1
|
Liu YL, Cao YG, Hao FX, Zeng MN, Niu Y, Chen L, Chen X, Zheng XK, Feng WS. Chemical constituents from stipes of Lentinus edodes and their protective effects against Aβ 25-35-induced N9 microglia cells injury. PHYTOCHEMISTRY 2024; 222:114098. [PMID: 38648960 DOI: 10.1016/j.phytochem.2024.114098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/10/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Nine undescribed compounds, along with eight known compounds, were isolated from the stipes of Lentinus edodes. Their structures were established by extensive spectroscopic and circular dichroism analyses. The protective effects against Aβ25-35-induced N9 microglia cells injury of these compounds were tested by MTT method, and the levels of apoptosis and ROS were detected by flow cytometry. In addition, the binding sites and interactions of compound with amyloid precursor protein were revealed using molecular docking simulations. These findings further establish the structural diversity and bioactivity of stipes of L. edodes, and provide an experimental basis for targeting Alzheimer's disease as a potential strategy.
Collapse
Affiliation(s)
- Yan-Ling Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou 450046,China
| | - Yan-Gang Cao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou 450046,China
| | - Feng-Xiao Hao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou 450046,China
| | - Meng-Nan Zeng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou 450046,China
| | - Ying Niu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou 450046,China
| | - Lan Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou 450046,China
| | - Xu Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou 450046,China
| | - Xiao-Ke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou 450046,China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Disease Diagnosis by Henan and Education Ministry of P. R. China,Zhengzhou 450046, China.
| | - Wei-Sheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou 450046,China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Disease Diagnosis by Henan and Education Ministry of P. R. China,Zhengzhou 450046, China.
| |
Collapse
|
2
|
Buchholz E, Gillespie NA, Hunt JF, Reynolds CA, Rissman RA, Schroeder A, Cortes I, Bell T, Lyons MJ, Kremen WS, Franz CE. Midlife cumulative deficit frailty predicts Alzheimer's disease-related plasma biomarkers in older adults. Age Ageing 2024; 53:afae028. [PMID: 38454901 PMCID: PMC10921085 DOI: 10.1093/ageing/afae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The study explores whether frailty at midlife predicts mortality and levels of biomarkers associated with Alzheimer's disease and related dementias (ADRD) and neurodegeneration by early old age. We also examine the heritability of frailty across this age period. METHODS Participants were 1,286 community-dwelling men from the Vietnam Era Twin Study of Aging at average ages 56, 62 and 68, all without ADRD at baseline. The cumulative deficit frailty index (FI) comprised 37 items assessing multiple physiological systems. Plasma biomarkers at age 68 included beta-amyloid (Aβ40, Aβ42), total tau (t-tau) and neurofilament light chain (NfL). RESULTS Being frail doubled the risk of all-cause mortality by age 68 (OR = 2.44). Age 56 FI significantly predicted age 68 NfL (P = 0.014), Aβ40 (P = 0.001) and Aβ42 (P = 0.023), but not t-tau. Age 62 FI predicted all biomarkers at age 68: NfL (P = 0.023), Aβ40 (P = 0.002), Aβ42 (P = 0.001) and t-tau (P = 0.001). Age 68 FI scores were associated with age 68 levels of NfL (P = 0.027), Aβ40 (P < 0.001), Aβ42 (P = 0.001) and t-tau (P = 0.003). Genetic influences accounted for 45-48% of the variance in frailty and significantly contributed to its stability across 11 years. CONCLUSIONS Frailty during one's 50s doubled the risk of mortality by age 68. A mechanism linking frailty and ADRD may be through its associations with biomarkers related to neurodegeneration. Cumulative deficit frailty increases with age but remains moderately heritable across the age range studied. With environmental factors accounting for about half of its variance, early interventions aimed at reducing frailty may help to reduce risk for ADRD.
Collapse
Affiliation(s)
- Erik Buchholz
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California, La Jolla, San Diego, CA 92093, USA
- Department of Information Science, University of Arkansas at Little Rock, Little Rock, AR 72204 USA
| | - Nathan A Gillespie
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, VA 23298, USA
| | - Jack F Hunt
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California, La Jolla, San Diego, CA 92093, USA
| | - Chandra A Reynolds
- Department of Psychology, University of California Riverside, Riverside, CA 92521, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego and VA San Diego Healthcare System, La Jolla, CA 92093, USA
- Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego, CA 92121, USA
| | - Angelica Schroeder
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California, La Jolla, San Diego, CA 92093, USA
| | - Isaac Cortes
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California, La Jolla, San Diego, CA 92093, USA
| | - Tyler Bell
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California, La Jolla, San Diego, CA 92093, USA
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California, La Jolla, San Diego, CA 92093, USA
| | - Carol E Franz
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California, La Jolla, San Diego, CA 92093, USA
| |
Collapse
|
3
|
Régy M, Dugravot A, Sabia S, Bouaziz-Amar E, Paquet C, Hanseeuw B, Singh-Manoux A, Dumurgier J. Association between ATN profiles and mortality in a clinical cohort of patients with cognitive disorders. Alzheimers Res Ther 2023; 15:77. [PMID: 37038213 PMCID: PMC10088112 DOI: 10.1186/s13195-023-01220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the 5th leading cause of death in people 65 years and older. The ATN classification reflects a biological definition of AD pathology with markers of Aβ deposition (A), pathologic tau (T), and neurodegeneration (N). Little is known about the relationship between ATN status and the risk of mortality, leading us to examine this association in a relatively large population of patients seen at a memory clinic for cognitive disorders. METHODS Data were drawn from the BioCogBank Study, including patients seen for cognitive disorders in Lariboisiere Hospital (Paris, France), followed up to 15 years. All participants underwent a lumbar puncture for an assessment of the levels of CSF tau (tau), phosphorylated tau (p-tau181), and β-amyloid 42 peptide (Aβ42). Vital status on July 1, 2020, was recorded for each participant using the national mortality register. Individuals were categorized according to their ATN profiles based on CSF Aβ42 or Aβ42/40 ratio, p-tau181, and tau. Kaplan-Meier and multivariate Cox analyses were performed with A-T-N - participants as the reference using a short (5 years) and long follow-up (15 years). RESULTS Of the 1353 patients in the study (mean age: 68 years old, 53% of women, mean MMSE score: 22.6), 262 died during the follow-up. At 5 years of follow-up, A-T-N + individuals had the highest risk of mortality in Kaplan-Meier and adjusted Cox analyses [HR (95% CI) = 2.93 (1.31-6.56)]. At 15 years of follow-up, patients in the AD spectrum had a higher mortality risk with a gradient effect for biomarker positivity: A-T + [HR = 1.63 (1.04-2.55)], A + T - [HR = 2.17 (1.44-3.26)], and A + T + individuals [HR = 2.38 (1.66-3.39)], compared to A-T-N - patients. Adjustments on potential confounders had little impact on these associations. CONCLUSION This study shows ATN profiles to be associated with mortality in a relatively large patient cohort based on a memory clinic. Patients with isolated evidence of neurodegeneration had a higher mortality rate in the short follow-up, and patients with the AD profile had the highest mortality rate in the long follow-up.
Collapse
Affiliation(s)
- Mélina Régy
- Université Paris Cité, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
- Université Catholique de Louvain, Brussels, Belgium
| | - Aline Dugravot
- Université Paris Cité, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
| | - Séverine Sabia
- Université Paris Cité, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
- Division of Psychiatry, Faculty of Brain Sciences, University College London, London, UK
| | - Elodie Bouaziz-Amar
- Université Paris-Cité, Department of Biochemistry, GHU APHP Nord Lariboisière Fernand-Widal Hospital, Paris, France
| | - Claire Paquet
- Université Paris-Cité, Inserm U1144, Cognitive Neurology Center, GHU APHP Nord Lariboisière Fernand-Widal Hospital, Paris, France
| | - Bernard Hanseeuw
- Université Catholique de Louvain, Brussels, Belgium
- Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Archana Singh-Manoux
- Université Paris Cité, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
- Division of Psychiatry, Faculty of Brain Sciences, University College London, London, UK
| | - Julien Dumurgier
- Université Paris Cité, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France.
| |
Collapse
|
4
|
Gharbiya M, Visioli G, Trebbastoni A, Albanese GM, Colardo M, D’Antonio F, Segatto M, Lambiase A. Beta-Amyloid Peptide in Tears: An Early Diagnostic Marker of Alzheimer's Disease Correlated with Choroidal Thickness. Int J Mol Sci 2023; 24:ijms24032590. [PMID: 36768913 PMCID: PMC9917300 DOI: 10.3390/ijms24032590] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
We aimed to evaluate the diagnostic role of Alzheimer's disease (AD) biomarkers in tears as well as their association with retinal and choroidal microstructures. In a cross-sectional study, 35 subjects (age 71.7 ± 6.9 years) were included: 11 with prodromal AD (MCI), 10 with mild-to-moderate AD, and 14 healthy controls. The diagnosis of AD and MCI was confirmed according to a complete neuropsychological evaluation and PET or MRI imaging. After tear sample collection, β-amyloid peptide Aβ1-42 concentration was analyzed using ELISA, whereas C-terminal fragments of the amyloid precursor protein (APP-CTF) and phosphorylated tau (p-tau) were assessed by Western blot. Retinal layers and choroidal thickness (CT) were acquired by spectral-domain optical coherence tomography (SD-OCT). Aβ1-42 levels in tears were able to detect both MCI and AD patients with a specificity of 93% and a sensitivity of 81% (AUC = 0.91). Tear levels of Aβ1-42 were lower, both in the MCI (p < 0.01) and in the AD group (p < 0.001) when compared to healthy controls. Further, Aβ1-42 was correlated with psychometric scores (p < 0.001) and CT (p < 0.01). CT was thinner in the affected patients (p = 0.035). No differences were observed for APP-CTF and p-tau relative abundance in tears. Testing Aβ1-42 levels in tears seems to be a minimally invasive, cost-saving method for early detection and diagnosis of AD.
Collapse
Affiliation(s)
- Magda Gharbiya
- Department of Sense Organs, Sapienza University of Rome, 155, Viale del Policlinico, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-06-49975389; Fax: +39-06-49975388
| | - Giacomo Visioli
- Department of Sense Organs, Sapienza University of Rome, 155, Viale del Policlinico, 00161 Rome, Italy
| | | | - Giuseppe Maria Albanese
- Department of Sense Organs, Sapienza University of Rome, 155, Viale del Policlinico, 00161 Rome, Italy
| | - Mayra Colardo
- Department of Biosciences and Territory, University of Molise, 86100 Campobasso, Italy
| | - Fabrizia D’Antonio
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, 86100 Campobasso, Italy
| | - Alessandro Lambiase
- Department of Sense Organs, Sapienza University of Rome, 155, Viale del Policlinico, 00161 Rome, Italy
| |
Collapse
|
5
|
White H, Webb R, McKnight I, Legg K, Lee C, Lee PH, Spicer OS, Shim JW. TRPV4 mRNA is elevated in the caudate nucleus with NPH but not in Alzheimer's disease. Front Genet 2022; 13:936151. [PMID: 36406122 PMCID: PMC9670164 DOI: 10.3389/fgene.2022.936151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/17/2022] [Indexed: 01/04/2023] Open
Abstract
Symptoms of normal pressure hydrocephalus (NPH) and Alzheimer's disease (AD) are somewhat similar, and it is common to misdiagnose these two conditions. Although there are fluid markers detectable in humans with NPH and AD, determining which biomarker is optimal in representing genetic characteristics consistent throughout species is poorly understood. Here, we hypothesize that NPH can be differentiated from AD with mRNA biomarkers of unvaried proximity to telomeres. We examined human caudate nucleus tissue samples for the expression of transient receptor potential cation channel subfamily V member 4 (TRPV4) and amyloid precursor protein (APP). Using the genome data viewer, we analyzed the mutability of TRPV4 and other genes in mice, rats, and humans through matching nucleotides of six genes of interest and one house keeping gene with two factors associated with high mutation rate: 1) proximity to telomeres or 2) high adenine and thymine (A + T) content. We found that TRPV4 and microtubule associated protein tau (MAPT) mRNA were elevated in NPH. In AD, mRNA expression of TRPV4 was unaltered unlike APP and other genes. In mice, rats, and humans, the nucleotide size of TRPV4 did not vary, while in other genes, the sizes were inconsistent. Proximity to telomeres in TRPV4 was <50 Mb across species. Our analyses reveal that TRPV4 gene size and mutability are conserved across three species, suggesting that TRPV4 can be a potential link in the pathophysiology of chronic hydrocephalus in aged humans (>65 years) and laboratory rodents at comparable ages.
Collapse
Affiliation(s)
- Hunter White
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Ryan Webb
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Ian McKnight
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Kaitlyn Legg
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Chan Lee
- Department of Anesthesia, Indiana University Health Arnett Hospital, Lafayette, IN, United States
| | - Peter H.U. Lee
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Olivia Smith Spicer
- National Institute of Mental Health, National Institute of Health, Bethesda, MD, United States
| | - Joon W. Shim
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States,*Correspondence: Joon W. Shim,
| |
Collapse
|
6
|
Luigi L, Silvia I, Viktor W, Wink AM, Mutsaerts HJMM, Sven H, Kaj B, O'Brien JT, Giovanni FB, Gael C, Pierre P, Pablo ML, Adam W, Joanna W, Craig R, Gispert JD, Visser PJ, Philip S, Frederik B, Tijms BM. Gray matter network properties show distinct associations with CSF p-tau 181 levels and amyloid status in individuals without dementia. AGING BRAIN 2022; 2:100054. [PMID: 36908898 PMCID: PMC9997148 DOI: 10.1016/j.nbas.2022.100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/21/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Gray matter networks are altered with amyloid accumulation in the earliest stage of AD, and are associated with decline throughout the AD spectrum. It remains unclear to what extent gray matter network abnormalities are associated with hyperphosphorylated-tau (p-tau). We studied the relationship of cerebrospinal fluid (CSF) p-tau181 with gray matter networks in non-demented participants from the European Prevention of Alzheimer's Dementia (EPAD) cohort, and studied dependencies on amyloid and cognitive status. Gray matter networks were extracted from baseline structural 3D T1w MRI. P-tau181 and abeta were measured with the Roche cobas Elecsys System. We studied the associations of CSF biomarkers levels with several network's graph properties. We further studied whether the relationships of p-tau 181 and network measures were dependent on amyloid status and cognitive stage (CDR). We repeated these analyses for network properties at a regional level, where we averaged local network values across cubes within each of 116 areas as defined by the automated anatomical labeling (AAL) atlas. Amyloid positivity was associated with higher network size and betweenness centrality, and lower gamma, clustering and small-world coefficients. Higher CSF p-tau 181 levels were related to lower betweenness centrality, path length and lambda coefficients (all p < 0.01). Three-way interactions between p-tau181, amyloid status and CDR were found for path length, lambda and clustering (all p < 0.05): Cognitively unimpaired amyloid-negative participants showed lower path length and lambda values with higher CSF p-tau181 levels. Amyloid-positive participants with impaired cognition demonstrated lower clustering coefficients in association to higher CSF p-tau181 levels. Our results suggest that alterations in gray matter network clustering coefficient is an early and specific event in AD.
Collapse
Affiliation(s)
- Lorenzini Luigi
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Ingala Silvia
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Wottschel Viktor
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Alle Meije Wink
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Henk JMM Mutsaerts
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Haller Sven
- CIMC – Centre d’Imagerie Médicale de Cornavin, Place de Cornavin 18, 1201 Genève, Switzerland
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China
| | - Blennow Kaj
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - John T. O'Brien
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge School of Clinical Medicine, Box 189, Cambridge CB2 0QQ, UK
| | - Frisoni B. Giovanni
- Laboratory Alzheimer’s Neuroimaging & Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - Chételat Gael
- Université de Normandie, Unicaen, Inserm, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, Institut Blood-and-Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
| | - Payoux Pierre
- Department of Nuclear Medicine, Toulouse CHU, Purpan University Hospital, Toulouse, France
- Toulouse NeuroImaging Center, University of Toulouse, INSERM, UPS, Toulouse, France
| | - Martinez-Lage Pablo
- Centro de Investigación y Terapias Avanzadas, Neurología, CITA‐Alzheimer Foundation, San Sebastián, Spain
| | - Waldman Adam
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Wardlaw Joanna
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Centre at the University of Edinburgh, University of Edinburgh, UK
| | - Ritchie Craig
- Centre for Dementia Prevention, The University of Edinburgh, Scotland, UK
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- CIBER Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Pieter Jelle Visser
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Alzheimer Center Limburg, Department of Psychiatry & Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Scheltens Philip
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Barkhof Frederik
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Institute of Neurology and Healthcare Engineering, University College London, London, UK
| | | |
Collapse
|
7
|
Vipin A, Koh CL, Wong BYX, Zailan FZ, Tan JY, Soo SA, Satish V, Kumar D, Wang BZ, Ng ASL, Chiew HJ, Ng KP, Kandiah N. Amyloid-Tau-Neurodegeneration Profiles and Longitudinal Cognition in Sporadic Young-Onset Dementia. J Alzheimers Dis 2022; 90:543-551. [DOI: 10.3233/jad-220448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We examined amyloid-tau-neurodegeneration biomarker effects on cognition in a Southeast-Asian cohort of 84 sporadic young-onset dementia (YOD; age-at-onset <65 years) patients. They were stratified into A+N+, A– N+, and A– N– profiles via cerebrospinal fluid amyloid-β1–42 (A), phosphorylated-tau (T), MRI medial temporal atrophy (neurodegeneration– N), and confluent white matter hyperintensities cerebrovascular disease (CVD). A, T, and CVD effects on longitudinal Mini-Mental State Examination (MMSE) were evaluated. A+N+ patients demonstrated steeper MMSE decline than A– N+ (β = 1.53; p = 0.036; CI 0.15:2.92) and A– N– (β = 4.68; p = 0.001; CI 1.98:7.38) over a mean follow-up of 1.24 years. Within A– N+, T– CVD+ patients showed greater MMSE decline compared to T+CVD– patients (β = – 2.37; p = 0.030; CI – 4.41:– 0.39). A+ results in significant cognitive decline, while CVD influences longitudinal cognition in the A– sub-group.
Collapse
Affiliation(s)
- Ashwati Vipin
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | - Chen Ling Koh
- National Neuroscience Institute, Singapore, Singapore
| | | | - Fatin Zahra Zailan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | - Jayne Yi Tan
- National Neuroscience Institute, Singapore, Singapore
| | - See Ann Soo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | - Vaynii Satish
- National Neuroscience Institute, Singapore, Singapore
| | - Dilip Kumar
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | | | - Adeline Su Lyn Ng
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Hui Jin Chiew
- National Neuroscience Institute, Singapore, Singapore
| | - Kok Pin Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Nagaendran Kandiah
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
8
|
Souchet B, Audrain M, Alves S, Fol R, Tada S, Orefice NS, Potier B, Dutar P, Billard JM, Cartier N, Braudeau J. Evaluation of Memantine in AAV-AD Rat: A Model of Late-Onset Alzheimer's Disease Predementia. J Prev Alzheimers Dis 2022; 9:338-347. [PMID: 35543008 DOI: 10.14283/jpad.2021.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Though our understanding of Alzheimer's disease (AD) remains elusive, it is well known that the disease starts long before the first signs of dementia. This is supported by the large number of symptomatic drug failures in clinical trials and the increased trend to enroll patients at predementia stages with either mild or no cognitive symptoms. However, the design of pre-clinical studies does not follow this attitude, in particular regarding the choice of animal models, often irrelevant to mimic predementia Late Onset Alzheimer's Disease (LOAD). OBJECTIVES We aimed to pharmacologically validate the AAV-AD rat model to evaluate preventive treatment of AD. METHODS We evaluated an N-methyl-D-aspartate receptor antagonist, named memantine, in AAV-AD rats, an age-dependent amyloid rat model which closely mimics Alzheimer's pathology including asymptomatic and prodromal stages. Memantine was used at a clinically relevant dose (20 mg daily oral administration) from 4 (asymptomatic phase) to 10 (mild cognitive impairment phase) months of age. RESULTS A 6-month treatment with memantine promoted a non-amyloidogenic cleavage of APP followed by a decrease in soluble Aβ42. Consequently, both long-term potentiation and cognitive impairments were prevented. By contrast, the levels of hyperphosphorylated endogenous tau remained unchanged, indicating that a long-term memantine treatment is ineffective to restrain the APP processing-induced tauopathy. CONCLUSIONS Together, our data confirm that relevant models to LOAD, such as the AAV-AD rat, can provide a framework for a better understanding of the disease and accurate assessment of preventive treatments.
Collapse
Affiliation(s)
- Benoit Souchet
- Jérôme Braudeau, AgenT SAS, Evry 91000, France, and Nathalie Cartier, INSERM UMR1127, Paris Sorbonne University, Paris, France,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Farrell K, Kim S, Han N, Iida MA, Gonzalez EM, Otero-Garcia M, Walker JM, Richardson TE, Renton AE, Andrews SJ, Fulton-Howard B, Humphrey J, Vialle RA, Bowles KR, de Paiva Lopes K, Whitney K, Dangoor DK, Walsh H, Marcora E, Hefti MM, Casella A, Sissoko CT, Kapoor M, Novikova G, Udine E, Wong G, Tang W, Bhangale T, Hunkapiller J, Ayalon G, Graham RR, Cherry JD, Cortes EP, Borukov VY, McKee AC, Stein TD, Vonsattel JP, Teich AF, Gearing M, Glass J, Troncoso JC, Frosch MP, Hyman BT, Dickson DW, Murray ME, Attems J, Flanagan ME, Mao Q, Mesulam MM, Weintraub S, Woltjer RL, Pham T, Kofler J, Schneider JA, Yu L, Purohit DP, Haroutunian V, Hof PR, Gandy S, Sano M, Beach TG, Poon W, Kawas CH, Corrada MM, Rissman RA, Metcalf J, Shuldberg S, Salehi B, Nelson PT, Trojanowski JQ, Lee EB, Wolk DA, McMillan CT, Keene CD, Latimer CS, Montine TJ, Kovacs GG, Lutz MI, Fischer P, Perrin RJ, Cairns NJ, Franklin EE, Cohen HT, Raj T, Cobos I, Frost B, Goate A, White Iii CL, Crary JF. Genome-wide association study and functional validation implicates JADE1 in tauopathy. Acta Neuropathol 2022; 143:33-53. [PMID: 34719765 PMCID: PMC8786260 DOI: 10.1007/s00401-021-02379-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/13/2021] [Accepted: 10/24/2021] [Indexed: 01/07/2023]
Abstract
Primary age-related tauopathy (PART) is a neurodegenerative pathology with features distinct from but also overlapping with Alzheimer disease (AD). While both exhibit Alzheimer-type temporal lobe neurofibrillary degeneration alongside amnestic cognitive impairment, PART develops independently of amyloid-β (Aβ) plaques. The pathogenesis of PART is not known, but evidence suggests an association with genes that promote tau pathology and others that protect from Aβ toxicity. Here, we performed a genetic association study in an autopsy cohort of individuals with PART (n = 647) using Braak neurofibrillary tangle stage as a quantitative trait. We found some significant associations with candidate loci associated with AD (SLC24A4, MS4A6A, HS3ST1) and progressive supranuclear palsy (MAPT and EIF2AK3). Genome-wide association analysis revealed a novel significant association with a single nucleotide polymorphism on chromosome 4 (rs56405341) in a locus containing three genes, including JADE1 which was significantly upregulated in tangle-bearing neurons by single-soma RNA-seq. Immunohistochemical studies using antisera targeting JADE1 protein revealed localization within tau aggregates in autopsy brains with four microtubule-binding domain repeats (4R) isoforms and mixed 3R/4R, but not with 3R exclusively. Co-immunoprecipitation in post-mortem human PART brain tissue revealed a specific binding of JADE1 protein to four repeat tau lacking N-terminal inserts (0N4R). Finally, knockdown of the Drosophila JADE1 homolog rhinoceros (rno) enhanced tau-induced toxicity and apoptosis in vivo in a humanized 0N4R mutant tau knock-in model, as quantified by rough eye phenotype and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) in the fly brain. Together, these findings indicate that PART has a genetic architecture that partially overlaps with AD and other tauopathies and suggests a novel role for JADE1 as a modifier of neurofibrillary degeneration.
Collapse
Affiliation(s)
- Kurt Farrell
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - SoongHo Kim
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natalia Han
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan A Iida
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elias M Gonzalez
- Department of Cell Systems and Anatomy, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, the Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Marcos Otero-Garcia
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of California, Los Angeles, CA, USA
| | - Jamie M Walker
- Department of Pathology and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Timothy E Richardson
- Department of Pathology and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Alan E Renton
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shea J Andrews
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Fulton-Howard
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Humphrey
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ricardo A Vialle
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathryn R Bowles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katia de Paiva Lopes
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen Whitney
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diana K Dangoor
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hadley Walsh
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edoardo Marcora
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marco M Hefti
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Alicia Casella
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cheick T Sissoko
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manav Kapoor
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gloriia Novikova
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evan Udine
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Garrett Wong
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weijing Tang
- Department of Pathology, Stanford University, Palo Alto, USA
| | - Tushar Bhangale
- Department of Human Genetics, Genentech, South San Francisco, CA, USA
| | - Julie Hunkapiller
- Department of Human Genetics, Genentech, South San Francisco, CA, USA
| | - Gai Ayalon
- Neumora Therapeutics, South San Francisco, CA, USA
| | | | - Jonathan D Cherry
- Department of Pathology (Neuropathology), VA Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Etty P Cortes
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valeriy Y Borukov
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ann C McKee
- Department of Pathology (Neuropathology), VA Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Department of Pathology (Neuropathology), VA Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Jean-Paul Vonsattel
- Department of Pathology and Cell Biology, Department of Neurology, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Andy F Teich
- Department of Pathology and Cell Biology, Department of Neurology, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine (Neuropathology) and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan Glass
- Department of Pathology and Laboratory Medicine (Neuropathology) and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Juan C Troncoso
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew P Frosch
- Department of Neurology and Pathology, Harvard Medical School and Massachusetts General Hospital, Charlestown, MA, USA
| | - Bradley T Hyman
- Department of Neurology and Pathology, Harvard Medical School and Massachusetts General Hospital, Charlestown, MA, USA
| | | | | | - Johannes Attems
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Margaret E Flanagan
- Department of Pathology (Neuropathology), Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qinwen Mao
- Department of Pathology (Neuropathology), Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M-Marsel Mesulam
- Department of Pathology (Neuropathology), Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sandra Weintraub
- Department of Pathology (Neuropathology), Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Randy L Woltjer
- Department of Pathology, Oregon Health Sciences University, Portland, OR, USA
| | - Thao Pham
- Department of Pathology, Oregon Health Sciences University, Portland, OR, USA
| | - Julia Kofler
- Department of Pathology (Neuropathology), University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Julie A Schneider
- Departments of Pathology (Neuropathology) and Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Lei Yu
- Departments of Pathology (Neuropathology) and Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Dushyant P Purohit
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Department of Psychiatry, Alzheimer's Disease Research Center, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vahram Haroutunian
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Alzheimer's Disease Research Center, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrick R Hof
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sam Gandy
- Department of Psychiatry, Alzheimer's Disease Research Center, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Center for Cognitive Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Sano
- Department of Psychiatry, Alzheimer's Disease Research Center, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas G Beach
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Wayne Poon
- Department of Neurology, Department of Epidemiology, Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA, USA
| | - Claudia H Kawas
- Department of Neurology, Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA, USA
| | - María M Corrada
- Department of Neurology, Department of Epidemiology, Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA, USA
| | - Robert A Rissman
- Department of Neurosciences University of California and the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, California, USA
| | - Jeff Metcalf
- Department of Neurosciences University of California and the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, California, USA
| | - Sara Shuldberg
- Department of Neurosciences University of California and the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, California, USA
| | - Bahar Salehi
- Department of Neurosciences University of California and the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, California, USA
| | - Peter T Nelson
- Department of Pathology (Neuropathology) and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Corey T McMillan
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of f Medicine, Seattle, WA, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of f Medicine, Seattle, WA, USA
| | - Thomas J Montine
- Department of Laboratory Medicine and Pathology, University of f Medicine, Seattle, WA, USA
- Department of Pathology, Stanford University, Palo Alto, USA
| | - Gabor G Kovacs
- Laboratory Medicine Program, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Disease and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Mirjam I Lutz
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Peter Fischer
- Department of Psychiatry, Danube Hospital, Vienna, Austria
| | - Richard J Perrin
- Department of Pathology and Immunology, Department of Neurology, Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Nigel J Cairns
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Erin E Franklin
- Department of Pathology and Immunology, Department of Neurology, Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Herbert T Cohen
- Departments of Medicine, Pathology, and Pharmacology, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Towfique Raj
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Inma Cobos
- Department of Pathology, Stanford University, Palo Alto, USA
| | - Bess Frost
- Department of Cell Systems and Anatomy, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, the Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Alison Goate
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles L White Iii
- Department of Pathology (Neuropathology), University of Texas Southwestern Medical School, Dallas, TX, USA
| | - John F Crary
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA.
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Lloret A, Esteve D, Lloret MA, Cervera-Ferri A, Lopez B, Nepomuceno M, Monllor P. When Does Alzheimer's Disease Really Start? The Role of Biomarkers. FOCUS: JOURNAL OF LIFE LONG LEARNING IN PSYCHIATRY 2021; 19:355-364. [PMID: 34690605 DOI: 10.1176/appi.focus.19305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
(Appeared originally in Int J Mol Sci 2019, 20 5536).
Collapse
Affiliation(s)
- Ana Lloret
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Avda. Blasco Ibanez, 17, 46010 Valencia, Spain; Department of Clinic Neurophysiology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain; Department of Human Anatomy and Embriology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; Department of Neurology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain
| | - Daniel Esteve
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Avda. Blasco Ibanez, 17, 46010 Valencia, Spain; Department of Clinic Neurophysiology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain; Department of Human Anatomy and Embriology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; Department of Neurology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain
| | - Maria-Angeles Lloret
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Avda. Blasco Ibanez, 17, 46010 Valencia, Spain; Department of Clinic Neurophysiology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain; Department of Human Anatomy and Embriology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; Department of Neurology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain
| | - Ana Cervera-Ferri
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Avda. Blasco Ibanez, 17, 46010 Valencia, Spain; Department of Clinic Neurophysiology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain; Department of Human Anatomy and Embriology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; Department of Neurology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain
| | - Begoña Lopez
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Avda. Blasco Ibanez, 17, 46010 Valencia, Spain; Department of Clinic Neurophysiology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain; Department of Human Anatomy and Embriology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; Department of Neurology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain
| | - Mariana Nepomuceno
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Avda. Blasco Ibanez, 17, 46010 Valencia, Spain; Department of Clinic Neurophysiology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain; Department of Human Anatomy and Embriology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; Department of Neurology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain
| | - Paloma Monllor
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Avda. Blasco Ibanez, 17, 46010 Valencia, Spain; Department of Clinic Neurophysiology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain; Department of Human Anatomy and Embriology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; Department of Neurology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain
| |
Collapse
|
11
|
Elmaleh DR, Downey MA, Kundakovic L, Wilkinson JE, Neeman Z, Segal E. New Approaches to Profile the Microbiome for Treatment of Neurodegenerative Disease. J Alzheimers Dis 2021; 82:1373-1401. [PMID: 34219718 DOI: 10.3233/jad-210198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progressive neurodegenerative diseases represent some of the largest growing treatment challenges for public health in modern society. These diseases mainly progress due to aging and are driven by microglial surveillance and activation in response to changes occurring in the aging brain. The lack of efficacious treatment options for Alzheimer's disease (AD), as the focus of this review, and other neurodegenerative disorders has encouraged new approaches to address neuroinflammation for potential treatments. Here we will focus on the increasing evidence that dysbiosis of the gut microbiome is characterized by inflammation that may carry over to the central nervous system and into the brain. Neuroinflammation is the common thread associated with neurodegenerative diseases, but it is yet unknown at what point and how innate immune function turns pathogenic for an individual. This review will address extensive efforts to identify constituents of the gut microbiome and their neuroactive metabolites as a peripheral path to treatment. This approach is still in its infancy in substantive clinical trials and requires thorough human studies to elucidate the metabolic microbiome profile to design appropriate treatment strategies for early stages of neurodegenerative disease. We view that in order to address neurodegenerative mechanisms of the gut, microbiome and metabolite profiles must be determined to pre-screen AD subjects prior to the design of specific, chronic titrations of gut microbiota with low-dose antibiotics. This represents an exciting treatment strategy designed to balance inflammatory microglial involvement in disease progression with an individual's manifestation of AD as influenced by a coercive inflammatory gut.
Collapse
Affiliation(s)
- David R Elmaleh
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,AZTherapies, Inc., Boston, MA, USA
| | | | | | - Jeremy E Wilkinson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ziv Neeman
- Department of Radiology, Emek Medical Center, Afula, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Agnello L, Gambino CM, Lo Sasso B, Bivona G, Milano S, Ciaccio AM, Piccoli T, La Bella V, Ciaccio M. Neurogranin as a Novel Biomarker in Alzheimer's Disease. Lab Med 2021; 52:188-196. [PMID: 32926148 DOI: 10.1093/labmed/lmaa062] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND In this study, we investigated the possible role of 2 novel biomarkers of synaptic damage, namely, neurogranin and α-synuclein, in Alzheimer disease (AD). METHODS The study was performed in a cohort consisting of patients with AD and those without AD, including individuals with other neurological diseases. Cerebrospinal fluid (CSF) neurogranin and α-synuclein levels were measured by sensitive enzyme-linked immunosorbent assays (ELISAs). RESULTS We found significantly increased levels of CSF neurogranin and α-synuclein in patients with AD than those without AD. Neurogranin was correlated with total tau (tTau) and phosphorylated tau (pTau), as well as with cognitive decline, in patients with AD. Receiver operating characteristic (ROC) curve analysis showed good diagnostic accuracy of neurogranin for AD at a cutoff point of 306 pg per mL with an area under the curve (AUC) of 0.872 and sensitivity and specificity of 84.2% and 78%, respectively. CONCLUSIONS Our findings support the use of CSF neurogranin as a biomarker of synapsis damage in patients with AD.
Collapse
Affiliation(s)
- Luisa Agnello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Caterina Maria Gambino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Bruna Lo Sasso
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Palermo, Italy
- Department of Laboratory Medicine, University Hospital "P. Giaccone," Palermo, Italy
| | - Giulia Bivona
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Palermo, Italy
- Department of Laboratory Medicine, University Hospital "P. Giaccone," Palermo, Italy
| | - Salvatore Milano
- Department of Laboratory Medicine, University Hospital "P. Giaccone," Palermo, Italy
| | | | - Tommaso Piccoli
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Neurology Unit, University of Palermo, Palermo, Italy
| | - Vincenzo La Bella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Neurology Unit, University of Palermo, Palermo, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Palermo, Italy
- Department of Laboratory Medicine, University Hospital "P. Giaccone," Palermo, Italy
| |
Collapse
|
13
|
He B, Wang L, Xu B, Zhang Y. Association between CSF Aβ42 and amyloid negativity in patients with different stage mild cognitive impairment. Neurosci Lett 2021; 754:135765. [PMID: 33667602 DOI: 10.1016/j.neulet.2021.135765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 11/30/2022]
Abstract
Whether the cerebrospinal fluid (CSF) biomarkers of amyloid-positive and amyloid-negative patients with mild cognitive impairment (MCI) or Alzheimer's disease (AD) are significantly different is still unknown. The purpose of this study is to compare the differences in CSF total tau, P-tau and Aβ42 in patients with amyloid-positive positron emission tomography (PET) and amyloid-negative PET, and to explore related risk factors in cognitive normal (CN), early MCI (EMCI), late MCI (LMCI) and AD. 558 participants (140 CN; 233 EMCI; 125 LMCI; 60 AD) were recruited in this study from the AD Neuroimaging Initiative (ADNI) database. The associations between CSF biomarkers were assessed by partial correlation analysis. The relations between significant variables were determined by multinomial logistic regression. Compared with amyloid-positive PET patients, patients with amyloid-negative PET had higher CSF Aβ42 and lower P-tau in the whole samples. The concentration of Aβ42 in the positive amyloid PET was significantly different in different groups, but not the negative amyloid PET (CN vs. LMCI; CN vs. AD; EMCI vs. AD, all P < 0.05). When amyloid PET was positive, a weak correlation was found between the levels of Aβ42 and P-tau only in CN group. However, a moderate degree of correlation between Aβ42 and P-tau was found in EMCI and LMCI when amyloid PET was negative. After covariates adjustment, CSF Aβ42 was significantly associated with EMCI [adjusted odds ratio (OR) = 0.99, 95 % confidence interval (CI) = 0.99-1.00, P = 0.02) and LMCI (adjusted OR = 0.99, 95 % CI = 0.99-1.00, P = 0.007)] in patients with negative amyloid PET, not in patients with positive amyloid PET. Our findings highlight that Aβ42 had strong correlations with other biomarkers and might help reduce risk of EMCI or LMCI in patients with amyloid negativity.
Collapse
Affiliation(s)
- Bingjie He
- Department of Rehabilitation, Panyu Health Management Center (Panyu Rehabilitation Hospital), Guangzhou, China
| | - Lijun Wang
- Department of Neurology, Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingdong Xu
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yusheng Zhang
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | | |
Collapse
|
14
|
CLIC1 Protein Accumulates in Circulating Monocyte Membrane during Neurodegeneration. Int J Mol Sci 2020; 21:ijms21041484. [PMID: 32098256 PMCID: PMC7073046 DOI: 10.3390/ijms21041484] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 02/03/2023] Open
Abstract
Pathologies that lead to neurodegeneration in the central nervous system (CNS) represent a major contemporary medical challenge. Neurodegenerative processes, like those that occur in Alzheimer’s disease (AD) are progressive, and at the moment, they are unstoppable. Not only is an adequate therapy missing but diagnosis is also extremely complicated. The most reliable method is the measurement of beta amyloid and tau peptides concentration in the cerebrospinal fluid (CSF). However, collecting liquid samples from the CNS is an invasive procedure, thus it is not suitable for a large-scale prevention program. Ideally, blood testing is the most manageable and appropriate diagnostic procedure for a massive population screening. Recently, a few candidates, including proteins or microRNAs present in plasma/serum have been identified. The aim of the present work is to propose the chloride intracellular channel 1 (CLIC1) protein as a potential marker of neurodegenerative processes. CLIC1 protein accumulates in peripheral blood mononuclear cells (PBMCs), and increases drastically when the CNS is in a chronic inflammatory state. In AD patients, both immunolocalization and mRNA quantification are able to show the behavior of CLIC1 during a persistent inflammatory state of the CNS. In particular, confocal microscopy analysis and electrophysiological measurements highlight the significant presence of transmembrane CLIC1 (tmCLIC1) in PBMCs from AD patients. Recent investigations suggest that tmCLIC1 has a very specific role. This provides an opportunity to use blood tests and conventional technologies to discriminate between healthy individuals and patients with ongoing neurodegenerative processes.
Collapse
|
15
|
Hameed S, Fuh JL, Senanarong V, Ebenezer EGM, Looi I, Dominguez JC, Park KW, Karanam AK, Simon O. Role of Fluid Biomarkers and PET Imaging in Early Diagnosis and its Clinical Implication in the Management of Alzheimer's Disease. J Alzheimers Dis Rep 2020; 4:21-37. [PMID: 32206755 PMCID: PMC7081089 DOI: 10.3233/adr-190143] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Clinical diagnosis of Alzheimer's disease (AD) is based on symptoms; however, the challenge is to diagnose AD at the preclinical stage with the application of biomarkers and initiate early treatment (still not widely available). Currently, cerebrospinal fluid (CSF) amyloid-β 42 (Aβ42) and tau are used in the clinical diagnosis of AD; nevertheless, blood biomarkers (Aβ42 and tau) are less predictive. Amyloid-positron emission tomography (PET) imaging is an advancement in technology that uses approved radioactive diagnostic agents (florbetapir, flutemetamol, or florbetaben) to estimate Aβ neuritic plaque density in adults with cognitive impairment evaluated for AD and other causes of cognitive decline. There is no cure for AD to date-the disease progression cannot be stopped or reversed; approved pharmacological agents (donepezil, galantamine, and rivastigmine; memantine) provide symptomatic treatment. However, the disease-modifying therapies are promising; aducanumab and CAD106 are in phase III trials for the early stages of AD. In conclusion, core CSF biomarkers reflect pathophysiology of AD in the early and late stages; the application of approved radiotracers have potential in amyloid-PET brain imaging to detect early AD.
Collapse
Affiliation(s)
- Shahul Hameed
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
- Duke NUS Medical School, Singapore
| | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Vorapun Senanarong
- Division of Neurology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Irene Looi
- Clinical Research Centre, Hospital Seberang Jaya, Penang, Malaysia
- Department of Medicine, Hospital Seberang Jaya, Penang, Malaysia
| | | | - Kyung Won Park
- Department of Neurology and Cognitive Disorders and Dementia Center, Institute of Convergence Bio-Health, Dong-A University College of Medicine, Busan, Republic of Korea
| | | | - Oliver Simon
- Novartis (Singapore) Pte. Ltd., Singapore, Singapore
| |
Collapse
|
16
|
When Does Alzheimer's Disease Really Start? The Role of Biomarkers. Int J Mol Sci 2019; 20:ijms20225536. [PMID: 31698826 PMCID: PMC6888399 DOI: 10.3390/ijms20225536] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
While Alzheimer’s disease (AD) classical diagnostic criteria rely on clinical data from a stablished symptomatic disease, newer criteria aim to identify the disease in its earlier stages. For that, they incorporated the use of AD’s specific biomarkers to reach a diagnosis, including the identification of Aβ and tau depositions, glucose hypometabolism, and cerebral atrophy. These biomarkers created a new concept of the disease, in which AD’s main pathological processes have already taken place decades before we can clinically diagnose the first symptoms. Therefore, AD is now considered a dynamic disease with a gradual progression, and dementia is its final stage. With that in mind, new models were proposed, considering the orderly increment of biomarkers and the disease as a continuum, or the variable time needed for the disease’s progression. In 2011, the National Institute on Aging and the Alzheimer’s Association (NIA-AA) created separate diagnostic recommendations for each stage of the disease continuum—preclinical, mild cognitive impairment, and dementia. However, new scientific advances have led them to create a unifying research framework in 2018 that, although not intended for clinical use as of yet, is a step toward shifting the focus from the clinical symptoms to the biological alterations and toward changing the future diagnostic and treatment possibilities. This review aims to discuss the role of biomarkers in the onset of AD.
Collapse
|