tool for the Retrieval of Interacting Genes (STRING). Significant modules and the hub genes were identified by using Cytoscape. The Connectivity Map (cMAP) was used for screening drug candidates targeting the identified DEFRGs. Potential TF-gene network and drug-gene pairs were established towards the hub genes. In final, we validated these results in experiments. Results A total of 37 ferroptosis-related genes (18 upregulated and 19 downregulated) after sevoflurane exposure in hippocampal neuronal cells were finally identified. These differentially expressed genes were mainly involved into the biological processes of cellular response to oxidative stress. Pathway analysis indicated that these genes were involved in ferroptosis, mTOR signaling pathway, and longevity-regulating pathway. PPI network was constructed. 10 hub genes including Prkaa2, Chac1, Arntl, Tfrc, Slc7a11, Atf4, Mgst1, Lpin1, Atf3, and Sesn2 were found. Top 10 drug candidates, gene-drug networks, and TFs targeting these genes were finally identified. These results were validated in experiments. Conclusion Our results suggested that ferroptosis-related genes play roles in sevoflurane anesthesia-related hippocampal neuron injury and offered the hub genes and potential therapeutic agents for investigating and treatment of this neurotoxicity after sevoflurane exposure. Finally, therapeutic effect of these drug candidates and function of potential ferroptosis targets should be further investigated for treatment and clarifying mechanisms of sevoflurane anesthesia-induced neuron injury in future research.
Collapse
|
22
|
The role of depolarizing activation of Na +-Ca 2+ exchanger by oligodendrocyte progenitor cells in the effect of sevoflurane on myelination. Life Sci 2022; 308:120951. [PMID: 36103958 DOI: 10.1016/j.lfs.2022.120951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 10/31/2022]
Abstract
AIMS The aim of this study was to investigate the role of depolarizing activation of Na+-Ca2+ exchanger (NCX) by oligodendrocyte progenitor cells (OPC) in the effect of sevoflurane on myelination. MAIN METHODS On postnatal days 7, 8, and 9, mice were exposed to 3 % sevoflurane for 2 h per day. The proliferation, differentiation, and myelin sheath of OPC were observed with immunofluorescence, quantitative real-time polymerase chain reaction (QRT-PCR), and transmission electron microscopy (TEM) at various time points. The open field, Y maze, and new object recognition tests were used to measure spatial learning and memory. siRNA was used for the knockdown NCX1 in human OPC (HOPC) before sevoflurane exposure; the Transwell migration assay was used to measure cell migration ability and Fluo 4-AM was used to measure intracellular Ca2+ concentration. KEY FINDINGS Pretreatment with an NCX inhibitor attenuated the proliferation and differentiation of OPC induced by sevoflurane and induced a remarkable increase in platelet-derived growth factor receptor-alpha (PDGFRα), 2, 3-cyclic nucleotide 3-phosphodiesterase (CNPase), oligodendrocyte transcription factor 2 (Olig2), and homeodomain protein NK2 homeobox 2 (NKX2.2) levels. Pretreatment with an NCX inhibitor alleviated the sevoflurane-induced myelination disorder and cognitive impairment. The decreased cell migration and increased intracellular Ca2+ concentration observed in the siRNA-negative control group was reversed in the sevoflurane plus siRNA-NCX1 group. SIGNIFICANCE This study suggests that repeated sevoflurane exposure in newborn mice leads to depolarization of OPC, which leads to Ca2+ influx through NCX and affects OPC proliferation, migration, differentiation, and myelination, ultimately leading to cognitive impairment.
Collapse
|
23
|
Wang C, Jiang Q, Zhao P. Sevoflurane exposure during the second trimester induces neurotoxicity in offspring rats by hyperactivation of PARP-1. Psychopharmacology (Berl) 2022; 239:3031-3045. [PMID: 35859039 DOI: 10.1007/s00213-022-06188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/07/2022] [Indexed: 11/27/2022]
Abstract
RATIONALE Fetal exposure to general anesthesia may cause noteworthy neurocognitive impairment, but the mechanisms are unclear. OBJECTIVES Our study designed to explore the potential mechanism of neurotoxicity in offspring rats after sevoflurane exposure to the pregnant rats during the second trimester. METHODS Pregnant rats (G14 day) were administrated with or without 3.5% sevoflurane, 40 mg/kg 3-aminobenzamide (3-AB), inhibitor of poly ADP ribose polymerase 1 (PARP-1), or 10 mg/kg TC-2153, inhibitor of striatal-enriched phosphatase 61 (STEP61). Afterwards, the effects on expression of β-tubulin (TUJ1), neurite outgrowth inhibitor A (Nogo-A), parthanatos-related and STEP61/proline-rich tyrosine kinase 2 (Pyk2) pathway-associated proteins, and reactive oxygen species (ROS) levels were examined by immunofluorescence staining, Western blot, and dihydroethidium (DHE) staining, respectively. Moreover, morphological changes in the hippocampal CA3 region and neuronal cell death were tested by glycine silver staining and TUNEL and immunofluorescence double staining, respectively. Furthermore, spatial learning and memory functions of rats on postnatal 28-33 days (PND 28-33) were evaluated by morris water maze (MWM). RESULTS Mid-pregnancy exposure to sevoflurane led to excessive PARP-1 activation, poly (ADP-ribose) (PAR) polymer accumulation, apoptosis-inducing factor (AIF) nuclear translocation, and Nogo-A accumulation. Besides, sevoflurane significantly inhibited neurite growth and increased cell death in the fetal rat brain. Additionally, sevoflurane activated STEP61/Pyk2 pathway and increased ROS levels. However, 3-AB or TC-2153 significantly alleviated cell death, promoted neurites growth, and improved sevoflurane-induced spatial learning and memory impairment. CONCLUSION This study proposes that sevoflurane exposure during the second trimester incudes neurotoxicity in offspring rats by hyperactivation of PARP-1 via STEP61/Pyk2 pathway.
Collapse
Affiliation(s)
- Cong Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No 36 Sanhao Street, Heping District Liaoning Province, 110004, Shenyang, China
| | - Qian Jiang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No 36 Sanhao Street, Heping District Liaoning Province, 110004, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No 36 Sanhao Street, Heping District Liaoning Province, 110004, Shenyang, China.
| |
Collapse
|
24
|
Lv J, Cheng H, Yao W, Liu C, Chen Y, Jin X, Yang Z, Li Y. 4.8% sevoflurane induces activation of autophagy in human neuroblastoma SH-SY5Y cells by the AMPK/mTOR signaling pathway. Neurotoxicology 2022; 90:256-264. [PMID: 35472370 DOI: 10.1016/j.neuro.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/26/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022]
Abstract
Prolonged sevoflurane exposure leads to neurotoxicity. Autophagy plays an important role in promoting cell survival in different conditions. However, the role and mechanism of autophagy in sevoflurane-induced neurotoxicity were not fully elucidated. We attempted to indicate whether sevoflurane could activate the AMP-activated protein kinase (AMPK)/mechanistic target of rapamycin (mTOR)-mediated autophagy to attenuate anesthetics-induced neuronal injury in this study. Sevoflurane treatment significantly decreased the cell viability and induced apoptosis of SH-SY5Y cells. The expression level of Bcl-2 decreased, while that of Bax remarkably increased. Meanwhile, autophagy was activated by sevoflurane exposure as evidenced by increased expression levels of autophagy-related proteins (LC3-II and Atg5), decreased expression level of autophagic substrate P62, and increased autophagosomes and autolysosomes. Further autophagosomes and fewer autolysosomes were observed in the presence of Bafilomycin A1, an autolysosomes degradation inhibitor, suggesting that sevoflurane induced autophagic flux rather than inhibiting degradation of autophagy. Activation of autophagy by rapamycin partly reversed the sevoflurane-decreased cell viability. In contrast, inhibition of autophagy by 3-Methyladenine (3-MA) or Atg5-targeted small interfering RNA (siRNA) aggravated the sevoflurane-induced neurotoxicity. Further examination revealed that sevoflurane-induced autophagy was mediated by the AMPK/mTOR signaling pathway, with increased p-AMPK expression and decreased p-mTOR expression. Collectively, these results indicated that sevoflurane activates autophagy by regulating the AMPK/mTOR signaling pathway, which is protective against sevoflurane-induced damage in SH-SY5Y cells. Our results may assist clinicians to develop further promising therapeutic strategies for the neurotoxicity induced by inhaled anesthetics.
Collapse
Affiliation(s)
- Jingjing Lv
- Department of Anesthesiology, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan Road, Wuhu 241001, Anhui, PR China
| | - Hao Cheng
- Department of Anesthesiology, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan Road, Wuhu 241001, Anhui, PR China
| | - Weidong Yao
- Department of Anesthesiology, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan Road, Wuhu 241001, Anhui, PR China
| | - Can Liu
- Department of Anesthesiology, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan Road, Wuhu 241001, Anhui, PR China
| | - Yongquan Chen
- Department of Anesthesiology, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan Road, Wuhu 241001, Anhui, PR China
| | - Xiaoju Jin
- Department of Anesthesiology, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan Road, Wuhu 241001, Anhui, PR China
| | - Zeyong Yang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China.
| | - Yuanhai Li
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, PR China.
| |
Collapse
|
25
|
Xu L, Guo Y, Wang G, Sun G, Sun W, Li J, Li X, Wu J, Zhang M. Inhibition of Adult Hippocampal Neurogenesis Plays a Role in Sevoflurane-Induced Cognitive Impairment in Aged Mice Through Brain-Derived Neurotrophic Factor/Tyrosine Receptor Kinase B and Neurotrophin-3/Tropomyosin Receptor Kinase C Pathways. Front Aging Neurosci 2022; 14:782932. [PMID: 35309893 PMCID: PMC8931760 DOI: 10.3389/fnagi.2022.782932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Sevoflurane anesthesia induces cognitive impairment, which may lead to perioperative neurocognitive disorders (PND). However, the factors and molecular mechanism underlying this impairment remains unclear. Adult hippocampal neurogenesis (AHN) in the subgranular zone of the hippocampus has been implicated in cognitive processes. Nonetheless, the direct role of AHN in sevoflurane-induced cognitive impairment has never been demonstrated. In this study, we explored the age and the concentration factors and the role of AHN inhibition in sevoflurane-induced cognitive impairment in sevoflurane inhalation model mice. We found that 3% sevoflurane exposure induced significant cognitive impairment and inhibition of AHN in aged mice but not adult mice. Expression of BDNF/TrkB and NT-3/TrkC was also decreased by 3% sevoflurane exposure in aged mice. Hippocampal brain-derived neurotrophic factor (BDNF) or Neurotrophin-3 (NT-3) microinjection could partially improve the sevoflurane-induced cognitive impairment and AHN inhibition, respectively. These results demonstrate that the cognitive impairment caused by sevoflurane inhalation is related to patient age and sevoflurane concentration. In conclusion, the molecular mechanism of cognitive impairment in the elderly is related to the inhibition of AHN through the BDNF/TrkB and NT-3/TrkC pathways. Thus, sevoflurane inhalation anesthesia may be safe for adult patients, but caution should be exercised when administering it to the elderly.
Collapse
Affiliation(s)
- Lichi Xu
- Department of Anesthesiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanjing Guo
- Department of Anesthesiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Gongming Wang
- Department of Anesthesiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guoqing Sun
- Department of Anesthesiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Sun
- Department of Anesthesiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jingjing Li
- Department of Anesthesiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinlei Li
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiangnan Wu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mengyuan Zhang
- Department of Anesthesiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Mengyuan Zhang,
| |
Collapse
|
26
|
Liu J, Li L, Xie P, Zhao X, Shi D, Zhang Y, Pan C, Li T. Sevoflurane induced neurotoxicity in neonatal mice links to a GSK3β/Drp1-dependent mitochondrial fission and apoptosis. Free Radic Biol Med 2022; 181:72-81. [PMID: 35122996 DOI: 10.1016/j.freeradbiomed.2022.01.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/01/2022]
Abstract
Mitochondria damage and apoptosis were found associated with sevoflurane induced neurotoxicity in developing brains of rodent and neuro cell lines. The detailed upstream mechanism remains unclear. This study explored whether sevoflurane induces neurotoxicity by activating a GSK3β (glycogen synthase kinase 3β)/Drp1 (dynamin-related protein-1)-dependent mitochondrial fission and apoptosis. Our results showed that sevoflurane exposure promoted mitochondria fission in hippocampus of neonatal mice, resulted in a prolonged escape latency from P32 (32-day-postnatal) to P35, and decreased platform crossing times on P36 as compared to the control treatment. Additionally, sevoflurane upregulated GSK3β stability and activation, promoted phosphorylation of Drp1 at Ser616 along with its translocation to mitochondria and resulted in increasing cytochrome c and cleaved casepase-3 in hippocampus of neonatal mice and in human SK-N-SH cells. Simultaneously, sevoflurane promoted the interaction between Drp1 and GSK3β. Furthermore, GSK3β activated phosphorylation of Drp1 at Ser616, induced mitochondrial fission, loss of mitochondrial membrane potential (MMP) and apoptosis in SK-N-SH cells, which was attenuated by TDZD-8, an inhibitor of GSK3β. In conclusion, sevoflurane induced neurotoxicity links to a GSK3β/Drp1 dependent mitochondrial fission and apoptosis.
Collapse
Affiliation(s)
- Jinsheng Liu
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Li Li
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ping Xie
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| | - Xiaoyan Zhao
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Dongjing Shi
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- College of Life Science, Peking University, Beijing, China
| | - Chuxiong Pan
- Department of Anesthesiology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
| | - Tianzuo Li
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
27
|
Liu L, Zhang X, Wang C, Wu X, Long B. Hypercholesterolemia aggravates sevoflurane-induced cognitive impairment in aged rats by inducing neurological inflammation and apoptosis. J Biochem Mol Toxicol 2022; 36:e23009. [PMID: 35174938 DOI: 10.1002/jbt.23009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 12/30/2022]
Abstract
We aimed to explore the effects of hypercholesterolemia on sevoflurane-induced cognitive impairment in aged rats and the underlying mechanism(s). Aged rats were administrated with high-fat diet, sevoflurane, or both. Thereafter, the plasma levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) were evaluated. The Morris water maze task was performed to evaluate the spatial learning and memory ability of rats. Moreover, Nissl and Evans blue staining were conducted to test nerve damage and detect the blood-brain barrier permeability, respectively. The percentage of apoptotic cells was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. The messenger RNA expression of inflammatory factors and protein expression of microglial activation markers and apoptosis-related proteins were tested by real-time polymerase chain reaction, enzyme-linked immunosorbent assay, or western blot analysis, respectively. High-fat diet induced high levels of TC, TG, and LDL but decreased levels of HDL. However, sevoflurane had no effects on these levels. In contrast, sevoflurane significantly induced the impairment of learning and memory, nerve damage, neuroinflammatory damage, and neuronal apoptosis. Hypercholesterolemia exacerbated the sevoflurane-induced impairment in aged rats. These results suggested that hypercholesterolemia aggravates sevoflurane-induced cognitive impairment in aged rats, possibly by inducing neurological inflammation and apoptosis.
Collapse
Affiliation(s)
- Lidan Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Cong Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiuying Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bo Long
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
28
|
Zhang W, Liu Q, Zhu H, Ma C, Luo Q, Ji M, Liu L. Propofol induces the apoptosis of neural stem cells via microRNA-9-5p / chemokine CXC receptor 4 signaling pathway. Bioengineered 2022; 13:1062-1072. [PMID: 34990302 PMCID: PMC8805814 DOI: 10.1080/21655979.2021.2017590] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recent studies suggested that propofol, one of the most widely used anesthetics, may cause neurotoxicity in the developing brain, leading to cognitive deficits in adults. However, the underlying mechanisms remain unclear. In this study, we aimed to evaluate the mechanisms of propofol neurotoxicity in the neural stem cells (NSCs). The mRNA and protein expression levels of microRNA-9-5p (miR-9-5p) and chemokine CXC receptor 4 (CXCR4) were determined by quantitative reverse transcription-polymerase chain reaction and Western blotting analyses. Cell viability and apoptosis were evaluated using the cell counting kit-8 and Hoechst staining kits. The levels of apoptosis-related proteins B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein, and caspase-3 were detected by Western blotting analysis. These results confirmed that propofol activated cell apoptosis in a dose-dependent manner. A significant increase in the miR-9-5p and CXCR4 expression was observed in the propofol-treated cells. The overexpression of miR-9-5p induced apoptosis in NSCs, accompanied by elevated apoptosis-related protein activity. Furthermore, mitigated CXCR4 expression reduced propofol-induced cell apoptosis. We conclude that propofol induces cell death in NSCs, and overexpression of miR-9-5p/CXCR4 contributes to propofol-induced cell apoptosis, which might be a target for developing novel strategies to treat propofol neurotoxicity.
Collapse
Affiliation(s)
- Weixin Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Liu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - He Zhu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chao Ma
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qin Luo
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Meilin Ji
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Li Liu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
29
|
Sun M, Xie Z, Zhang J, Leng Y. Mechanistic insight into sevoflurane-associated developmental neurotoxicity. Cell Biol Toxicol 2022; 38:927-943. [PMID: 34766256 PMCID: PMC9750936 DOI: 10.1007/s10565-021-09677-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
With the development of technology, more infants receive general anesthesia for surgery, other interventions, or clinical examination at an early stage after birth. However, whether general anesthetics can affect the function and structure of the developing infant brain remains an important, complex, and controversial issue. Sevoflurane is the most-used anesthetic in infants, but this drug is potentially neurotoxic. Short or single exposure to sevoflurane has a weak effect on cognitive function, while long or repeated exposure to general anesthetics may cause cognitive dysfunction. This review focuses on the mechanisms by which sevoflurane exposure during development may induce long-lasting undesirable effects on the brain. We review neural cell death, neural cell damage, impaired assembly and plasticity of neural circuits, tau phosphorylation, and neuroendocrine effects as important mechanisms for sevoflurane-induced developmental neurotoxicity. More advanced technologies and methods should be applied to determine the underlying mechanism(s) and guide prevention and treatment of sevoflurane-induced neurotoxicity. 1. We discuss the mechanisms underlying sevoflurane-induced developmental neurotoxicity from five perspectives: neural cell death, neural cell damage, assembly and plasticity of neural circuits, tau phosphorylation, and neuroendocrine effects.
2. Tau phosphorylation, IL-6, and mitochondrial dysfunction could interact with each other to cause a nerve damage loop.
3. miRNAs and lncRNAs are associated with sevoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Mingyang Sun
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China 730000 ,Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan People’s Republic of China 450003
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan People’s Republic of China 450003
| | - Yufang Leng
- Day Surgery Center, The First Hospital of Lanzhou University, Lanzhou, Gansu People’s Republic of China 730000
| |
Collapse
|
30
|
Benameur T, Giacomucci G, Panaro MA, Ruggiero M, Trotta T, Monda V, Pizzolorusso I, Lofrumento DD, Porro C, Messina G. New Promising Therapeutic Avenues of Curcumin in Brain Diseases. Molecules 2021; 27:236. [PMID: 35011468 PMCID: PMC8746812 DOI: 10.3390/molecules27010236] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/02/2023] Open
Abstract
Curcumin, the dietary polyphenol isolated from Curcuma longa (turmeric), is commonly used as an herb and spice worldwide. Because of its bio-pharmacological effects curcumin is also called "spice of life", in fact it is recognized that curcumin possesses important proprieties such as anti-oxidant, anti-inflammatory, anti-microbial, antiproliferative, anti-tumoral, and anti-aging. Neurodegenerative diseases such as Alzheimer's Diseases, Parkinson's Diseases, and Multiple Sclerosis are a group of diseases characterized by a progressive loss of brain structure and function due to neuronal death; at present there is no effective treatment to cure these diseases. The protective effect of curcumin against some neurodegenerative diseases has been proven by in vivo and in vitro studies. The current review highlights the latest findings on the neuroprotective effects of curcumin, its bioavailability, its mechanism of action and its possible application for the prevention or treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Giulia Giacomucci
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50134 Florence, Italy;
| | - Maria Antonietta Panaro
- Biotechnologies and Biopharmaceutics, Department of Biosciences, University of Bari, 70125 Bari, Italy; (M.A.P.); (M.R.)
| | - Melania Ruggiero
- Biotechnologies and Biopharmaceutics, Department of Biosciences, University of Bari, 70125 Bari, Italy; (M.A.P.); (M.R.)
| | - Teresa Trotta
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (T.T.); (V.M.); (G.M.)
| | - Vincenzo Monda
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (T.T.); (V.M.); (G.M.)
- Unit of Dietetic and Sport Medicine, Section of Human Physiology, Department of Experimental Medicine, Luigi Vanvitelli University of Campania, 81100 Naples, Italy
| | - Ilaria Pizzolorusso
- Child and Adolescent Neuropsychiatry Unit, Department of Mental Health, ASL Foggia, 71121 Foggia, Italy;
| | - Dario Domenico Lofrumento
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, 73100 Lecce, Italy;
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (T.T.); (V.M.); (G.M.)
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (T.T.); (V.M.); (G.M.)
| |
Collapse
|
31
|
Zhang T, Zhou B, Sun J, Song J, Nie L, Zhu K. Fraxetin suppresses reactive oxygen species-dependent autophagy by the PI3K/Akt pathway to inhibit isoflurane-induced neurotoxicity in hippocampal neuronal cells. J Appl Toxicol 2021; 42:617-628. [PMID: 34553399 DOI: 10.1002/jat.4243] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/09/2022]
Abstract
Isoflurane, a common volatile anesthetic, has been widely used to provide general anesthesia in operations. However, exposure to isoflurane may cause widespread neurotoxicity in the developing animal brain. Fraxetin, a natural coumarin derivative extracted from the bark of Fraxinus rhynchophylla, possesses versatile pharmacological properties including anti-oxidative, anti-inflammatory, and neuroprotective effects. However, the effect and action mechanism of fraxetin on neurotoxicity induced by isoflurane are unknown. Reactive oxygen species (ROS) generation, cell viability, lactate dehydrogenase (LDH) release, and apoptosis were estimated by 2',7'-dichlorofluorescin-diacetate (DCFH-DA) staining, MTT, LDH release, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL) staining assays, respectively. The protein levels of light chain 3 (LC3)-I, LC3-II, p62, protein kinase B (Akt), and phosphorylated Akt (p-Akt) were detected by western blot analysis. Isoflurane induced ROS, LDH release, apoptosis, and autophagy, but inhibited the viability in HT22 cells, which were overturned by fraxetin or ROS scavenger N-acetyl-L-cysteine. Fraxetin suppressed isoflurane-induced PI3K/Akt inactivation in HT22 cells. PI3K/Akt inactivation by LY294002 resisted the effects of fraxetin on isoflurane-induced autophagy and autophagy-modulated neurotoxicity in HT22 cells. In conclusion, fraxetin suppressed ROS-dependent autophagy by activating the PI3K/Akt pathway to inhibit isoflurane-induced neurotoxicity in hippocampal neuronal cells.
Collapse
Affiliation(s)
- Tongyin Zhang
- Department of Anesthesiology, Nanshi Hospital Affiliated to Henan University, Nanyang, China
| | - Botao Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junyi Sun
- Department of Anesthesiology, Nanshi Hospital Affiliated to Henan University, Nanyang, China
| | - Jiangling Song
- Department of Anesthesiology, Nanshi Hospital Affiliated to Henan University, Nanyang, China
| | - Limin Nie
- Department of Anesthesiology, Nanshi Hospital Affiliated to Henan University, Nanyang, China
| | - Kairun Zhu
- Operating Room, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
32
|
Li L, Zhou R, Lv H, Song L, Xue X, Wu L. Inhibitive Effect of Luteolin on Sevoflurane-Induced Neurotoxicity through Activation of the Autophagy Pathway by HMOX1. ACS Chem Neurosci 2021; 12:3314-3322. [PMID: 34445868 DOI: 10.1021/acschemneuro.1c00157] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Luteolin is a flavone compound occurring in a variety of medicinal plants, which is reported to have neuroprotective properties. In this study, we aimed to explore the effects of luteolin in alleviating sevoflurane-induced neurotoxicity. GeneCards and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform were employed to screen luteolin, sevoflurane, and neurotoxicity-related genes. Subsequently, we isolated primary neurons from the hippocampus of 1-day-old C57BL/6J mice and tested for cytotoxicity after treatment of different concentrations of luteolin. Next, we measured the expression of apoptosis by flow cytometry and assessed inflammation-related factors, including heme oxygenase-1 expression detected by immunohistochemical staining and neuronal apoptosis. Finally, water maze, open field, and fear conditioning tests were conducted to observe the interaction between luteolin and sevoflurane in cognitive impairment of mice. Luteolin had the lowest cytotoxicity at concentrations of 30 or 60 μg/mL; we selected 30 μg/mL for drug administration experiments in vitro. Luteolin inhibited sevoflurane-induced neuronal apoptosis and inflammatory responses through the autophagic pathway and thus ameliorated sevoflurane-induced cognitive impairment in mice. Mechanistically, luteolin up-regulated heme oxygenase-1 expression, which activated the autophagy pathway in vitro. This was confirmed by subsequent histological experiments in mice and behavioral results showing rescue cognitive impairment. Our findings uncovered an inhibitory role of luteolin in sevoflurane-induced neuronal apoptosis and inflammatory response through activation of autophagy arising from up-regulation of heme oxygenase-1, thereby alleviating sevoflurane-induced cognitive impairment in mice.
Collapse
Affiliation(s)
- Lu Li
- Department of Anesthesiology, Honghui Hospital, Xi’an Jiaotong University, No. 555, Youyi East Road, Nanshaomen, Xi’an, Shaanxi 710054, P. R. China
| | - Rongsheng Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Haigang Lv
- Department of Anesthesiology, Honghui Hospital, Xi’an Jiaotong University, No. 555, Youyi East Road, Nanshaomen, Xi’an, Shaanxi 710054, P. R. China
| | - Lei Song
- Department of Anesthesiology, Honghui Hospital, Xi’an Jiaotong University, No. 555, Youyi East Road, Nanshaomen, Xi’an, Shaanxi 710054, P. R. China
| | - Xiaohong Xue
- Department of Blood Purification, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Li Wu
- Department of Anesthesiology, Honghui Hospital, Xi’an Jiaotong University, No. 555, Youyi East Road, Nanshaomen, Xi’an, Shaanxi 710054, P. R. China
| |
Collapse
|
33
|
Inhibiting PDE7A Enhances the Protective Effects of Neural Stem Cells on Neurodegeneration and Memory Deficits in Sevoflurane-Exposed Mice. eNeuro 2021; 8:ENEURO.0071-21.2021. [PMID: 34135002 PMCID: PMC8266220 DOI: 10.1523/eneuro.0071-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/03/2022] Open
Abstract
Sevoflurane is widely used in general anesthesia, especially for children. However, prolonged exposure to sevoflurane is reported to be associated with adverse effects on the development of brain in infant monkey. Neural stem cells (NSCs), with potent proliferation, differentiation, and renewing ability, provide an encouraging tool for basic research and clinical therapies for neurodegenerative diseases. We aim to explore the functional effects of injecting NSCs with phosphodiesterase 7A (PDE7A) knock-down in infant mice exposed to sevoflurane. The effects of PDE7A in NSCs proliferation and differentiation were determined by cell counting kit-8 (CCK-8) assay and differentiation-related gene expression assay, respectively. The effects of NSCs with modified PDE7A on mice’s long-term memory and learning ability were assessed by behavioral assays. Our data demonstrated that depleting PDE7A promoted, whereas forcing PDE7A suppressed the activation of cAMP/cAMP-response element binding protein (CREB) signaling as well as cell proliferation and neuronal differentiation of NSCs. Inhibition of PDE7A in NSCs exhibited profound improved effects on long-term memory and learning ability of mice exposed to sevoflurane. Our results for the first time show that knock-down of PDE7A improves the neurogenesis of NSCs in vitro and in vivo, and is beneficial for alleviating sevoflurane-induced brain damage in infant mice.
Collapse
|
34
|
Piao M, Wang Y, Liu N, Wang X, Chen R, Qin J, Ge P, Feng C. Sevoflurane Exposure Induces Neuronal Cell Parthanatos Initiated by DNA Damage in the Developing Brain via an Increase of Intracellular Reactive Oxygen Species. Front Cell Neurosci 2020; 14:583782. [PMID: 33424554 PMCID: PMC7793874 DOI: 10.3389/fncel.2020.583782] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
The safety of volatile anesthetics in infants and young children has been drawing increasing concern due to its potential neurotoxicity in the developing brain. Neuronal death is considered a major factor associated with developmental neurotoxicity after exposure to volatile anesthetics sevoflurane, but its mechanism remains elusive. Parthanatos, a new type of programmed cell death, resulting from poly (ADP-ribose) polymerase 1 (PARP-1) hyperactivation in response to DNA damage, was found to account for the pathogenesis of multiple neurological disorders. However, the role of Parthanatos in sevoflurane-induced neonatal neuronal cell death has not been investigated. To test it, neuronal cells treated with 2, 4, and 8% sevoflurane for 6, 12, and 24 h and postnatal day 7 rats exposed to 2.5% sevoflurane for 6 h were used in the present study. Our results found sevoflurane exposure induced neuronal cell death, which was accompanied by PARP-1 hyperactivation, cytoplasmic polymerized ADP-ribose (PAR) accumulation, mitochondrial depolarization, and apoptosis-inducing factor (AIF) nuclear translocation in the neuronal cells and hippocampi of rats. Pharmacological or genetic inhibition of PAPR-1 significantly alleviated sevoflurane-induced neuronal cell death and accumulation of PAR polymer and AIF nuclear translocation, which were consistent with the features of Parthanatos. We observed in vitro and in vivo that sevoflurane exposure resulted in DNA damage, given that 8-hydroxydeoxyguanosine (8-OHdG) and phosphorylation of histone variant H2AX (γH2AX) were improved. Moreover, we detected that sevoflurane exposure was associated with an overproduction of intracellular reactive oxygen species (ROS). Inhibition of ROS with antioxidant NAC markedly alleviated DNA damage caused by sevoflurane, indicating that ROS participated in the regulation of sevoflurane-induced DNA damage. Additionally, sevoflurane exposure resulted in upregulation of Parthanatos-related proteins and neuronal cell death, which were significantly attenuated by pretreatment with NAC. Therefore, these results suggest that sevoflurane exposure induces neuronal cell Parthanatos initiated by DNA damage in the developing brain via the increase of intracellular ROS.
Collapse
Affiliation(s)
- Meihua Piao
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Yingying Wang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Nan Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Xuedong Wang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Rui Chen
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Jing Qin
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Pengfei Ge
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Chunsheng Feng
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
35
|
Dexmedetomidine alleviates sevoflurane-induced neurotoxicity via mitophagy signaling. Mol Biol Rep 2020; 47:7893-7901. [PMID: 33044702 DOI: 10.1007/s11033-020-05868-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022]
Abstract
Dexmedetomidine, a class of α2-adrenergic agonist, was reported to exert a neuroprotective effect on sevoflurane-induced neurotoxicity. However, the specific mechanisms have not been fully clarified yet. The aim of our study is to uncover the role of dexmedetomidine in sevoflurane-induced neurotoxicity. The rats pretreated with dexmedetomidine and/or Rapamycin 3-Methyladenine were housed in a box containing 30% O2, 68% N2 and 2% sevoflurane for 4 h for anesthesia. 24 h after drug injection, Morris water maze test was used to evaluate rats' learning and memory ability. Hematoxylin & eosin (H&E) staining was adopted to analyze the pathological changes of hippocampus. TUNEL assay was performed to measure cell apoptosis in hippocampus. Immunofluorescent assay was utilized to detect HSP60 level. The protein levels of LC3I, LC3II, Beclin-1, CypD, VDAC1 and Tom20 were examined by western blot. 5 weeks after drug injection, Morris water maze test was used to evaluate rats' learning and memory ability again. Dexmedetomidine alleviated sevoflurane-induced nerve injury and the impairment of learning and memory abilities. Additionally, dexmedetomidine inhibited sevoflurane-induced cell apoptosis in hippocampus. In mechanism, dexmedetomidine activated mitophagy to mitigate neurotoxicity by enhancing LC3II/LC3I ratio, HSP60, Beclin-1, CypD, VDAC1 and Tom20 protein levels in hippocampus. Dexmedetomidine alleviates sevoflurane-induced neurotoxicity via mitophagy signaling, offering a potential strategy for sevoflurane-induced neurotoxicity treatment.
Collapse
|
36
|
Chen Y, Zhang P, Lin X, Zhang H, Miao J, Zhou Y, Chen G. Mitophagy impairment is involved in sevoflurane-induced cognitive dysfunction in aged rats. Aging (Albany NY) 2020; 12:17235-17256. [PMID: 32903215 PMCID: PMC7521530 DOI: 10.18632/aging.103673] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/02/2020] [Indexed: 01/24/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is frequently observed in elderly patients following anesthesia, but its pathophysiological mechanisms have not been fully elucidated. Sevoflurane was reported to repress autophagy in aged rat neurons; however, the role of mitophagy, which is crucial for the control of mitochondrial quality and neuronal health, in sevoflurane-induced POCD in aged rats remains undetermined. Therefore, this study investigated whether mitophagy impairment is involved in sevoflurane-induced cognitive dysfunction. We found sevoflurane treatment inhibited mitochondrial respiration and mitophagic flux, changes in mitochondria morphology, impaired lysosomal acidification, and increased Tomm20 and deceased LAMP1 accumulation were observed in H4 cell and aged rat models. Rapamycin counteracted ROS induced by sevoflurane, restored mitophagy and improved mitochondrial function. Furthermore, rapamycin ameliorated the cognitive deficits observed in aged rats given sevoflurane anesthesia as determined by the Morris water maze test; this improvement was associated with an increased number of dendritic spines and pyramidal neurons. Overexpression of PARK2, but not mutant PARK2 lacking enzyme activity, in H4 cells decreased ROS and Tomm20 accumulation and reversed mitophagy dysfunction after sevoflurane treatment. These findings suggest that mitophagy dysfunction could be a mechanism underlying sevoflurane-induced POCD and that activating mitophagy may provide a new strategy to rescue cognitive deficits.
Collapse
Affiliation(s)
- Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xianyi Lin
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Huan Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jiamin Miao
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Youfa Zhou
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
37
|
Autophagic Network Analysis of the Dual Effect of Sevoflurane on Neurons Associated with GABARAPL1 and 2. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1587214. [PMID: 32685442 PMCID: PMC7335402 DOI: 10.1155/2020/1587214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
Background Sevoflurane is commonly used as a general anesthetic in neonates to aged patients. Preconditioning or postconditioning with sevoflurane protects neurons from excitotoxic injury. Conversely, sevoflurane exposure induces neurotoxicity during early or late life. However, little is known about the underlying mechanism of the dual effect of sevoflurane on neurons. Autophagy is believed to control neuronal homeostasis. We hypothesized that autophagy determined the dual effect of sevoflurane on neurons. Methods DTome was used to identify the direct protein target (DPT) of sevoflurane. The STRING database was employed to investigate the proteins associated with the DPTs. Protein-protein interaction was assessed using Cytoscape. WebGestalt was used to analyze gene set enrichment. The linkage between candidate genes and autophagy was identified using GeneCards. Results This study found that 23 essential DPTs of sevoflurane interacted with 77 proteins from the STRING database. GABARAPL1 and 2, both of which are DPT- and autophagy-associated proteins, were significantly expressed in the brain and enriched in GABAergic synapses. Conclusions Taken together, our findings showed that the network of sevoflurane-DPT-GABARAPL1 and 2 is related to the dual effect of sevoflurane on neurons.
Collapse
|
38
|
Truttmann AC, Ginet V, Puyal J. Current Evidence on Cell Death in Preterm Brain Injury in Human and Preclinical Models. Front Cell Dev Biol 2020; 8:27. [PMID: 32133356 PMCID: PMC7039819 DOI: 10.3389/fcell.2020.00027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Despite tremendous advances in neonatal intensive care over the past 20 years, prematurity carries a high burden of neurological morbidity lasting lifelong. The term encephalopathy of prematurity (EoP) coined by Volpe in 2009 encompasses all aspects of the now known effects of prematurity on the immature brain, including altered and disturbed development as well as specific lesional hallmarks. Understanding the way cells are damaged is crucial to design brain protective strategies, and in this purpose, preclinical models largely contribute to improve the comprehension of the cell death mechanisms. While neuronal cell death has been deeply investigated and characterized in (hypoxic–ischemic) encephalopathy of the newborn at term, little is known about the types of cell death occurring in preterm brain injury. Three main different morphological cell death types are observed in the immature brain, specifically in models of hypoxic–ischemic encephalopathy, namely, necrotic, apoptotic, and autophagic cell death. Features of all three types may be present in the same dying neuron. In preterm brain injury, description of cell death types is sparse, and cell loss primarily concerns immature oligodendrocytes and, infrequently, neurons. In the present review, we first shortly discuss the different main severe preterm brain injury conditions that have been reported to involve cell death, including periventricular leucomalacia (PVL), diffuse white matter injury (dWMI), and intraventricular hemorrhages, as well as potentially harmful iatrogenic conditions linked to premature birth (anesthesia and caffeine therapy). Then, we present an overview of current evidence concerning cell death in both clinical human tissue data and preclinical models by focusing on studies investigating the presence of cell death allowing discriminating between the types of cell death involved. We conclude that, to improve brain protective strategies, not only apoptosis but also other cell death (such as regulated necrotic and autophagic) pathways now need to be investigated together in order to consider all cell death mechanisms involved in the pathogenesis of preterm brain damage.
Collapse
Affiliation(s)
- Anita C Truttmann
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland
| | - Vanessa Ginet
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,CURML, University Center of Legal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
39
|
Tang X, Zhao Y, Zhou Z, Yan J, Zhou B, Chi X, Luo A, Li S. Resveratrol Mitigates Sevoflurane-Induced Neurotoxicity by the SIRT1-Dependent Regulation of BDNF Expression in Developing Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9018624. [PMID: 32148659 PMCID: PMC7049870 DOI: 10.1155/2020/9018624] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/14/2019] [Accepted: 01/18/2020] [Indexed: 02/07/2023]
Abstract
Various lines of evidence suggest that neonatal exposure to general anesthetics, especially repeatedly, results in neuropathological brain changes and long-term cognitive impairment. Although progress has been made in experimental models, the exact mechanism of GA-induced neurotoxicity in the developing brain remains to be clarified. Sirtuin 1 (SIRT1) plays an important role in synaptic plasticity and cognitive performance, and its abnormal reduction is associated with cognitive dysfunction in neurodegenerative diseases. However, the role of SIRT1 in GA-induced neurotoxicity is unclear to date. In this study, we found that the protein level of SIRT1 was inhibited in the hippocampi of developing mice exposed to sevoflurane. Furthermore, the SIRT1 inhibition in hippocampi was associated with brain-derived neurotrophic factor (BDNF) downregulation modulated by methyl-cytosine-phosphate-guanine-binding protein 2 (MeCP2) and cAMP response element-binding protein (CREB). Pretreatment of neonatal mice with resveratrol nearly reversed the reduction in hippocampal SIRT1 expression, which increased the expression of BDNF in developing mice exposed to sevoflurane. Moreover, changes in the levels of CREB and MeCP2, which were considered to interact with BDNF promoter IV, were also rescued by resveratrol. Furthermore, resveratrol improved the cognitive performance in the Morris water maze test of the adult mice with exposure to sevoflurane in the neonatal stage, without changing motor function in the open field test. Taken together, our findings suggested that SIRT1 deficiency regulated BDNF signaling via regulation of the epigenetic activity of MeCP2 and CREB, and resveratrol might be a promising agent for mitigating sevoflurane-induced neurotoxicity in developing mice.
Collapse
Affiliation(s)
- Xiaole Tang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Zhiqiang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Biyun Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Xiaohui Chi
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| |
Collapse
|
40
|
Jiang Y, Wang Y, Sun Y, Jiang H. Long non-coding RNA Peg13 attenuates the sevoflurane toxicity against neural stem cells by sponging microRNA-128-3p to preserve Sox13 expression. PLoS One 2020; 15:e0243644. [PMID: 33296418 PMCID: PMC7725402 DOI: 10.1371/journal.pone.0243644] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/24/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Exposure to anesthetics during brain development may impair neurological function, however, the mechanisms underlying anesthetic neurotoxicity are unclear. Recent studies indicate that long non-coding RNAs (lncRNAs) are crucial for regulating the functional brain development during neurogenesis. This study aimed to determine the regulatory effects and potential mechanisms of lncRNA Peg13 (Peg13) on sevoflurane exposure-related neurotoxicity against neural stem cells (NSCs). METHODS Mouse embryotic NSCs were isolated and their self-renewal and differentiation were characterized by immunofluorescence. NSCs were exposed to 4.1% sevoflurane 2 h daily for three consecutive days. The potential toxicities of sevoflurane against NSCs were evaluated by neurosphere formation, 5-ethynyl-2'-deoxyuridine (EdU) incorporation and flow cytometry assays. The Peg13, miR-128-3p and Sox13 expression in NSCs were quantified. The potential interactions among Peg13, miR-128-3p and Sox13 were analyzed by luciferase reporter assay. The effects of Peg13 and/or miR-128-3p over-expression on the sevoflurane-related neurotoxicity and Sox13 expression were determined in NSCs. RESULTS The isolated mouse embryotic NSCs displayed potent self-renewal ability and differentiated into neurons, astrocytes and oligodendrocytes in vitro, which were significantly inhibited by sevoflurane exposure. Sevoflurane exposure significantly down-regulated Peg13 and Sox13, but enhanced miR-128-3p expression in NSCs. Transfection with miR-128-3p mimics, but not the control, significantly mitigated the Peg13 or Sox13-regulated luciferase expression in 293T cells. Peg13 over-expression significantly reduced the sevoflurane-related neurotoxicity and increased Sox13 expression in NSCs, which were mitigated by miR-128-3p transfection. CONCLUSION Such data indicated that Peg13 mitigated the sevoflurane-related neurotoxicity by sponging miR-128-3p to preserve Sox13 expression in NSCs.
Collapse
Affiliation(s)
- Yunfeng Jiang
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Yue Wang
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Yu Sun
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
- * E-mail: (YS); (HJ)
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
- * E-mail: (YS); (HJ)
| |
Collapse
|
41
|
Song SY, Meng XW, Xia Z, Liu H, Zhang J, Chen QC, Liu HY, Ji FH, Peng K. Cognitive impairment and transcriptomic profile in hippocampus of young mice after multiple neonatal exposures to sevoflurane. Aging (Albany NY) 2019; 11:8386-8417. [PMID: 31582589 PMCID: PMC6814607 DOI: 10.18632/aging.102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023]
Abstract
Children with repeated inhalational anesthesia may develop cognitive disorders. This study aimed to investigate the transcriptome-wide response of hippocampus in young mice that had been exposed to multiple sevoflurane in the neonatal period. Mice received 3% sevoflurane for 2 h on postnatal day (PND) 6, 8, and 10, followed by arterial blood gas test on PND 10, behavioral experiments on PND 31–36, and RNA sequencing (RNA-seq) of hippocampus on PND 37. Functional annotation and protein-protein interaction analyses of differentially expressed genes (DEGs) and quantitative reverse transcription polymerase chain reaction (qPCR) were performed. Neonatal sevoflurane exposures induced cognitive and social behavior disorders in young mice. RNA-seq identified a total of 314 DEGs. Several enriched biological processes (ion channels, brain development, learning, and memory) and signaling pathways (oxytocin signaling pathway and glutamatergic, cholinergic, and GABAergic synapses) were highlighted. As hub-proteins, Pten was involved in nervous system development, synapse assembly, learning, memory, and behaviors, Nos3 and Pik3cd in oxytocin signaling pathway, and Cdk16 in exocytosis and phosphorylation. Some top DEGs were validated by qPCR. This study revealed a transcriptome-wide profile in mice hippocampus after multiple neonatal exposures to sevoflurane, promoting better understanding of underlying mechanisms and investigation of preventive strategies.
Collapse
Affiliation(s)
- Shao-Yong Song
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiao-Wen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - ZhengYuan Xia
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China.,Department of Anesthesiology and Pain Medicine, University of California Davis Health System, Sacramento, CA 95817, USA
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health System, Sacramento, CA 95817, USA
| | - Juan Zhang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qing-Cai Chen
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hua-Yue Liu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fu-Hai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
42
|
Zhou B, Chen L, Liao P, Huang L, Chen Z, Liao D, Yang L, Wang J, Yu G, Wang L, Zhang J, Zuo Y, Liu J, Jiang R. Astroglial dysfunctions drive aberrant synaptogenesis and social behavioral deficits in mice with neonatal exposure to lengthy general anesthesia. PLoS Biol 2019; 17:e3000086. [PMID: 31433818 PMCID: PMC6719896 DOI: 10.1371/journal.pbio.3000086] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 09/03/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Lengthy use of general anesthetics (GAs) causes neurobehavioral deficits in the developing brain, which has raised significant clinical concerns such that the United States Food and Drug Administration (FDA) is warning on the use of GAs in children younger than 3 years. However, the molecular and cellular mechanisms for GAs-induced neurotoxicity remain largely unknown. Here, we report that sevoflurane (Sevo), a commonly used GA in pediatrics, caused compromised astrocyte morphogenesis spatiotemporally correlated to synaptic overgrowth, with reduced synaptic function in developing cortex in a regional-, exposure-length-, and age-specific manner. Sevo disrupted astrocyte Ca2+ homeostasis both acutely and chronically, which led to the down-regulation of Ezrin, an actin-binding membrane-bound protein, which we found was critically involved in astrocyte morphogenesis in vivo. Importantly, overexpression of astrocyte Ezrin rescued astrocytic and neuronal dysfunctions and fully corrected deficits in social behaviors in developing mice with lengthy Sevo exposure. Our data uncover that, in addition to neurons, astrocytes may represent important targets for GAs to exert toxic effects and that astrocyte morphological integrity is crucial for synaptogenesis and neurological behaviors. The extended use of general anesthetics can cause neurobehavioral deficits in the developing brain, leading to clinical concerns regarding their use in children younger than 3 years. This study shows that general anesthetics target glial cells to disrupt neural circuit formation in the developing brain, an effect that may underlie the observed learning, cognitive, or emotional deficits.
Collapse
Affiliation(s)
- Bin Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Sichuan University, Chengdu, Sichuan, China
- Translational Neuroscience Center, Sichuan University, Chengdu, Sichuan, China
- Department of Anesthesiology of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingmin Chen
- Laboratory of Anesthesia and Critical Care Medicine, Sichuan University, Chengdu, Sichuan, China
- Translational Neuroscience Center, Sichuan University, Chengdu, Sichuan, China
- Department of Anesthesiology of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, Sichuan University, Chengdu, Sichuan, China
- Translational Neuroscience Center, Sichuan University, Chengdu, Sichuan, China
- Department of Anesthesiology of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Huang
- Laboratory of Anesthesia and Critical Care Medicine, Sichuan University, Chengdu, Sichuan, China
- Translational Neuroscience Center, Sichuan University, Chengdu, Sichuan, China
- Department of Anesthesiology of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhuo Chen
- Laboratory of Anesthesia and Critical Care Medicine, Sichuan University, Chengdu, Sichuan, China
- Translational Neuroscience Center, Sichuan University, Chengdu, Sichuan, China
- Department of Anesthesiology of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Daqing Liao
- Laboratory of Anesthesia and Critical Care Medicine, Sichuan University, Chengdu, Sichuan, China
- Translational Neuroscience Center, Sichuan University, Chengdu, Sichuan, China
- Department of Anesthesiology of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Linghui Yang
- Laboratory of Anesthesia and Critical Care Medicine, Sichuan University, Chengdu, Sichuan, China
- Translational Neuroscience Center, Sichuan University, Chengdu, Sichuan, China
- Department of Anesthesiology of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Wang
- Laboratory of Anesthesia and Critical Care Medicine, Sichuan University, Chengdu, Sichuan, China
- Translational Neuroscience Center, Sichuan University, Chengdu, Sichuan, China
- Department of Anesthesiology of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guoqiang Yu
- Bradley Department of Electrical & Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, Virginia, United States of America
| | - Li Wang
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianguo Zhang
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yunxia Zuo
- Laboratory of Anesthesia and Critical Care Medicine, Sichuan University, Chengdu, Sichuan, China
- Translational Neuroscience Center, Sichuan University, Chengdu, Sichuan, China
- Department of Anesthesiology of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, Sichuan University, Chengdu, Sichuan, China
- Translational Neuroscience Center, Sichuan University, Chengdu, Sichuan, China
- Department of Anesthesiology of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, Sichuan University, Chengdu, Sichuan, China
- Translational Neuroscience Center, Sichuan University, Chengdu, Sichuan, China
- Department of Anesthesiology of West China Hospital, Sichuan University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|