1
|
Starodubtseva N, Poluektova A, Tokareva A, Kukaev E, Avdeeva A, Rimskaya E, Khodzayeva Z. Proteome-Based Maternal Plasma and Serum Biomarkers for Preeclampsia: A Systematic Review and Meta-Analysis. Life (Basel) 2025; 15:776. [PMID: 40430203 PMCID: PMC12113278 DOI: 10.3390/life15050776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Proteomics has emerged as a transformative tool in biomedical research, enabling comprehensive characterization of protein profiles in complex biological systems. In preeclampsia (PE) research, quantitative proteomic analyses of plasma and serum have revealed critical insights into disease mechanisms and potential biomarkers. Through a systematic review of 17 studies (2009-2024), we identified 561 differentially expressed plasma/serum proteins (p < 0.05) in PE patients versus healthy controls, with 122 proteins consistently replicated across ≥2 independent studies. Stratified analysis by clinical subtype (early-vs. late-onset PE) demonstrated both concordant and divergent protein expression patterns, reflecting heterogeneity in PE pathophysiology, methodological variations (e.g., sample processing, proteomic platforms), and differences between discovery-phase and targeted validation studies. The trimester-specific biomarker panels proposed here offer a framework for future large-scale, multicenter validation. By integrating advanced proteomic technologies with standardized preanalytical and analytical protocols, these findings advance opportunities for early prediction (first-trimester biomarker signatures); mechanistic insight (complement system involvement); and personalized management (subtype-specific therapeutic targets). This work underscores the potential of proteomics to reshape PE research, from molecular discovery to clinical translation, ultimately improving outcomes for this leading cause of maternal and perinatal morbidity.
Collapse
Affiliation(s)
- Natalia Starodubtseva
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.P.); (A.T.); (E.K.); (A.A.); (E.R.); (Z.K.)
| | - Alina Poluektova
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.P.); (A.T.); (E.K.); (A.A.); (E.R.); (Z.K.)
| | - Alisa Tokareva
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.P.); (A.T.); (E.K.); (A.A.); (E.R.); (Z.K.)
| | - Evgenii Kukaev
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.P.); (A.T.); (E.K.); (A.A.); (E.R.); (Z.K.)
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Anna Avdeeva
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.P.); (A.T.); (E.K.); (A.A.); (E.R.); (Z.K.)
| | - Elena Rimskaya
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.P.); (A.T.); (E.K.); (A.A.); (E.R.); (Z.K.)
- Lebedev Physical Institute, 119991 Moscow, Russia
| | - Zulfiya Khodzayeva
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.P.); (A.T.); (E.K.); (A.A.); (E.R.); (Z.K.)
| |
Collapse
|
2
|
Andresen IJ, Westerberg AC, Paasche Roland MC, Zucknick M, Michelsen TM. Maternal Plasma Proteins Associated with Birth Weight: A Longitudinal, Large Scale Proteomic Study. J Proteome Res 2025. [PMID: 40323295 DOI: 10.1021/acs.jproteome.4c00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Small infants for gestational age (SGA) and large infants for gestational age (LGA) have increased risk of complications during delivery and later in life. Prediction of the fetal weight is currently limited to biometric parameters obtained by ultrasound scans that can be imprecise. Biomarkers of fetal growth would be crucial for tailoring clinical management and optimizing outcomes for the mother and child. Seventy pregnant women participated in the current study, including 58, 7, and 5 giving birth to adequate for gestational age (AGA), SGA, and LGA infants, respectively. Maternal venous blood was drawn at gestational weeks 12-19, 21-27, and 28-34 and quantified for nearly 5000 proteins on the SomaLogic platform. We used machine learning algorithms with leave-one-out cross-validation to construct multiprotein models for prediction of birth weight groups. Random forest models using only 20 predefined proteins (selected by moderated t tests) were able to predict LGA with good discrimination (AUC > 0.8) at all three visits, while prediction of SGA was less successful. Protein differential abundance analysis revealed 148 proteins with higher abundance in LGA compared to AGA pregnancies, while only four proteins were differentially abundant between the SGA and AGA. The principal findings indicate that the maternal plasma proteome may hold potential biomarkers of LGA.
Collapse
Affiliation(s)
- Ina Jungersen Andresen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital, 0372 Oslo, Norway
| | - Ane Cecilie Westerberg
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital, 0372 Oslo, Norway
- School of Health Sciences, Kristiania University College, Oslo 0107, Norway
| | - Marie Cecilie Paasche Roland
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital, 0372 Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, 0450 Oslo, Norway
| | - Manuela Zucknick
- Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, University of Oslo, 0372 Oslo, Norway
| | - Trond Melbye Michelsen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital, 0372 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
3
|
Taylor BD, Haggerty CL, Amabebe E, Richardson LS. Current Evidence of Maternal Infection With Chlamydia trachomatis and Preeclampsia Risk. Am J Reprod Immunol 2025; 93:e70080. [PMID: 40298141 DOI: 10.1111/aji.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/13/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Chlamydia trachomatis is the most common bacterial sexually transmitted infection (STI) in the United States. Ascending C. trachomatis can cause pelvic inflammatory disease (PID), potentially leading to subsequent infertility, ectopic pregnancy, and adverse pregnancy outcomes. There is growing evidence implicating infections (e.g., COVID-19, cytomegalovirus) in preeclampsia etiology, a maternal hypertensive disorder and leading cause of maternal morbidity and mortality. However, few studies have investigated the impact of STIs on preeclampsia risk. In this review, we provide an overview of the potential association between C. trachomatis and preeclampsia and identify future research needs through a critical evaluation of epidemiologic, in vitro, and in vivo studies. Unfortunately, current methodological limitations such as lower-quality study designs, selection bias, confounding bias, and variations in chlamydia diagnostic methods inhibit our understanding of the impact of C. trachomatis on preeclampsia. In addition, bench-side approaches such as animal models and in vitro studies have not elucidated the mechanisms linking C. trachomatis to preeclampsia. Understanding the biological pathways that could be disrupted by chlamydia is important as it may ultimately guide the development and use of novel therapeutics to augment standard antibiotic therapy to reduce pathology.
Collapse
Affiliation(s)
- Brandie DePaoli Taylor
- Department of Obstetrics and Gynecology, Division of Basic Science and Translational Research, University of Texas Medical Branch, Galveston, Texas, USA
- Academic Research, Advocate Aurora Research Institute, Milwaukee, Wisconsin, USA
| | - Catherine L Haggerty
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emmanuel Amabebe
- Department of Obstetrics and Gynecology, Division of Basic Science and Translational Research, University of Texas Medical Branch, Galveston, Texas, USA
| | - Lauren S Richardson
- Department of Obstetrics and Gynecology, Division of Basic Science and Translational Research, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
4
|
Andresen IJ, Zucknick M, Degnes MHL, Angst MS, Aghaeepour N, Romero R, Roland MCP, Tarca AL, Westerberg AC, Michelsen TM. Prediction of late-onset preeclampsia using plasma proteomics: a longitudinal multi-cohort study. Sci Rep 2024; 14:30813. [PMID: 39730472 DOI: 10.1038/s41598-024-81277-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024] Open
Abstract
Preeclampsia is a pregnancy disorder with substantial perinatal and maternal morbidity and mortality. Pregnant women at risk of preeclampsia would benefit from early detection for follow-up, timely interventions and delivery. Several attempts have been made to identify protein biomarkers of preeclampsia, but findings vary with demographics, clinical characteristics, and time of sampling. In the current study, we combined three independent longitudinal pregnancy cohorts (Detroit, Stanford and Oslo) resulting in 124 late-onset preeclampsia (LOPE) cases and 178 gestational age matched controls, and analyzed > 1000 proteins in maternal plasma sampled between 12 and 34 weeks of gestation. Differential abundance analysis of combined protein data revealed increased deviation in protein abundance trajectories throughout gestation in women destined to develop LOPE compared to controls. There were no differentially abundant proteins at time interval T1 (12-19 weeks), yet 31 differentially abundant proteins were found at time interval T2 (19-27 weeks), and 48 proteins at time interval T3 (27- 34 weeks). Multi-protein random forest models assessed via cross-validation predicted LOPE with an area under the ROC curve of 0.72 (0.65-0.78), 0.76 (0.71-0.81) and 0.80 (0.75-0.85) at time interval T1, T2 and T3, respectively. The results at T3 were confirmed using a leave-one-cohort-out analysis suggesting cross-cohort consistency, and at T1 and T2 when the largest two cohorts were used as training sets.
Collapse
Affiliation(s)
- Ina J Andresen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| | - Manuela Zucknick
- Oslo Centre for Biostatistics and Epidemiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Maren-Helene L Degnes
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, US Department of Health and Human Services (NICHD/NIH/DHHS), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, MD and Detroit, Bethesda, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Marie Cecilie P Roland
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Adi L Tarca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Ane Cecilie Westerberg
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- School of Health Sciences , Kristiania University College , Oslo, Norway
| | - Trond M Michelsen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
5
|
Pu Y, Du Y, He J, He S, Chen Y, Cao A, Dang Y. The mediating role of steroid hormones in the relationship between bisphenol A and its alternatives bisphenol S and F exposure and preeclampsia. J Steroid Biochem Mol Biol 2024; 244:106591. [PMID: 39059562 DOI: 10.1016/j.jsbmb.2024.106591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Steroid hormone imbalance is believed to increase the odds of developing PE. Bisphenol A (BPA) and its substitutes (e.g., bisphenol S (BPS) and bisphenol F (BPF)) have estrogen-like effects, and its exposure may be related to the development of preeclampsia (PE). To explore the effects of bisphenol exposure on maternal serum steroid hormones and the potential mediating role of steroid hormones in the association between bisphenol exposure and developing PE, concentrations of bisphenols and steroid hormones in serum samples of 383 pregnant women were examined before delivery (including 160 PE cases and 223 control cases). Multivariable logistic and linear models were used to explore the associations of maternal serum bisphenols concentrations with both maternal steroid hormones and PE risk. Mediation modeling was employed to evaluate the mediating role of steroid hormones in the association between bisphenols and PE. Results showed that maternal serum BPS concentrations were positively associated with testosterone (T) concentrations. The mediation analyses suggested that approximately 10.17 % of the associations between BPS concentrations and the development of PE might be mediated by maternal T. In conclusion, maternal exposure to BPS during pregnancy is linked to higher maternal T concentrations, which might increase the odds of developing PE. T might mediate the association between BPS exposure and the development of PE.
Collapse
Affiliation(s)
- Yudong Pu
- Institute of The Songshan Lake Central Hospital of Dongguan City, Dongguan 523326, China.
| | - Yue Du
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Jie He
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Shuzhen He
- Institute of The Songshan Lake Central Hospital of Dongguan City, Dongguan 523326, China.
| | - Ya Chen
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Aitong Cao
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Yuhui Dang
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
6
|
Degnes MHL, Westerberg AC, Andresen IJ, Henriksen T, Roland MCP, Zucknick M, Michelsen TM. Protein biomarker signatures of preeclampsia - a longitudinal 5000-multiplex proteomics study. Sci Rep 2024; 14:23654. [PMID: 39390022 PMCID: PMC11467422 DOI: 10.1038/s41598-024-73796-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
We aimed to explore novel biomarker candidates and biomarker signatures of late-onset preeclampsia (LOPE) by profiling samples collected in a longitudinal discovery cohort with a high-throughput proteomics platform. Using the Somalogic 5000-plex platform, we analyzed proteins in plasma samples collected at three visits (gestational weeks (GW) 12-19, 20-26 and 28-34 in 35 women with LOPE (birth ≥ 34 GW) and 70 healthy pregnant women). To identify biomarker signatures, we combined Elastic Net with Stability Selection for stable variable selection and validated their predictive performance in a validation cohort. The biomarker signature with the highest predictive performance (AUC 0.88 (95% CI 0.85-0.97)) was identified in the last trimester of pregnancy (GW 28-34) and included the Fatty acid amid hydrolase 2 (FAAH2), HtrA serine peptidase 1 (HTRA1) and Interleukin-17 receptor C (IL17RC) together with sFLT1 and maternal age, BMI and nulliparity. Our biomarker signature showed increased or similar predictive performance to the sFLT1/PGF-ratio within our data set, and we were able to validate the biomarker signature in a validation cohort (AUC ≥ 0.90). Further validation of these candidates should be performed using another protein quantification platform in an independent cohort where the negative and positive predictive values can be validly calculated.
Collapse
Affiliation(s)
- Maren-Helene Langeland Degnes
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway.
- Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway.
| | - Ane Cecilie Westerberg
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Ina Jungersen Andresen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Tore Henriksen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Marie Cecilie Paasche Roland
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Manuela Zucknick
- Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway
| | - Trond Melbye Michelsen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
7
|
Starodubtseva N, Tokareva A, Kononikhin A, Brzhozovskiy A, Bugrova A, Kukaev E, Muminova K, Nakhabina A, Frankevich VE, Nikolaev E, Sukhikh G. First-Trimester Preeclampsia-Induced Disturbance in Maternal Blood Serum Proteome: A Pilot Study. Int J Mol Sci 2024; 25:10653. [PMID: 39408980 PMCID: PMC11476624 DOI: 10.3390/ijms251910653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Preeclampsia (PE) is a complex and multifaceted obstetric syndrome characterized by several distinct molecular subtypes. It complicates up to 5% of pregnancies and significantly contributes to maternal and newborn morbidity, thereby diminishing the long-term quality of life for affected women. Due to the widespread dissatisfaction with the effectiveness of existing approaches for assessing PE risk, there is a pressing need for ongoing research to identify newer, more accurate predictors. This study aimed to investigate early changes in the maternal serum proteome and associated signaling pathways. The levels of 125 maternal serum proteins at 11-13 weeks of gestation were quantified using liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM MS) with the BAK-125 kit. Ten serum proteins emerged as potential early markers for PE: Apolipoprotein M (APOM), Complement C1q subcomponent subunit B (C1QB), Lysozyme (LYZ), Prothrombin (F2), Albumin (ALB), Zinc-alpha-2-glycoprotein (AZGP1), Tenascin-X (TNXB), Alpha-1-antitrypsin (SERPINA1), Attractin (ATRN), and Apolipoprotein A-IV (APOA4). Notably, nine of these proteins have previously been associated with PE in prior research, underscoring the consistency and reliability of our findings. These proteins play key roles in critical molecular processes, including complement and coagulation cascades, platelet activation, and insulin-like growth factor pathways. To improve the early prediction of PE, a highly effective Support Vector Machine (SVM) model was developed, analyzing 19 maternal serum proteins from the first trimester. This model achieved an area under the curve (AUC) of 0.91, with 87% sensitivity and 95% specificity, and a hazard ratio (HR) of 13.5 (4.6-40.8) with p < 0.001. These findings demonstrate that serum protein-based SVM models possess significantly higher predictive power compared to the routine first-trimester screening test, highlighting their superior utility in the early detection and risk stratification of PE.
Collapse
Affiliation(s)
- Natalia Starodubtseva
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.T.); (A.K.); (A.B.); (A.B.); (E.K.); (K.M.); (A.N.); (V.E.F.); (G.S.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Alisa Tokareva
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.T.); (A.K.); (A.B.); (A.B.); (E.K.); (K.M.); (A.N.); (V.E.F.); (G.S.)
| | - Alexey Kononikhin
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.T.); (A.K.); (A.B.); (A.B.); (E.K.); (K.M.); (A.N.); (V.E.F.); (G.S.)
| | - Alexander Brzhozovskiy
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.T.); (A.K.); (A.B.); (A.B.); (E.K.); (K.M.); (A.N.); (V.E.F.); (G.S.)
| | - Anna Bugrova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.T.); (A.K.); (A.B.); (A.B.); (E.K.); (K.M.); (A.N.); (V.E.F.); (G.S.)
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Evgenii Kukaev
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.T.); (A.K.); (A.B.); (A.B.); (E.K.); (K.M.); (A.N.); (V.E.F.); (G.S.)
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center of Chemical Physics, 119334 Moscow, Russia
| | - Kamilla Muminova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.T.); (A.K.); (A.B.); (A.B.); (E.K.); (K.M.); (A.N.); (V.E.F.); (G.S.)
| | - Alina Nakhabina
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.T.); (A.K.); (A.B.); (A.B.); (E.K.); (K.M.); (A.N.); (V.E.F.); (G.S.)
| | - Vladimir E. Frankevich
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.T.); (A.K.); (A.B.); (A.B.); (E.K.); (K.M.); (A.N.); (V.E.F.); (G.S.)
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | | | - Gennady Sukhikh
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.T.); (A.K.); (A.B.); (A.B.); (E.K.); (K.M.); (A.N.); (V.E.F.); (G.S.)
| |
Collapse
|
8
|
Than NG, Romero R, Fitzgerald W, Gudicha DW, Gomez-Lopez N, Posta M, Zhou F, Bhatti G, Meyyazhagan A, Awonuga AO, Chaiworapongsa T, Matthies D, Bryant DR, Erez O, Margolis L, Tarca AL. Proteomic Profiles of Maternal Plasma Extracellular Vesicles for Prediction of Preeclampsia. Am J Reprod Immunol 2024; 92:e13928. [PMID: 39347565 DOI: 10.1111/aji.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024] Open
Abstract
PROBLEM Preeclampsia is a heterogeneous syndrome of diverse etiologies and molecular pathways leading to distinct clinical subtypes. Herein, we aimed to characterize the extracellular vesicle (EV)-associated and soluble fractions of the maternal plasma proteome in patients with preeclampsia and to assess their value for disease prediction. METHOD OF STUDY This case-control study included 24 women with term preeclampsia, 23 women with preterm preeclampsia, and 94 healthy pregnant controls. Blood samples were collected from cases on average 7 weeks before the diagnosis of preeclampsia and were matched to control samples. Soluble and EV fractions were separated from maternal plasma; EVs were confirmed by cryo-EM, NanoSight, and flow cytometry; and 82 proteins were analyzed with bead-based, multiplexed immunoassays. Quantile regression analysis and random forest models were implemented to evaluate protein concentration differences and their predictive accuracy. Preeclampsia subgroups defined by molecular profiles were identified by hierarchical cluster analysis. Significance was set at p < 0.05 or false discovery rate-adjusted q < 0.1. RESULTS In preterm preeclampsia, PlGF, PTX3, and VEGFR-1 displayed differential abundance in both soluble and EV fractions, whereas angiogenin, CD40L, endoglin, galectin-1, IL-27, CCL19, and TIMP1 were changed only in the soluble fraction (q < 0.1). The direction of changes in the EV fraction was consistent with that in the soluble fraction for nine proteins. In term preeclampsia, CCL3 had increased abundance in both fractions (q < 0.1). The combined EV and soluble fraction proteomic profiles predicted preterm and term preeclampsia with an AUC of 78% (95% CI, 66%-90%) and 68% (95% CI, 56%-80%), respectively. Three clusters of preeclampsia featuring distinct clinical characteristics and placental pathology were identified based on combined protein data. CONCLUSIONS Our findings reveal distinct alterations of the maternal EV-associated and soluble plasma proteome in preterm and term preeclampsia and identify molecular subgroups of patients with distinct clinical and placental histopathologic features.
Collapse
Affiliation(s)
- Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Dereje W Gudicha
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Nardhy Gomez-Lopez
- Department of Obstetrics and Gynecology & Department of Pathology and Immunology, Washington University, St. Louis, Missouri, USA
| | - Máté Posta
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Fei Zhou
- Unit on Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Gaurav Bhatti
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Arun Meyyazhagan
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Awoniyi O Awonuga
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Doreen Matthies
- Unit on Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - David R Bryant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Department of Obstetrics and Gynecology, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Leonid Margolis
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Adi L Tarca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| |
Collapse
|
9
|
Greenland P, Segal MR, McNeil RB, Parker CB, Pemberton VL, Grobman WA, Silver RM, Simhan HN, Saade GR, Ganz P, Mehta P, Catov JM, Bairey Merz CN, Varagic J, Khan SS, Parry S, Reddy UM, Mercer BM, Wapner RJ, Haas DM. Large-Scale Proteomics in Early Pregnancy and Hypertensive Disorders of Pregnancy. JAMA Cardiol 2024; 9:791-799. [PMID: 38958943 PMCID: PMC11223045 DOI: 10.1001/jamacardio.2024.1621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/29/2024] [Indexed: 07/04/2024]
Abstract
Importance There is no consensus regarding the best method for prediction of hypertensive disorders of pregnancy (HDP), including gestational hypertension and preeclampsia. Objective To determine predictive ability in early pregnancy of large-scale proteomics for prediction of HDP. Design, Setting, and Participants This was a nested case-control study, conducted in 2022 to 2023, using clinical data and plasma samples collected between 2010 and 2013 during the first trimester, with follow-up until pregnancy outcome. This multicenter observational study took place at 8 academic medical centers in the US. Nulliparous individuals during first-trimester clinical visits were included. Participants with HDP were selected as cases; controls were selected from those who delivered at or after 37 weeks without any HDP, preterm birth, or small-for-gestational-age infant. Age, self-reported race and ethnicity, body mass index, diabetes, health insurance, and fetal sex were available covariates. Exposures Proteomics using an aptamer-based assay that included 6481 unique human proteins was performed on stored plasma. Covariates were used in predictive models. Main Outcomes and Measures Prediction models were developed using the elastic net, and analyses were performed on a randomly partitioned training dataset comprising 80% of study participants, with the remaining 20% used as an independent testing dataset. Primary measure of predictive performance was area under the receiver operating characteristic curve (AUC). Results This study included 753 HDP cases and 1097 controls with a mean (SD) age of 26.9 (5.5) years. Maternal race and ethnicity were 51 Asian (2.8%), 275 non-Hispanic Black (14.9%), 275 Hispanic (14.9%), 1161 non-Hispanic White (62.8% ), and 88 recorded as other (4.8%), which included those who did not identify according to these designations. The elastic net model, allowing for forced inclusion of prespecified covariates, was used to adjust protein-based models for clinical and demographic variables. Under this approach, no proteins were selected to augment the clinical and demographic covariates. The predictive performance of the resulting model was modest, with a training set AUC of 0.64 (95% CI, 0.61-0.67) and a test set AUC of 0.62 (95% CI, 0.56-0.68). Further adjustment for study site yielded only minimal changes in AUCs. Conclusions and Relevance In this case-control study with detailed clinical data and stored plasma samples available in the first trimester, an aptamer-based proteomics panel did not meaningfully add to predictive utility over and above clinical and demographic factors that are routinely available.
Collapse
Affiliation(s)
- Philip Greenland
- Departments of Medicine and Preventive Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Mark R. Segal
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | | | | | - Victoria L. Pemberton
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - William A. Grobman
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Now with Department of Obstetrics and Gynecology, The Ohio State University, Columbus
| | - Robert M. Silver
- Department of Obstetrics and Gynecology, University of Utah Health, Salt Lake City
| | - Hyagriv N. Simhan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - George R. Saade
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology at UTMB Health, Galveston, Texas
- Now with Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk
| | - Peter Ganz
- Department of Medicine, Zuckerberg San Francisco General Hospital and University of California, San Francisco
| | - Priya Mehta
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Janet M. Catov
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh and Magee-Women’s Research Institute, Pittsburgh, Pennsylvania
| | - C. Noel Bairey Merz
- Barbra Streisand Women’s Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jasmina Varagic
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Sadiya S. Khan
- Division of Cardiology, Department of Medicine and Department of Preventive Medicine, Northwestern University, Chicago, Illinois
| | - Samuel Parry
- Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Uma M. Reddy
- Maternal & Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York
| | - Brian M. Mercer
- Department of Obstetrics & Gynecology, Case Western Reserve University—The MetroHealth System, Cleveland, Ohio
| | - Ronald J. Wapner
- Clinical Genetics and Genomics, Maternal & Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York
| | - David M. Haas
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis
| |
Collapse
|
10
|
Ballard HK, Yang X, Mahadevan AD, Lemas DJ, Garmire LX. Five-Feature Models to Predict Preeclampsia Onset Time From Electronic Health Record Data: Development and Validation Study. J Med Internet Res 2024; 26:e48997. [PMID: 39141914 PMCID: PMC11358663 DOI: 10.2196/48997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/17/2024] [Accepted: 05/30/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Preeclampsia is a potentially fatal complication during pregnancy, characterized by high blood pressure and the presence of excessive proteins in the urine. Due to its complexity, the prediction of preeclampsia onset is often difficult and inaccurate. OBJECTIVE This study aimed to create quantitative models to predict the onset gestational age of preeclampsia using electronic health records. METHODS We retrospectively collected 1178 preeclamptic pregnancy records from the University of Michigan Health System as the discovery cohort, and 881 records from the University of Florida Health System as the validation cohort. We constructed 2 Cox-proportional hazards models: 1 baseline model using maternal and pregnancy characteristics, and the other full model with additional laboratory findings, vitals, and medications. We built the models using 80% of the discovery data, tested the remaining 20% of the discovery data, and validated with the University of Florida data. We further stratified the patients into high- and low-risk groups for preeclampsia onset risk assessment. RESULTS The baseline model reached Concordance indices of 0.64 and 0.61 in the 20% testing data and the validation data, respectively, while the full model increased these Concordance indices to 0.69 and 0.61, respectively. For preeclampsia diagnosed at 34 weeks, the baseline and full models had area under the curve (AUC) values of 0.65 and 0.70, and AUC values of 0.69 and 0.70 for preeclampsia diagnosed at 37 weeks, respectively. Both models contain 5 selective features, among which the number of fetuses in the pregnancy, hypertension, and parity are shared between the 2 models with similar hazard ratios and significant P values. In the full model, maximum diastolic blood pressure in early pregnancy was the predominant feature. CONCLUSIONS Electronic health records data provide useful information to predict the gestational age of preeclampsia onset. Stratification of the cohorts using 5-predictor Cox-proportional hazards models provides clinicians with convenient tools to assess the onset time of preeclampsia in patients.
Collapse
Affiliation(s)
- Hailey K Ballard
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, United States
| | - Xiaotong Yang
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Aditya D Mahadevan
- Center for Research in Perinatal Outcomes, University of Florida, Gainesville, FL, United States
- Department of Physiology and Aging, University of Florida, Gainesville, FL, United States
| | - Dominick J Lemas
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, United States
- Center for Research in Perinatal Outcomes, University of Florida, Gainesville, FL, United States
- Department of Obstetrics & Gynecology, University of Florida, Gainesville, FL, United States
| | - Lana X Garmire
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
11
|
Pinto-Souza CC, Kaihara JNS, Nunes PR, Mastella MH, Rossini BC, Cavecci-Mendonça B, Cavalli RDC, dos Santos LD, Sandrim VC. Different Proteomic Profiles Regarding Antihypertensive Therapy in Preeclampsia Pregnant. Int J Mol Sci 2024; 25:8738. [PMID: 39201423 PMCID: PMC11354552 DOI: 10.3390/ijms25168738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Preeclampsia (PE) is a hypertensive pregnancy syndrome associated with target organ damage and increased cardiovascular risks, necessitating antihypertensive therapy. However, approximately 40% of patients are nonresponsive to treatment, which results in worse clinical outcomes. This study aimed to compare circulating proteomic profiles and identify differentially expressed proteins among 10 responsive (R-PE), 10 nonresponsive (NR-PE) patients, and 10 healthy pregnant controls (HP). We also explored correlations between these proteins and clinical data. Plasma protein relative quantification was performed using mass spectrometry, followed by bioinformatics analyses with the UniProt database, PatternLab for Proteomics 4.0, and MetaboAnalyst software (version 6.0). Considering a fold change of 1.5, four proteins were differentially expressed between NR-PE and R-PE: one upregulated (fibronectin) and three downregulated (pregnancy-specific beta-1-glycoprotein 1, complement C4B, and complement C4A). Between NR-PE and HP, six proteins were differentially expressed: two upregulated (clusterin and plasmin heavy chain A) and four downregulated (apolipoprotein L1, heparin cofactor II, complement C4B, and haptoglobin-related protein). Three proteins were differentially expressed between R-PE and HP: one downregulated (transthyretin) and two upregulated (apolipoprotein C1 and hemoglobin subunit beta). These findings suggest a complex interplay of these proteins involved in inflammatory, immune, and metabolic processes with antihypertensive therapy responsiveness and PE pathophysiology.
Collapse
Affiliation(s)
- Caroline C. Pinto-Souza
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (C.C.P.-S.); (J.N.S.K.); (P.R.N.); (M.H.M.)
| | - Julyane N. S. Kaihara
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (C.C.P.-S.); (J.N.S.K.); (P.R.N.); (M.H.M.)
| | - Priscila R. Nunes
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (C.C.P.-S.); (J.N.S.K.); (P.R.N.); (M.H.M.)
| | - Moises H. Mastella
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (C.C.P.-S.); (J.N.S.K.); (P.R.N.); (M.H.M.)
| | - Bruno C. Rossini
- Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (B.C.R.); (B.C.-M.); (L.D.d.S.)
| | - Bruna Cavecci-Mendonça
- Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (B.C.R.); (B.C.-M.); (L.D.d.S.)
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu 18619-002, SP, Brazil
| | - Ricardo de Carvalho Cavalli
- Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto 14049-900, SP, Brazil;
| | - Lucilene D. dos Santos
- Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (B.C.R.); (B.C.-M.); (L.D.d.S.)
| | - Valeria C. Sandrim
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (C.C.P.-S.); (J.N.S.K.); (P.R.N.); (M.H.M.)
| |
Collapse
|
12
|
Ricci CA, Crysup B, Phillips NR, Ray WC, Santillan MK, Trask AJ, Woerner AE, Goulopoulou S. Machine learning: a new era for cardiovascular pregnancy physiology and cardio-obstetrics research. Am J Physiol Heart Circ Physiol 2024; 327:H417-H432. [PMID: 38847756 PMCID: PMC11442027 DOI: 10.1152/ajpheart.00149.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The maternal cardiovascular system undergoes functional and structural adaptations during pregnancy and postpartum to support increased metabolic demands of offspring and placental growth, labor, and delivery, as well as recovery from childbirth. Thus, pregnancy imposes physiological stress upon the maternal cardiovascular system, and in the absence of an appropriate response it imparts potential risks for cardiovascular complications and adverse outcomes. The proportion of pregnancy-related maternal deaths from cardiovascular events has been steadily increasing, contributing to high rates of maternal mortality. Despite advances in cardiovascular physiology research, there is still no comprehensive understanding of maternal cardiovascular adaptations in healthy pregnancies. Furthermore, current approaches for the prognosis of cardiovascular complications during pregnancy are limited. Machine learning (ML) offers new and effective tools for investigating mechanisms involved in pregnancy-related cardiovascular complications as well as the development of potential therapies. The main goal of this review is to summarize existing research that uses ML to understand mechanisms of cardiovascular physiology during pregnancy and develop prediction models for clinical application in pregnant patients. We also provide an overview of ML platforms that can be used to comprehensively understand cardiovascular adaptations to pregnancy and discuss the interpretability of ML outcomes, the consequences of model bias, and the importance of ethical consideration in ML use.
Collapse
Affiliation(s)
- Contessa A Ricci
- College of Nursing, Washington State University, Spokane, Washington, United States
- IREACH: Institute for Research and Education to Advance Community Health, Washington State University, Seattle, Washington, United States
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States
| | - Benjamin Crysup
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science, Fort Worth, Texas, United States
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Nicole R Phillips
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science, Fort Worth, Texas, United States
| | - William C Ray
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Mark K Santillan
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | - Aaron J Trask
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - August E Woerner
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science, Fort Worth, Texas, United States
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Styliani Goulopoulou
- Lawrence D. Longo Center for Perinatal Biology, Departments of Basic Sciences, Gynecology and Obstetrics, Loma Linda University, Loma Linda, California, United States
| |
Collapse
|
13
|
Buthmann JL, Miller JG, Aghaeepour N, King LS, Stevenson DK, Shaw GM, Wong RJ, Gotlib IH. Large-scale proteomics in the first trimester of pregnancy predict psychopathology and temperament in preschool children: an exploratory study. J Child Psychol Psychiatry 2024; 65:1098-1107. [PMID: 38287782 PMCID: PMC11265978 DOI: 10.1111/jcpp.13948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 01/31/2024]
Abstract
BACKGROUND Understanding the prenatal origins of children's psychopathology is a fundamental goal in developmental and clinical science. Recent research suggests that inflammation during pregnancy can trigger a cascade of fetal programming changes that contribute to vulnerability for the emergence of psychopathology. Most studies, however, have focused on a handful of proinflammatory cytokines and have not explored a range of prenatal biological pathways that may be involved in increasing postnatal risk for emotional and behavioral difficulties. METHODS Using extreme gradient boosted machine learning models, we explored large-scale proteomics, considering over 1,000 proteins from first trimester blood samples, to predict behavior in early childhood. Mothers reported on their 3- to 5-year-old children's (N = 89, 51% female) temperament (Child Behavior Questionnaire) and psychopathology (Child Behavior Checklist). RESULTS We found that machine learning models of prenatal proteomics predict 5%-10% of the variance in children's sadness, perceptual sensitivity, attention problems, and emotional reactivity. Enrichment analyses identified immune function, nervous system development, and cell signaling pathways as being particularly important in predicting children's outcomes. CONCLUSIONS Our findings, though exploratory, suggest processes in early pregnancy that are related to functioning in early childhood. Predictive features included far more proteins than have been considered in prior work. Specifically, proteins implicated in inflammation, in the development of the central nervous system, and in key cell-signaling pathways were enriched in relation to child temperament and psychopathology measures.
Collapse
Affiliation(s)
- Jessica L. Buthmann
- Department of Psychology, Stanford University, 450 Serra Mall, Stanford CA 94305
| | - Jonas G. Miller
- Department of Psychological Sciences, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269-1020
| | - Nima Aghaeepour
- Department of Pediatrics, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305
- Department of Biomedical Data Science, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305
| | - Lucy S. King
- Department of Psychology, Stanford University, 450 Serra Mall, Stanford CA 94305
| | - David K. Stevenson
- Department of Pediatrics, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305
| | - Ronald J. Wong
- Department of Pediatrics, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305
| | - Ian H. Gotlib
- Department of Psychology, Stanford University, 450 Serra Mall, Stanford CA 94305
| |
Collapse
|
14
|
Jia Y, Lu W, Xie H, Sheng Y, Wang L, Lv W, Ling L, Dong J, Jia X, Wu S, Liu W, Ying H. Upregulation of Siglec-6 induces mitochondrial dysfunction by promoting GPR20 expression in early-onset preeclampsia. J Transl Med 2024; 22:674. [PMID: 39039496 PMCID: PMC11265165 DOI: 10.1186/s12967-024-05505-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Preeclampsia, especially early-onset preeclampsia (EO-PE), is a pregnancy complication that has serious consequences for the health of both the mother and the fetus. Although abnormal placentation due to mitochondrial dysfunction is speculated to contribute to the development of EO-PE, the underlying mechanisms have yet to be fully elucidated. METHODS The expression and localization of Siglec-6 in the placenta from normal pregnancies, preterm birth and EO-PE patients were examined by RT-qPCR, Western blot and IHC. Transwell assays were performed to evaluate the effect of Siglec-6 on trophoblast cell migration and invasion. Seahorse experiments were conducted to assess the impact of disrupting Siglec-6 expression on mitochondrial function. Co-IP assay was used to examine the interaction of Siglec-6 with SHP1/SHP2. RNA-seq was employed to investigate the mechanism by which Siglec-6 inhibits mitochondrial function in trophoblast cells. RESULTS The expression of Siglec-6 in extravillous trophoblasts is increased in placental tissues from EO-PE patients. Siglec-6 inhibits trophoblast cell migration and invasion and impairs mitochondrial function. Mechanismly, Siglec-6 inhibits the activation of NF-κB by recruiting SHP1/SHP2, leading to increased expression of GPR20. Notably, the importance of GPR20 function downstream of Siglec-6 in trophoblasts is supported by the observation that GPR20 downregulation rescues defects caused by Siglec-6 overexpression. Finally, overexpression of Siglec-6 in the placenta induces a preeclampsia-like phenotype in a pregnant mouse model. CONCLUSIONS This study indicates that the regulatory pathway Siglec-6/GPR20 has a crucial role in regulating trophoblast mitochondrial function, and we suggest that Siglec-6 and GPR20 could serve as potential markers and targets for the clinical diagnosis and therapy of EO-PE.
Collapse
Affiliation(s)
- Yuanhui Jia
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenjing Lu
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Han Xie
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yifan Sheng
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Luyao Wang
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenqi Lv
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lijun Ling
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaqi Dong
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinrui Jia
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengyu Wu
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenqiang Liu
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Ying
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
15
|
Shaffer Z, Romero R, Tarca AL, Galaz J, Arenas-Hernandez M, Gudicha DW, Chaiworapongsa T, Jung E, Suksai M, Theis KR, Gomez-Lopez N. The vaginal immunoproteome for the prediction of spontaneous preterm birth: A retrospective longitudinal study. eLife 2024; 13:e90943. [PMID: 38913421 PMCID: PMC11196114 DOI: 10.7554/elife.90943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Background Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. Most cases of preterm birth occur spontaneously and result from preterm labor with intact (spontaneous preterm labor [sPTL]) or ruptured (preterm prelabor rupture of membranes [PPROM]) membranes. The prediction of spontaneous preterm birth (sPTB) remains underpowered due to its syndromic nature and the dearth of independent analyses of the vaginal host immune response. Thus, we conducted the largest longitudinal investigation targeting vaginal immune mediators, referred to herein as the immunoproteome, in a population at high risk for sPTB. Methods Vaginal swabs were collected across gestation from pregnant women who ultimately underwent term birth, sPTL, or PPROM. Cytokines, chemokines, growth factors, and antimicrobial peptides in the samples were quantified via specific and sensitive immunoassays. Predictive models were constructed from immune mediator concentrations. Results Throughout uncomplicated gestation, the vaginal immunoproteome harbors a cytokine network with a homeostatic profile. Yet, the vaginal immunoproteome is skewed toward a pro-inflammatory state in pregnant women who ultimately experience sPTL and PPROM. Such an inflammatory profile includes increased monocyte chemoattractants, cytokines indicative of macrophage and T-cell activation, and reduced antimicrobial proteins/peptides. The vaginal immunoproteome has improved predictive value over maternal characteristics alone for identifying women at risk for early (<34 weeks) sPTB. Conclusions The vaginal immunoproteome undergoes homeostatic changes throughout gestation and deviations from this shift are associated with sPTB. Furthermore, the vaginal immunoproteome can be leveraged as a potential biomarker for early sPTB, a subset of sPTB associated with extremely adverse neonatal outcomes. Funding This research was conducted by the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS) under contract HHSN275201300006C. ALT, KRT, and NGL were supported by the Wayne State University Perinatal Initiative in Maternal, Perinatal and Child Health.
Collapse
Affiliation(s)
- Zachary Shaffer
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, University of MichiganAnn ArborUnited States
- Department of Epidemiology and Biostatistics, Michigan State UniversityEast LansingUnited States
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Computer Science, Wayne State University College of EngineeringDetroitUnited States
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de ChileSantiagoChile
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Dereje W Gudicha
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Manaphat Suksai
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Kevin R Theis
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of MedicineDetroitUnited States
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of MedicineDetroitUnited States
| |
Collapse
|
16
|
Gál L, Fóthi Á, Orosz G, Nagy S, Than NG, Orbán TI. Exosomal small RNA profiling in first-trimester maternal blood explores early molecular pathways of preterm preeclampsia. Front Immunol 2024; 15:1321191. [PMID: 38455065 PMCID: PMC10917917 DOI: 10.3389/fimmu.2024.1321191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024] Open
Abstract
Introduction Preeclampsia (PE) is a severe obstetrical syndrome characterized by new-onset hypertension and proteinuria and it is often associated with fetal intrauterine growth restriction (IUGR). PE leads to long-term health complications, so early diagnosis would be crucial for timely prevention. There are multiple etiologies and subtypes of PE, and this heterogeneity has hindered accurate identification in the presymptomatic phase. Recent investigations have pointed to the potential role of small regulatory RNAs in PE, and these species, which travel in extracellular vesicles (EVs) in the circulation, have raised the possibility of non-invasive diagnostics. The aim of this study was to investigate the behavior of exosomal regulatory small RNAs in the most severe subtype of PE with IUGR. Methods We isolated exosomal EVs from first-trimester peripheral blood plasma samples of women who later developed preterm PE with IUGR (n=6) and gestational age-matched healthy controls (n=14). The small RNA content of EVs and their differential expression were determined by next-generation sequencing and further validated by quantitative real-time PCR. We also applied the rigorous exceRpt bioinformatics pipeline for small RNA identification, followed by target verification and Gene Ontology analysis. Results Overall, >2700 small RNAs were identified in all samples and, of interest, the majority belonged to the RNA interference (RNAi) pathways. Among the RNAi species, 16 differentially expressed microRNAs were up-regulated in PE, whereas up-regulated and down-regulated members were equally found among the six identified Piwi-associated RNAs. Gene ontology analysis of the predicted small RNA targets showed enrichment of genes in pathways related to immune processes involved in decidualization, placentation and embryonic development, indicating that dysregulation of the induced small RNAs is connected to the impairment of immune pathways in preeclampsia development. Finally, the subsequent validation experiments revealed that the hsa_piR_016658 piRNA is a promising biomarker candidate for preterm PE associated with IUGR. Discussion Our rigorously designed study in a homogeneous group of patients unraveled small RNAs in circulating maternal exosomes that act on physiological pathways dysregulated in preterm PE with IUGR. Therefore, our small RNA hits are not only suitable biomarker candidates, but the revealed biological pathways may further inform us about the complex pathology of this severe PE subtype.
Collapse
Affiliation(s)
- Luca Gál
- Gene Regulation Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ábel Fóthi
- Gene Regulation Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Gergő Orosz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Nagy
- Department of Obstetrics and Gynecology, Petz Aladár University Teaching Hospital, Győr, Hungary
- Faculty of Health and Sport Sciences, Széchenyi István University, Győr, Hungary
| | - Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
- Genesis Theranostix Group, Budapest, Hungary
| | - Tamás I. Orbán
- Gene Regulation Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
17
|
Than NG, Romero R, Posta M, Györffy D, Szalai G, Rossi SW, Szilágyi A, Hupuczi P, Nagy S, Török O, Tarca AL, Erez O, Ács N, Papp Z. Classification of preeclampsia according to molecular clusters with the goal of achieving personalized prevention. J Reprod Immunol 2024; 161:104172. [PMID: 38141514 PMCID: PMC11027116 DOI: 10.1016/j.jri.2023.104172] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/13/2023] [Accepted: 11/23/2023] [Indexed: 12/25/2023]
Abstract
The prevention of pre-eclampsia is difficult due to the syndromic nature and multiple underlying mechanisms of this severe complication of pregnancy. The current clinical distinction between early- and late-onset disease, although clinically useful, does not reflect the true nature and complexity of the pathologic processes leading to pre-eclampsia. The current gaps in knowledge on the heterogeneous molecular pathways of this syndrome and the lack of adequate, specific diagnostic methods are major obstacles to early screening and tailored preventive strategies. The development of novel diagnostic tools for detecting the activation of the identified disease pathways would enable early, accurate screening and personalized preventive therapies. We implemented a holistic approach that includes the utilization of different proteomic profiling methods of maternal plasma samples collected from various ethnic populations and the application of systems biology analysis to plasma proteomic, maternal demographic, clinical characteristic, and placental histopathologic data. This approach enabled the identification of four molecular subclasses of pre-eclampsia in which distinct and shared disease mechanisms are activated. The current review summarizes the results and conclusions from these studies and the research and clinical implications of our findings.
Collapse
Affiliation(s)
- Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Department of Obstetrics and Gynecology, School of Medicine, Semmelweis University, Budapest, Hungary; Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary; Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Genesis Theranostix Group, Budapest, Hungary.
| | - Roberto Romero
- Pregnancy Research Branch(1), NICHD/NIH/DHHS, Bethesda, MD, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Máté Posta
- Systems Biology of Reproduction Research Group, Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Genesis Theranostix Group, Budapest, Hungary; Semmelweis University Doctoral School, Budapest, Hungary
| | - Dániel Györffy
- Systems Biology of Reproduction Research Group, Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Genesis Theranostix Group, Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Gábor Szalai
- Systems Biology of Reproduction Research Group, Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Genesis Theranostix Group, Budapest, Hungary; Department of Surgery, School of Medicine, University of Pécs, Pécs, Hungary
| | | | - András Szilágyi
- Systems Biology of Reproduction Research Group, Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary; Department of Anesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - Sándor Nagy
- Faculty of Health and Sport Sciences, Széchenyi István University, Győr, Hungary
| | - Olga Török
- Department of Obstetrics and Gynecology, School of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adi L Tarca
- Genesis Theranostix Group, Budapest, Hungary; Pregnancy Research Branch(1), NICHD/NIH/DHHS, Bethesda, MD, USA; Department of Obstetrics and Gynecology, School of Medicine, Wayne State University School of Medicine, Detroit, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Offer Erez
- Genesis Theranostix Group, Budapest, Hungary; Pregnancy Research Branch(1), NICHD/NIH/DHHS, Bethesda, MD, USA; Department of Obstetrics and Gynecology, School of Medicine, Wayne State University School of Medicine, Detroit, MI, USA; Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | - Nándor Ács
- Department of Obstetrics and Gynecology, School of Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltán Papp
- Department of Obstetrics and Gynecology, School of Medicine, Semmelweis University, Budapest, Hungary; Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| |
Collapse
|
18
|
Rahnavard A, Chatterjee R, Wen H, Gaylord C, Mugusi S, Klatt KC, Smith ER. Molecular epidemiology of pregnancy using omics data: advances, success stories, and challenges. J Transl Med 2024; 22:106. [PMID: 38279125 PMCID: PMC10821542 DOI: 10.1186/s12967-024-04876-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/26/2023] [Indexed: 01/28/2024] Open
Abstract
Multi-omics approaches have been successfully applied to investigate pregnancy and health outcomes at a molecular and genetic level in several studies. As omics technologies advance, research areas are open to study further. Here we discuss overall trends and examples of successfully using omics technologies and techniques (e.g., genomics, proteomics, metabolomics, and metagenomics) to investigate the molecular epidemiology of pregnancy. In addition, we outline omics applications and study characteristics of pregnancy for understanding fundamental biology, causal health, and physiological relationships, risk and prediction modeling, diagnostics, and correlations.
Collapse
Affiliation(s)
- Ali Rahnavard
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA.
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA.
| | - Ranojoy Chatterjee
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
| | - Hui Wen
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
| | - Clark Gaylord
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
| | - Sabina Mugusi
- Department of Clinical Pharmacology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Kevin C Klatt
- Nutritional Sciences & Toxicology, University of California, Berkeley, CA, 94720, USA
| | - Emily R Smith
- Department of Global Health, The Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA.
- Department of Exercise and Nutrition Sciences, The Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
19
|
He W, Zhang Y, Wu K, Wang Y, Zhao X, Lv L, Ren C, Lu J, Yang J, Yin A, Liu G. Epigenetic phenotype of plasma cell-free DNA in the prediction of early-onset preeclampsia. J OBSTET GYNAECOL 2023; 43:2282100. [PMID: 38038254 DOI: 10.1080/01443615.2023.2282100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND In the current study, we sought to characterise the methylation haplotypes and nucleosome positioning patterns of placental DNA and plasma cell-free DNA of pregnant women with early-onset preeclampsia using whole genome bisulphite sequencing (WGBS) and methylation capture bisulphite sequencing (MCBS) and further develop and examine the diagnostic performance of a generalised linear model (GLM) by incorporating the epigenetic features for early-onset preeclampsia. METHODS This case-control study recruited pregnant women aged at least 18 years who delivered their babies at our Hospital. In addition, non-pregnant women with no previous history of diseases were included. Placental samples of the villous parenchyma were taken at the time of delivery and venous blood was drawn from pregnant women during non-invasive prenatal testing at 12-15 weeks of pregnancy and nonpregnant women during the physical check-up. WGBS and MCBS were carried out of extracted genomic DNA. Then, we established the GLM by incorporating preeclampsia-specific methylation haplotypes and nucleosome positioning patterns and examined the diagnostic performance of the model by receiver operating characteristic (ROC) curve analysis. RESULTS The study included 135 pregnant women and 50 non-pregnant women. Our high-depth MCBS revealed notably different DNA methylation and nucleosome positioning patterns between women with and without preeclampsia. Preeclampsia-specific hypermethylated sites were found predominantly in the promoter regions and particularly enriched in CTCF on the X chromosome. Totally, 2379 preeclampsia-specific methylation haplotypes were found across the entire genome. ROC analysis showed that the area under the ROC curve (AUC) was 0.938 (95%CI 0.877, 1.000). At a GLM cut-off of 0.341, the AUC was the maximum, with a sensitivity of 95.6% and a specificity of 89.7%. CONCLUSION Pregnant women with early-onset preeclampsia exhibit DNA methylation and nucleosome positioning patterns in placental and plasma DNA.
Collapse
Affiliation(s)
- Wei He
- The First Affiliated Hospital of Jinan University, Guangzhou, China
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yi Zhang
- Euler Technology, Beijing, China
- Peking-Tsinghua Center of Life Sciences, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Kai Wu
- Euler Technology, Beijing, China
| | - Yunan Wang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xin Zhao
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Lijuan Lv
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Congmian Ren
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jiaqi Lu
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jiexia Yang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Aihua Yin
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Guocheng Liu
- Department of Obstetrics, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
20
|
Huang N, Chen W, Jiang H, Yang J, Zhang Y, Shi H, Wang Y, Yuan P, Qiao J, Wei Y, Zhao Y. Metabolic dynamics and prediction of sFGR and adverse fetal outcomes: a prospective longitudinal cohort study. BMC Med 2023; 21:455. [PMID: 37996847 PMCID: PMC10666385 DOI: 10.1186/s12916-023-03134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Selective fetal growth restriction (sFGR) is an extreme complication that significantly increases the risk of perinatal mortality and long-term adverse neurological outcomes in offspring, affecting approximately 15% of monochorionic diamniotic (MCDA) twin pregnancies. The lack of longitudinal cohort studies hinders the early prediction and intervention of sFGR. METHODS We constructed a prospective longitudinal cohort study of sFGR, and quantified 25 key metabolites in 337 samples from maternal plasma in the first, second, and third trimester and from cord plasma. In particular, our study examined fetal growth and brain injury data from ultrasonography and used the Ages and Stages Questionnaire-third edition subscale (ASQ-3) to evaluate the long-term neurocognitive behavioral development of infants aged 2-3 years. Furthermore, we correlated metabolite levels with ultrasound data, including physical development and brain injury indicators, and ASQ-3 data using Spearman's-based correlation tests. In addition, special combinations of differential metabolites were used to construct predictive models for the occurrence of sFGR and fetal brain injury. RESULTS Our findings revealed various dynamic patterns for these metabolites during pregnancy and a maximum of differential metabolites between sFGR and MCDA in the second trimester (n = 8). The combination of L-phenylalanine, L-leucine, and L-isoleucine in the second trimester, which were closely related to fetal growth indicators, was highly predictive of sFGR occurrence (area under the curve [AUC]: 0.878). The combination of L-serine, L-histidine, and L-arginine in the first trimester and creatinine in the second trimester was correlated with long-term neurocognitive behavioral development and showed the capacity to identify fetal brain injury with high accuracy (AUC: 0.94). CONCLUSIONS The performance of maternal plasma metabolites from the first and second trimester is superior to those from the third trimester and cord plasma in discerning sFGR and fetal brain injury. These metabolites may serve as useful biomarkers for early prediction and promising targets for early intervention in clinical settings.
Collapse
Affiliation(s)
- Nana Huang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Huayuan North Road, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Wei Chen
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Huayuan North Road, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Huayuan North Road, Beijing, 100191, China
| | - Hai Jiang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Huayuan North Road, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Jing Yang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Huayuan North Road, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Youzhen Zhang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Huayuan North Road, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Huifeng Shi
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Huayuan North Road, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Huayuan North Road, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Pengbo Yuan
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Huayuan North Road, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Huayuan North Road, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- National Center for Healthcare Quality Management in Obstetrics, Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Huayuan North Road, Beijing, 100191, China.
- Beijing Advanced Innovation Center for Genomics, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Huayuan North Road, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- National Center for Healthcare Quality Management in Obstetrics, Beijing, China.
| | - Yangyu Zhao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Huayuan North Road, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- National Center for Healthcare Quality Management in Obstetrics, Beijing, China.
| |
Collapse
|
21
|
Dai W, Pollinzi A, Piquette-Miller M. Use of Traditional and Proteomic Methods in the Assessment of a Preclinical Model of Preeclampsia. Drug Metab Dispos 2023; 51:1308-1315. [PMID: 37286362 DOI: 10.1124/dmd.122.001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/27/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
Recent studies have demonstrated downregulation of breast cancer resistance protein (BCRP/ABCG2) in placenta obtained from women with preeclampsia (PE). BCRP is highly expressed in placenta and plays an important role in preventing xenobiotics from entering the fetal compartment. Although PE is often therapeutically managed with drugs that are substrates of BCRP, there are limited studies on the impact of PE on fetal drug exposure. Due to ethical concerns, use of preclinical models is an important approach. Thus, by using proteomic and traditional methods, we characterized transporter changes in an immunologic rat model of PE to determine its utility and predictive value for future drug disposition studies. PE was induced by daily administration of low-dose endotoxin (0.01-0.04 mg/kg) to rats on gestational days (GD) 13-16, urine was collected, and rats were sacrificed on GD17 or GD18. PE rats shared similar phenotype to PE patients, including proteinuria, and increased levels of tumor necrosis factor α and interleukin 6. Transcript and protein levels of Bcrp were significantly downregulated in placenta of PE rats on GD18. multidrug resistance 1a, multidrug resistance 1b, and organic anion transporting polypeptide 2B1 mRNA were also decreased in PE. Proteomics revealed activation of various hallmarks of PE including immune activation, oxidative stress, endoplasmic reticulum stress and apoptosis. Overall, our results demonstrated that the immunologic PE rat model exhibits numerous similarities to human PE along with dysregulation of placental transporters. Therefore, this model may be useful in examining the impact of PE on the maternal and fetal disposition of BCRP substrates. SIGNIFICANCE STATEMENT: Fully characterizing preclinical models of disease is necessary to determine their validity to human conditions. Combining traditional and proteomic methods of model characterization, we identified numerous phenotypic similarities between our model of preeclampsia and human disease. The alignment with human pathophysiological changes allows for more confident use of this preclinical model.
Collapse
Affiliation(s)
- Wanying Dai
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Angela Pollinzi
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Micheline Piquette-Miller
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| |
Collapse
|
22
|
Thomas G, Syngelaki A, Hamed K, Perez-Montaño A, Panigassi A, Tuytten R, Nicolaides KH. Preterm preeclampsia screening using biomarkers: combining phenotypic classifiers into robust prediction models. Am J Obstet Gynecol MFM 2023; 5:101110. [PMID: 37752025 DOI: 10.1016/j.ajogmf.2023.101110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Preeclampsia screening is a critical component of antenatal care worldwide. Currently, the most developed screening test for preeclampsia at 11 to 13 weeks' gestation integrates maternal demographic characteristics and medical history with 3 biomarkers-serum placental growth factor, mean arterial pressure, and uterine artery pulsatility index-to identify approximately 75% of women who develop preterm preeclampsia with delivery before 37 weeks of gestation. It is generally accepted that further improvements to preeclampsia screening require the use of additional biomarkers. We recently reported that the levels of specific metabolites and metabolite ratios are associated with preterm preeclampsia. Notably, for several of these markers, preterm preeclampsia prediction varied according to maternal body mass index class. These findings motivated us to study whether patient classification allowed for combining metabolites with the current biomarkers more effectively to improve prediction of preterm preeclampsia. OBJECTIVE This study aimed to investigate whether metabolite biomarkers can improve biomarker-based preterm preeclampsia prediction in 3 screening resource scenarios according to the availability of: (1) placental growth factor, (2) placental growth factor+mean arterial pressure, and (3) placental growth factor+mean arterial pressure+uterine artery pulsatility index. STUDY DESIGN This was an observational case-control study, drawn from a large prospective screening study at 11 to 13 weeks' gestation on the prediction of pregnancy complications, conducted at King's College Hospital, London, United Kingdom. Maternal blood samples were also collected for subsequent research studies. We used liquid chromatography-mass spectrometry to quantify levels of 50 metabolites previously associated with pregnancy complications in plasma samples from singleton pregnancies. Biomarker data, normalized using multiples of medians, on 1635 control and 106 preterm preeclampsia pregnancies were available for model development. Modeling was performed using a methodology that generated a prediction model for preterm preeclampsia in 4 consecutive steps: (1) z-normalization of predictors, (2) combinatorial modeling of so-called (weak) classifiers in the unstratified patient set and in discrete patient strata based on body mass index and/or race, (3) selection of classifiers, and (4) aggregation of the selected classifiers (ie, bagging) into the final prediction model. The prediction performance of models was evaluated using the area under the receiver operating characteristic curve, and detection rate at 10% false-positive rate. RESULTS First, the predictor development methodology itself was evaluated. The patient set was split into a training set (2/3) and a test set (1/3) for predictor model development and internal validation. A prediction model was developed for each of the 3 different predictor panels, that is, placental growth factor+metabolites, placental growth factor+mean arterial pressure+metabolites, and placental growth factor+mean arterial pressure+uterine artery pulsatility index+metabolites. For all 3 models, the area under the receiver operating characteristic curve in the test set did not differ significantly from that of the training set. Next, a prediction model was developed using the complete data set for the 3 predictor panels. Among the 50 metabolites available for modeling, 26 were selected across the 3 prediction models; 21 contributed to at least 2 out of the 3 prediction models developed. Each time, area under the receiver operating characteristic curve and detection rate were significantly higher with the new prediction model than with the reference model. Markedly, the estimated detection rate with the placental growth factor+mean arterial pressure+metabolites prediction model in all patients was 0.58 (95% confidence interval, 0.49-0.70), a 15% increase (P<.001) over the detection rate of 0.43 (95% confidence interval, 0.33-0.55) estimated for the reference placental growth factor+mean arterial pressure. The same prediction model significantly improved detection in Black (14%) and White (19%) patients, and in the normal-weight group (18.5≤body mass index<25) and the obese group (body mass index≥30), with respectively 19% and 20% more cases detected, but not in the overweight group, when compared with the reference model. Similar improvement patterns in detection rates were found in the other 2 scenarios, but with smaller improvement amplitudes. CONCLUSION Metabolite biomarkers can be combined with the established biomarkers of placental growth factor, mean arterial pressure, and uterine artery pulsatility index to improve the biomarker component of early-pregnancy preterm preeclampsia prediction tests. Classification of the pregnant women according to the maternal characteristics of body mass index and/or race proved instrumental in achieving improved prediction. This suggests that maternal phenotyping can have a role in improving the prediction of obstetrical syndromes such as preeclampsia.
Collapse
Affiliation(s)
- Grégoire Thomas
- SQU4RE, Lokeren, Belgium (Dr Thomas); Metabolomic Diagnostics, Cork, Ireland (Drs Thomas, Panigassi, and Tuytten)
| | - Argyro Syngelaki
- The Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom (Drs Syngelaki, Hamed, Perez-Montaño, and Nicolaides)
| | - Karam Hamed
- The Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom (Drs Syngelaki, Hamed, Perez-Montaño, and Nicolaides)
| | - Anais Perez-Montaño
- The Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom (Drs Syngelaki, Hamed, Perez-Montaño, and Nicolaides)
| | - Ana Panigassi
- Metabolomic Diagnostics, Cork, Ireland (Drs Thomas, Panigassi, and Tuytten)
| | - Robin Tuytten
- Metabolomic Diagnostics, Cork, Ireland (Drs Thomas, Panigassi, and Tuytten).
| | - Kypros H Nicolaides
- The Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom (Drs Syngelaki, Hamed, Perez-Montaño, and Nicolaides)
| |
Collapse
|
23
|
Hartmann S, Botha SM, Gray CM, Valdes DS, Tong S, Kaitu'u-Lino TJ, Herse F, Bergman L, Cluver CA, Dechend R, Nonn O. Can single-cell and spatial omics unravel the pathophysiology of pre-eclampsia? J Reprod Immunol 2023; 159:104136. [PMID: 37634318 DOI: 10.1016/j.jri.2023.104136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
Pre-eclampsia is a leading cause of maternal and fetal morbidity and mortality. Characterised by the onset of hypertension and proteinuria in the second half of pregnancy, it can lead to maternal end-organ injury such as cerebral ischemia and oedema, pulmonary oedema and renal failure, and potentially fatal outcomes for both mother and fetus. The causes of the different maternal end-organ phenotypes of pre-eclampsia and why some women develop pre-eclampsia condition early in pregnancy have yet to be elucidated. Omics methods include proteomics, genomics, metabolomics, transcriptomics. These omics techniques, previously mostly used on bulk tissue and individually, are increasingly available at a single cellular level and can be combined with each other. Multi-omics techniques on a single-cell or spatial level provide us with a powerful tool to understand the pathophysiology of pre-eclampsia. This review will explore the status of omics methods and how they can and could contribute to understanding the pathophysiology of pre-eclampsia.
Collapse
Affiliation(s)
- Sunhild Hartmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany; Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria 3084, Australia; Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria 3084, Australia; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Stefan Marc Botha
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany; Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria 3084, Australia; Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria 3084, Australia; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Clive M Gray
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Stellenbosch University, Cape Town 7505, South Africa
| | - Daniela S Valdes
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Stephen Tong
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria 3084, Australia; Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria 3084, Australia; Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Florian Herse
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Lina Bergman
- Department of Obstetrics and Gynaecology, Stellenbosch University, Cape Town 7505, South Africa; Department of Women's and Children's Health, Uppsala University, Uppsala 751 85, Sweden,; Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Catherine A Cluver
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria 3084, Australia; Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria 3084, Australia; Department of Obstetrics and Gynaecology, Stellenbosch University, Cape Town 7505, South Africa
| | - Ralf Dechend
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany; HELIOS Clinic, Department of Cardiology and Nephrology, Berlin, Germany
| | - Olivia Nonn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany; Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria.
| |
Collapse
|
24
|
Espinosa C, Ali SM, Khan W, Khanam R, Pervin J, Price JT, Rahman S, Hasan T, Ahmed S, Raqib R, Rahman M, Aktar S, Nisar MI, Khalid J, Dhingra U, Dutta A, Deb S, Stringer JS, Wong RJ, Shaw GM, Stevenson DK, Darmstadt GL, Gaudilliere B, Baqui AH, Jehan F, Rahman A, Sazawal S, Vwalika B, Aghaeepour N, Angst MS. Comparative predictive power of serum vs plasma proteomic signatures in feto-maternal medicine. AJOG GLOBAL REPORTS 2023; 3:100244. [PMID: 37456144 PMCID: PMC10339042 DOI: 10.1016/j.xagr.2023.100244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Blood proteins are frequently measured in serum or plasma, because they provide a wealth of information. Differences in the ex vivo processing of serum and plasma raise concerns that proteomic health and disease signatures derived from serum or plasma differ in content and quality. However, little is known about their respective power to predict feto-maternal health outcomes. Predictive power is a sentinel characteristic to determine the clinical use of biosignatures. OBJECTIVE This study aimed to compare the power of serum and plasma proteomic signatures to predict a physiological pregnancy outcome. STUDY DESIGN Paired serum and plasma samples from 73 women were obtained from biorepositories of a multinational prospective cohort study on pregnancy outcomes. Gestational age at the time of sampling was the predicted outcome, because the proteomic signatures have been validated for such a prediction. Multivariate and cross-validated models were independently derived for serum and plasma proteins. RESULTS A total of 1116 proteins were measured in 88 paired samples from 73 women with a highly multiplexed platform using proximity extension technology (Olink Proteomics Inc, Watertown, MA). The plasma proteomic signature showed a higher predictive power (R=0.64; confidence interval, 0.42-0.79; P=3.5×10-6) than the serum signature (R=0.45; confidence interval, 0.18-0.66; P=2.2×10-3). The serum signature was validated in plasma with a similar predictive power (R=0.58; confidence interval, 0.34-0.75; P=4.8×10-5), whereas the plasma signature was validated in serum with reduced predictive power (R=0.53; confidence interval, 0.27-0.72; P=2.6×10-4). Signature proteins largely overlapped in the serum and plasma, but the strength of association with gestational age was weaker for serum proteins. CONCLUSION Findings suggest that serum proteomics are less informative than plasma proteomics. They are compatible with the view that the partial ex-vivo degradation and modification of serum proteins during sample processing are an underlying reason. The rationale for collecting and analyzing serum and plasma samples should be carefully considered when deriving proteomic biosignatures to ascertain that specimens of the highest scientific and clinical yield are processed. Findings suggest that plasma is the preferred matrix.
Collapse
Affiliation(s)
- Camilo Espinosa
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA (Mr Espinosa and Drs Gaudilliere, Aghaeepour and Angst)
| | - Said Mohammed Ali
- Public Health Laboratory Ivo de Carneri, Zanzibar, Pemba, Tanzania (Messrs Ali, Dutta, and Deb)
| | - Waqasuddin Khan
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, Aga Khan University, Karachi, Pakistan (Drs Khan and Nisar, Ms Khalid, and Dr Jehan)
| | - Rasheda Khanam
- Newborn Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (Drs Khanam and Baqui)
| | - Jesmin Pervin
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh (Mr Pervin, Mr M. Rahman, and Drs Aktar and A. Rahman)
| | - Joan T. Price
- Department of Obstetrics and Gynecology, The University of North Carolina at Chapel Hill, Chapel Hill, NC (Drs Price and Stringer)
| | - Sayedur Rahman
- Projahnmo Research Foundation, Dhaka, Bangladesh (Dr Rahman, Mr Hasan, and Dr Ahmed)
| | - Tarik Hasan
- Projahnmo Research Foundation, Dhaka, Bangladesh (Dr Rahman, Mr Hasan, and Dr Ahmed)
| | - Salahuddin Ahmed
- Projahnmo Research Foundation, Dhaka, Bangladesh (Dr Rahman, Mr Hasan, and Dr Ahmed)
| | - Rubhana Raqib
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh (Dr Raqib)
| | - Monjur Rahman
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh (Mr Pervin, Mr M. Rahman, and Drs Aktar and A. Rahman)
| | - Shaki Aktar
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh (Mr Pervin, Mr M. Rahman, and Drs Aktar and A. Rahman)
| | - Muhammad I. Nisar
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, Aga Khan University, Karachi, Pakistan (Drs Khan and Nisar, Ms Khalid, and Dr Jehan)
| | - Javairia Khalid
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, Aga Khan University, Karachi, Pakistan (Drs Khan and Nisar, Ms Khalid, and Dr Jehan)
| | - Usha Dhingra
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD (Ms Dhingra and Dr Sazawal)
| | - Arup Dutta
- Public Health Laboratory Ivo de Carneri, Zanzibar, Pemba, Tanzania (Messrs Ali, Dutta, and Deb)
- Center for Public Health Kinetics, New Delhi, India (Ms Dhingra, Messrs Dutta and Drs Deb, and Sazawal)
| | - Saikat Deb
- Public Health Laboratory Ivo de Carneri, Zanzibar, Pemba, Tanzania (Messrs Ali, Dutta, and Deb)
- Center for Public Health Kinetics, New Delhi, India (Ms Dhingra, Messrs Dutta and Drs Deb, and Sazawal)
| | - Jeffrey S.A. Stringer
- Department of Obstetrics and Gynecology, The University of North Carolina at Chapel Hill, Chapel Hill, NC (Drs Price and Stringer)
| | - Ronald J. Wong
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA (Drs Wong, Shaw, Stevenson, Darmstadt, Gaudilliere and Aghaeepour)
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA (Drs Wong, Shaw, Stevenson, Darmstadt, Gaudilliere and Aghaeepour)
| | - David K. Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA (Drs Wong, Shaw, Stevenson, Darmstadt, Gaudilliere and Aghaeepour)
| | - Gary L. Darmstadt
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA (Drs Wong, Shaw, Stevenson, Darmstadt, Gaudilliere and Aghaeepour)
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA (Mr Espinosa and Drs Gaudilliere, Aghaeepour and Angst)
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA (Drs Wong, Shaw, Stevenson, Darmstadt, Gaudilliere and Aghaeepour)
| | - Abdullah H. Baqui
- Newborn Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (Drs Khanam and Baqui)
| | - Fyezah Jehan
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, Aga Khan University, Karachi, Pakistan (Drs Khan and Nisar, Ms Khalid, and Dr Jehan)
| | - Anisur Rahman
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh (Mr Pervin, Mr M. Rahman, and Drs Aktar and A. Rahman)
| | - Sunil Sazawal
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD (Ms Dhingra and Dr Sazawal)
- Center for Public Health Kinetics, New Delhi, India (Ms Dhingra, Messrs Dutta and Drs Deb, and Sazawal)
| | - Bellington Vwalika
- Department of Obstetrics and Gynecology, UNC School of Medicine, University of Zambia, Lusaka, Zambia (Dr Vwalika)
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA (Mr Espinosa and Drs Gaudilliere, Aghaeepour and Angst)
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA (Drs Wong, Shaw, Stevenson, Darmstadt, Gaudilliere and Aghaeepour)
- Department of Biomedical Informatics, Stanford University School of Medicine, Stanford, CA (Dr Aghaeepour)
| | - Martin S. Angst
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA (Drs Wong, Shaw, Stevenson, Darmstadt, Gaudilliere and Aghaeepour)
| |
Collapse
|
25
|
Barrero JA, Villamil-Camargo LM, Imaz JN, Arciniegas-Villa K, Rubio-Romero JA. Maternal Serum Activin A, Inhibin A and Follistatin-Related Proteins across Preeclampsia: Insights into Their Role in Pathogenesis and Prediction. JOURNAL OF MOTHER AND CHILD 2023; 27:119-133. [PMID: 37595293 PMCID: PMC10438925 DOI: 10.34763/jmotherandchild.20232701.d-23-00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 06/11/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Within the endocrine-paracrine signalling network at the maternal-foetal interface, the activin-inhibin-follistatin system modulates extravillous trophoblast invasion, suggesting a potential role in preeclampsia pathogenesis. This study aimed to compile the evidence published in the last decade regarding the variation in maternal serum activins, inhibin- and follistatin-related proteins in preeclamptic pregnancies compared to healthy pregnancies, and to discuss their role in predicting and understanding the pathophysiology of preeclampsia. MATERIAL AND METHODS A scoping review was conducted in MEDLINE, EMBASE and LILACS databases to identify studies published within the last ten years (2012-2022). RESULTS Thirty studies were included. None of the studies addressed maternal serum changes of isoforms different from activin A, inhibin A, follistatin, and follistatin-like 3. Sixteen studies evaluated the potential of these isoforms in predicting preeclampsia through the area under the curve from a receiver operating characteristic curve. CONCLUSIONS In preeclampsia, inhibin A is upregulated in all trimesters, whereas activin A increases exclusively in the late second and third trimesters. Serum follistatin levels are reduced in women with preeclampsia during the late second and third trimesters. However, changes in follistatin-like 3 remain inconclusive. Inhibin A and activin A can potentially serve as biomarkers of early-onset preeclampsia based on the outcomes of the receiver operating characteristic curve analysis. Further investigations are encouraged to explore the feasibility of quantifying maternal serum levels of activin A and inhibin A as a clinical tool in early preeclampsia prediction.
Collapse
Affiliation(s)
- Jorge A. Barrero
- Universidad Nacional de Colombia, Bogotá Campus, Faculty of Medicine, Bogotá, Colombia
| | | | - Jose N. Imaz
- Universidad Nacional de Colombia, Bogotá Campus, Faculty of Medicine, Bogotá, Colombia
| | | | - Jorge A. Rubio-Romero
- Universidad Nacional de Colombia, Bogotá Campus, Faculty of Medicine, Department of Obstetrics and Gynecology, Bogotá, Colombia
| |
Collapse
|
26
|
Mennickent D, Rodríguez A, Opazo MC, Riedel CA, Castro E, Eriz-Salinas A, Appel-Rubio J, Aguayo C, Damiano AE, Guzmán-Gutiérrez E, Araya J. Machine learning applied in maternal and fetal health: a narrative review focused on pregnancy diseases and complications. Front Endocrinol (Lausanne) 2023; 14:1130139. [PMID: 37274341 PMCID: PMC10235786 DOI: 10.3389/fendo.2023.1130139] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Machine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple variables simultaneously. By means of pattern recognition, ML methods are able to find hidden correlations and accomplish accurate predictions regarding different conditions. ML has been successfully used to solve varied problems in different areas of science, such as psychology, economics, biology and chemistry. Therefore, we wondered how far it has penetrated into the field of obstetrics and gynecology. Aim To describe the state of art regarding the use of ML in the context of pregnancy diseases and complications. Methodology Publications were searched in PubMed, Web of Science and Google Scholar. Seven subjects of interest were considered: gestational diabetes mellitus, preeclampsia, perinatal death, spontaneous abortion, preterm birth, cesarean section, and fetal malformations. Current state ML has been widely applied in all the included subjects. Its uses are varied, the most common being the prediction of perinatal disorders. Other ML applications include (but are not restricted to) biomarker discovery, risk estimation, correlation assessment, pharmacological treatment prediction, drug screening, data acquisition and data extraction. Most of the reviewed articles were published in the last five years. The most employed ML methods in the field are non-linear. Except for logistic regression, linear methods are rarely used. Future challenges To improve data recording, storage and update in medical and research settings from different realities. To develop more accurate and understandable ML models using data from cutting-edge instruments. To carry out validation and impact analysis studies of currently existing high-accuracy ML models. Conclusion The use of ML in pregnancy diseases and complications is quite recent, and has increased over the last few years. The applications are varied and point not only to the diagnosis, but also to the management, treatment, and pathophysiological understanding of perinatal alterations. Facing the challenges that come with working with different types of data, the handling of increasingly large amounts of information, the development of emerging technologies, and the need of translational studies, it is expected that the use of ML continue growing in the field of obstetrics and gynecology.
Collapse
Affiliation(s)
- Daniela Mennickent
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
- Machine Learning Applied in Biomedicine (MLAB), Concepción, Chile
| | - Andrés Rodríguez
- Machine Learning Applied in Biomedicine (MLAB), Concepción, Chile
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán, Chile
| | - Ma. Cecilia Opazo
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Erica Castro
- Departamento de Obstetricia y Puericultura, Facultad de Ciencias de la Salud, Universidad de Atacama, Copiapó, Chile
| | - Alma Eriz-Salinas
- Departamento de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Javiera Appel-Rubio
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Claudio Aguayo
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Alicia E. Damiano
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO-Houssay)- CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Enrique Guzmán-Gutiérrez
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
- Machine Learning Applied in Biomedicine (MLAB), Concepción, Chile
| | - Juan Araya
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
- Machine Learning Applied in Biomedicine (MLAB), Concepción, Chile
| |
Collapse
|
27
|
Gomez-Lopez N, Romero R, Escobar MF, Carvajal JA, Echavarria MP, Albornoz LL, Nasner D, Miller D, Gallo DM, Galaz J, Arenas-Hernandez M, Bhatti G, Done B, Zambrano MA, Ramos I, Fernandez PA, Posada L, Chaiworapongsa T, Jung E, Garcia-Flores V, Suksai M, Gotsch F, Bosco M, Than NG, Tarca AL. Pregnancy-specific responses to COVID-19 revealed by high-throughput proteomics of human plasma. COMMUNICATIONS MEDICINE 2023; 3:48. [PMID: 37016066 PMCID: PMC10071476 DOI: 10.1038/s43856-023-00268-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/03/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Pregnant women are at greater risk of adverse outcomes, including mortality, as well as obstetrical complications resulting from COVID-19. However, pregnancy-specific changes that underlie such worsened outcomes remain unclear. METHODS Plasma samples were collected from pregnant women and non-pregnant individuals (male and female) with (n = 72 pregnant, 52 non-pregnant) and without (n = 29 pregnant, 41 non-pregnant) COVID-19. COVID-19 patients were grouped as asymptomatic, mild, moderate, severe, or critically ill according to NIH classifications. Proteomic profiling of 7,288 analytes corresponding to 6,596 unique protein targets was performed using the SOMAmer platform. RESULTS Herein, we profile the plasma proteome of pregnant and non-pregnant COVID-19 patients and controls and show alterations that display a dose-response relationship with disease severity; yet, such proteomic perturbations are dampened during pregnancy. In both pregnant and non-pregnant state, the proteome response induced by COVID-19 shows enrichment of mediators implicated in cytokine storm, endothelial dysfunction, and angiogenesis. Shared and pregnancy-specific proteomic changes are identified: pregnant women display a tailored response that may protect the conceptus from heightened inflammation, while non-pregnant individuals display a stronger response to repel infection. Furthermore, the plasma proteome can accurately identify COVID-19 patients, even when asymptomatic or with mild symptoms. CONCLUSION This study represents the most comprehensive characterization of the plasma proteome of pregnant and non-pregnant COVID-19 patients. Our findings emphasize the distinct immune modulation between the non-pregnant and pregnant states, providing insight into the pathogenesis of COVID-19 as well as a potential explanation for the more severe outcomes observed in pregnant women.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.
- Detroit Medical Center, Detroit, MI, USA.
| | - María Fernanda Escobar
- Departamento de Ginecología y Obstetricia, Fundación Valle del Lili, Cali, Colombia
- Departamento de Ginecología y Obstetricia, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Javier Andres Carvajal
- Departamento de Ginecología y Obstetricia, Fundación Valle del Lili, Cali, Colombia
- Departamento de Ginecología y Obstetricia, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Maria Paula Echavarria
- Departamento de Ginecología y Obstetricia, Fundación Valle del Lili, Cali, Colombia
- Departamento de Ginecología y Obstetricia, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Ludwig L Albornoz
- Departamento de Laboratorio Clínico y Patología, Fundación Valle del Lili, Cali, Colombia
- Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Daniela Nasner
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dahiana M Gallo
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gaurav Bhatti
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Done
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maria Andrea Zambrano
- Departamento de Ginecología y Obstetricia, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Isabella Ramos
- Departamento de Ginecología y Obstetricia, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Paula Andrea Fernandez
- Departamento de Ginecología y Obstetricia, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Leandro Posada
- Departamento de Ginecología y Obstetricia, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Valeria Garcia-Flores
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Manaphat Suksai
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Francesca Gotsch
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mariachiara Bosco
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nandor Gabor Than
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
- Genesis Theranostix Group, Budapest, Hungary
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA.
| |
Collapse
|
28
|
Barber CV, Yo JH, Rahman RA, Wallace EM, Palmer KR, Marshall SA. Activin A and pathologies of pregnancy: a review. Placenta 2023; 136:35-41. [PMID: 37028223 DOI: 10.1016/j.placenta.2023.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Activin A is a two-subunit protein belonging to the transforming growth factor β superfamily. First discovered almost three decades ago, it has since been implicated in diverse physiological roles, ranging from wound repair to reproduction. After 30 years of research, altered activin A levels are now understood to be associated with the development of various diseases, making activin A a potential therapeutic target. In pregnancy, the placenta and fetal membranes are major producers of activin A, with significantly enhanced serum concentrations now recognised as a contributor to numerous gestational disorders. Evidence now suggests that circulating levels of activin A may be clinically relevant in the early detection of pregnancy complications, including miscarriage and preeclampsia. This review aims to summarise our current understanding of activin A as a potential diagnostic marker in common pregnancy pathologies.
Collapse
|
29
|
Maziashvili G, Juliana K, Siva Subramania Pillai Kanimozhi V, Javakhishvili G, Gurabanidze V, Gagua T, Maziashvili T, Lomouri K. The Use of Systemic Inflammatory Markers From Routine Blood Tests in Predicting Preeclampsia and the Impact of Age on Marker Levels. Cureus 2023; 15:e35836. [PMID: 36895520 PMCID: PMC9990961 DOI: 10.7759/cureus.35836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
Our study aimed to investigate the relationship between preeclampsia (PE) and blood levels of neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammatory index (SII) in the first trimester of pregnancy. In addition to examining the potential correlation between these inflammatory markers and PE, we aimed to compare the levels based on age to determine whether there are potential age-related differences in marker levels. Over a six-month period, we reviewed the complete blood count (CBC) analysis results of 126 subjects, where 63 patients had a documented history of PE and 63 were healthy pregnant females. We found that age had no statistically significant effect on NLR, MLR, or SII levels, but there was a statistically significant difference in PLR levels between the 18-25 and 26-35 age groups. The study also revealed that the MLR and PLR in the 18-25 age group of preeclampsia patients were statistically significantly lower than those of healthy patients, whereas the PLR and SII in the 26-35 age group of preeclampsia patients were statistically significantly higher than those of healthy patients. The results suggest that systemic inflammatory response (SIR) markers may be able to predict the development of preeclampsia. The study also emphasized the importance of taking age into account, specifically the 18-25 and 26-35 age groups, when assessing the risk of preeclampsia. Further research is needed however to corroborate existing findings and determine the importance of the examined inflammatory markers in the diagnosis of PE.
Collapse
Affiliation(s)
| | | | | | | | | | - Tinatin Gagua
- Obstetrics and Gynecology, Gagua Clinic, Tbilisi, GEO
| | - Tamar Maziashvili
- Faculty of Health Sciences, Bahcesehir University (BAU) International University, Batumi, GEO
| | | |
Collapse
|
30
|
The amniotic fluid proteome changes with term labor and informs biomarker discovery in maternal plasma. Sci Rep 2023; 13:3136. [PMID: 36823217 PMCID: PMC9950459 DOI: 10.1038/s41598-023-28157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/13/2023] [Indexed: 02/25/2023] Open
Abstract
The intra-uterine components of labor, namely, myometrial contractility, cervical ripening, and decidua/membrane activation, have been extensively characterized and involve a local pro-inflammatory milieu of cellular and soluble immune mediators. Targeted profiling has demonstrated that such processes extend to the intra-amniotic space, yet unbiased analyses of the proteome of human amniotic fluid during labor are lacking. Herein, we utilized an aptamer-based platform to characterize 1,310 amniotic fluid proteins and found that the proteome undergoes substantial changes with term labor (251 proteins with differential abundance, q < 0.1, and fold change > 1.25). Proteins with increased abundance in labor are enriched for immune and inflammatory processes, consistent with prior reports of labor-associated changes in the intra-uterine space. By integrating the amniotic fluid proteome with previously generated placental-derived single-cell RNA-seq data, we demonstrated the labor-driven upregulation of signatures corresponding to stromal-3 and decidual cells. We also determined that changes in amniotic fluid protein abundance are reflected in the maternal plasma proteome. Collectively, these findings provide novel insights into the amniotic fluid proteome in term labor and support its potential use as a source of biomarkers to distinguish between true and false labor by using maternal blood samples.
Collapse
|
31
|
Piskun A, Dmytro K, Honcharenko O, Rud V, Klimas L. PLACENTAL BIOMARKERS: PP13, VEGF IN DIAGNOSTICS OF EARLY AND LATE PREECLAMPSIA. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 75:3041-3045. [PMID: 36723324 DOI: 10.36740/wlek202212125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim: To investigate role of CD23, VEGF and PP13 in diagnostics of early and late preeclampsia, and their benefit for prediction of preeclampsia. PATIENTS AND METHODS Materials and methods: Investigation included 40 placentas from deliveries in women with preeclampsia (main group) and 40 placentas from physiological delivery in somatically healthy women, who had no complications during pregnancy (control group). Placentas in the main group were devided into two sub-groups (20 in each) - with early and late preeclampsia. Each group underwent both hystomorphometrical and immunohystochemical investigation with biomarkers CD23, VEGF and PP13. RESULTS Results: Positive immunohystochemical reaction to PP13 was determined in all samples of syncitiotrophoblast of villi of chorion. Investigations showed that expression of PP13 in sub-groups with early and late preeclampsia was a lot lower comparing to control group (normal pregnancies). Positive immunohystochemical reaction to VEGF was determined in all samples of endothelia of the capillaries of the villi of chorion. Our investigation showed that expression of VEGF in sub-groups with early and late PE was a lot lower comparing to a control group. Immunohystochemical reaction to CD23 was comperatively lower in all samples in endothelia of the capillariesof the villi of chorion and cyncithiotrophoblast. CONCLUSION Conclusions: Determined specialties of the expression of angiogenic factors ( PlGF, VEGF, endoglin) and production of PP13, by altered expression of VEGF, PlGF in first trimester of pregnancy, which is associated with lowest production of PP13, accompanied by placental dysfunction and preeclampsia.
Collapse
Affiliation(s)
- Alina Piskun
- VINNYTSIA NATIONAL MEDICAL UNIVERSITY, VINNYTSIA, UKRAINE
| | - Konkov Dmytro
- VINNYTSIA NATIONAL MEDICAL UNIVERSITY, VINNYTSIA, UKRAINE
| | | | - Victor Rud
- VINNYTSIA NATIONAL MEDICAL UNIVERSITY, VINNYTSIA, UKRAINE
| | - Larisa Klimas
- VINNYTSIA NATIONAL MEDICAL UNIVERSITY, VINNYTSIA, UKRAINE
| |
Collapse
|
32
|
Than NG, Romero R, Györffy D, Posta M, Bhatti G, Done B, Chaemsaithong P, Jung E, Suksai M, Gotsch F, Gallo DM, Bosco M, Kim B, Kim YM, Chaiworapongsa T, Rossi SW, Szilágyi A, Erez O, Tarca AL, Papp Z. Molecular subclasses of preeclampsia characterized by a longitudinal maternal proteomics study: distinct biomarkers, disease pathways and options for prevention. J Perinat Med 2023; 51:51-68. [PMID: 36253935 PMCID: PMC9837387 DOI: 10.1515/jpm-2022-0433] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVES The heterogeneous nature of preeclampsia is a major obstacle to early screening and prevention, and a molecular taxonomy of disease is needed. We have previously identified four subclasses of preeclampsia based on first-trimester plasma proteomic profiles. Herein, we expanded this approach by using a more comprehensive panel of proteins profiled in longitudinal samples. METHODS Proteomic data collected longitudinally from plasma samples of women who developed preeclampsia (n=109) and of controls (n=90) were available from our previous report on 1,125 proteins. Consensus clustering was performed to identify subgroups of patients with preeclampsia based on data from five gestational-age intervals by using select interval-specific features. Demographic, clinical, and proteomic differences among clusters were determined. Differentially abundant proteins were used to identify cluster-specific perturbed KEGG pathways. RESULTS Four molecular clusters with different clinical phenotypes were discovered by longitudinal proteomic profiling. Cluster 1 involves metabolic and prothrombotic changes with high rates of early-onset preeclampsia and small-for-gestational-age neonates; Cluster 2 includes maternal anti-fetal rejection mechanisms and recurrent preeclampsia cases; Cluster 3 is associated with extracellular matrix regulation and comprises cases of mostly mild, late-onset preeclampsia; and Cluster 4 is characterized by angiogenic imbalance and a high prevalence of early-onset disease. CONCLUSIONS This study is an independent validation and further refining of molecular subclasses of preeclampsia identified by a different proteomic platform and study population. The results lay the groundwork for novel diagnostic and personalized tools of prevention.
Collapse
Affiliation(s)
- Nándor Gábor Than
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
- Genesis Theranostix Group, Budapest, Hungary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
| | - Dániel Györffy
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Genesis Theranostix Group, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Máté Posta
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Genesis Theranostix Group, Budapest, Hungary
- Károly Rácz Doctoral School of Clinical Medicine, Semmelweis University, Budapest, Hungary
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dahiana M. Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Universidad Del Valle, Cali, Colombia
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bomi Kim
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Yeon Mee Kim
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | - András Szilágyi
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Genesis Theranostix Group, Budapest, Hungary
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, HaEmek Medical Center, Afula, Israel
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Genesis Theranostix Group, Budapest, Hungary
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Zoltán Papp
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
33
|
Wang F, Xu L, Qi M, Lai H, Zeng F, Liang F, Wen Q, Ma X, Zhang C, Xie K. Metabolomic analysis-identified 2-hydroxybutyric acid might be a key metabolite of severe preeclampsia. Open Life Sci 2023; 18:20220572. [PMID: 36874628 PMCID: PMC9975955 DOI: 10.1515/biol-2022-0572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/16/2022] [Accepted: 01/14/2023] [Indexed: 03/04/2023] Open
Abstract
This study set out to determine the key metabolite changes underlying the pathophysiology of severe preeclampsia (PE) using metabolic analysis. We collected sera from 10 patients with severe PE and from 10 healthy pregnant women of the same trimester and analyzed them using liquid chromatography mass spectrometry. A total of 3,138 differential metabolites were screened, resulting in the identification of 124 differential metabolites. Kyoto encyclopedia of genes and genomes pathway analysis revealed that they were mainly enriched in the following metabolic pathways: central carbon metabolism in cancer; protein digestion and absorption; aminoacyl-transfer RNA biosynthesis; mineral absorption; alanine, aspartate, and glutamate metabolism; and prostate cancer. After analysis of 124 differential metabolites, 2-hydroxybutyric acid was found to be the most critical differential metabolite, and its use allowed the differentiation of women with severe PE from healthy pregnant women. In summary, our analysis revealed that 2-hydroxybutyric acid is a potential key metabolite for distinguishing severe PE from healthy controls and is also a marker for the early diagnosis of severe PE, thus allowing early intervention.
Collapse
Affiliation(s)
- Fang Wang
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, 412007, China
| | - Lili Xu
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, 412007, China
| | - Mingming Qi
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, 412007, China
| | - Huimin Lai
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, 412007, China
| | - Fanhua Zeng
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, 412007, China
| | - Furong Liang
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, 412007, China
| | - Qing Wen
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, 412007, China
| | - Xihua Ma
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, 412007, China
| | - Chan Zhang
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, 412007, China
| | - Kaili Xie
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, 412007, China
| |
Collapse
|
34
|
Marić I, Contrepois K, Moufarrej MN, Stelzer IA, Feyaerts D, Han X, Tang A, Stanley N, Wong RJ, Traber GM, Ellenberger M, Chang AL, Fallahzadeh R, Nassar H, Becker M, Xenochristou M, Espinosa C, De Francesco D, Ghaemi MS, Costello EK, Culos A, Ling XB, Sylvester KG, Darmstadt GL, Winn VD, Shaw GM, Relman DA, Quake SR, Angst MS, Snyder MP, Stevenson DK, Gaudilliere B, Aghaeepour N. Early prediction and longitudinal modeling of preeclampsia from multiomics. PATTERNS (NEW YORK, N.Y.) 2022; 3:100655. [PMID: 36569558 PMCID: PMC9768681 DOI: 10.1016/j.patter.2022.100655] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022]
Abstract
Preeclampsia is a complex disease of pregnancy whose physiopathology remains unclear. We developed machine-learning models for early prediction of preeclampsia (first 16 weeks of pregnancy) and over gestation by analyzing six omics datasets from a longitudinal cohort of pregnant women. For early pregnancy, a prediction model using nine urine metabolites had the highest accuracy and was validated on an independent cohort (area under the receiver-operating characteristic curve [AUC] = 0.88, 95% confidence interval [CI] [0.76, 0.99] cross-validated; AUC = 0.83, 95% CI [0.62,1] validated). Univariate analysis demonstrated statistical significance of identified metabolites. An integrated multiomics model further improved accuracy (AUC = 0.94). Several biological pathways were identified including tryptophan, caffeine, and arachidonic acid metabolisms. Integration with immune cytometry data suggested novel associations between immune and proteomic dynamics. While further validation in a larger population is necessary, these encouraging results can serve as a basis for a simple, early diagnostic test for preeclampsia.
Collapse
Affiliation(s)
- Ivana Marić
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mira N. Moufarrej
- Departments of Bioengineering and Applied Physics, Stanford University and Chan Zuckerberg Biohub, Stanford, CA 94305, USA
| | - Ina A. Stelzer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dorien Feyaerts
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xiaoyuan Han
- University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA 94103, USA
| | - Andy Tang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Natalie Stanley
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ronald J. Wong
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gavin M. Traber
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mathew Ellenberger
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan L. Chang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ramin Fallahzadeh
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Huda Nassar
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Martin Becker
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maria Xenochristou
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Camilo Espinosa
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Davide De Francesco
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mohammad S. Ghaemi
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Digital Technologies Research Centre, National Research Council Canada, Toronto, Canada
| | - Elizabeth K. Costello
- Departments of Medicine, and of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anthony Culos
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xuefeng B. Ling
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karl G. Sylvester
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gary L. Darmstadt
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Virginia D. Winn
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gary M. Shaw
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David A. Relman
- Departments of Medicine, and of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Stephen R. Quake
- Departments of Bioengineering and Applied Physics, Stanford University and Chan Zuckerberg Biohub, Stanford, CA 94305, USA
| | - Martin S. Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David K. Stevenson
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brice Gaudilliere
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nima Aghaeepour
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
35
|
Wang X, Yip KC, He A, Tang J, Liu S, Yan R, Zhang Q, Li R. Plasma Olink Proteomics Identifies CCL20 as a Novel Predictive and Diagnostic Inflammatory Marker for Preeclampsia. J Proteome Res 2022; 21:2998-3006. [PMID: 36301636 PMCID: PMC9724708 DOI: 10.1021/acs.jproteome.2c00544] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Indexed: 01/19/2023]
Abstract
Inflammation is generally thought to be involved in the occurrence and development of preeclampsia (PE), but its specific effect on PE remains unclear. In the present study, the expression levels of 92 inflammation-related proteins were measured in the late pregnancy maternal plasma from patients with PE (n = 15) and normal pregnant controls (n = 15) using the Olink inflammation panel based on the highly sensitive and specific proximity extension assay technology. A total of 28 inflammation-related markers differed between the PE and control groups. Among them, fibroblast growth factor 21 (FGF-21) and cysteine-cysteine motif chemokine ligand 20 (CCL20) had the largest fold changes. We further validated the levels of CCL20 in the late (43 with PE and 44 controls) and early (37 with PE and 37 controls) pregnancy maternal plasma using enzyme-linked immunosorbent assay (ELISA). To the best of our knowledge, for the first time, CCL20 was found to be upregulated in the late and early pregnancy plasma of patients with PE and had an area under the curve (AUC) of 0.753 and 0.668, respectively. In conclusion, patients with PE had increased levels of most inflammatory markers, and CCL20 might be a novel potential predictive and diagnostic biomarker for PE.
Collapse
Affiliation(s)
- Xiufang Wang
- Department
of Obstetrics and Gynecology, The First
Affiliated Hospital of Jinan University, No. 613, Huangpu Road West, Tianhe
District, Guangzhou 510630, Guangdong, China
| | - Ka Cheuk Yip
- Department
of Obstetrics and Gynecology, The First
Affiliated Hospital of Jinan University, No. 613, Huangpu Road West, Tianhe
District, Guangzhou 510630, Guangdong, China
| | - Andong He
- Department
of Obstetrics and Gynecology, The First
Affiliated Hospital of Jinan University, No. 613, Huangpu Road West, Tianhe
District, Guangzhou 510630, Guangdong, China
| | - Jinqing Tang
- Department
of Obstetrics and Gynecology, Qingyuan People’s
Hospital, Qingyuan 511518, Guangdong, China
| | - Shisan Liu
- Department
of Obstetrics and Gynecology, The First
Affiliated Hospital of Jinan University, No. 613, Huangpu Road West, Tianhe
District, Guangzhou 510630, Guangdong, China
| | - Ruiling Yan
- Department
of Fetal Medicine, The First Affiliated
Hospital of Jinan University, Guangzhou 510630, Guangdong, China
| | - Qiao Zhang
- Institute
of Molecular and Medical Virology, School of Medicine, Jinan University, No. 601, Huangpu Road West, Tianhe
District, Guangzhou 510632, Guangdong, China
| | - Ruiman Li
- Department
of Obstetrics and Gynecology, The First
Affiliated Hospital of Jinan University, No. 613, Huangpu Road West, Tianhe
District, Guangzhou 510630, Guangdong, China
| |
Collapse
|
36
|
Chen H, Aneman I, Nikolic V, Karadzov Orlic N, Mikovic Z, Stefanovic M, Cakic Z, Jovanovic H, Town SEL, Padula MP, McClements L. Maternal plasma proteome profiling of biomarkers and pathogenic mechanisms of early-onset and late-onset preeclampsia. Sci Rep 2022; 12:19099. [PMID: 36351970 PMCID: PMC9646706 DOI: 10.1038/s41598-022-20658-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
Preeclampsia is still the leading cause of morbidity and mortality in pregnancy without a cure. There are two phenotypes of preeclampsia, early-onset (EOPE) and late-onset (LOPE) with poorly defined pathogenic differences. This study aimed to facilitate better understanding of the mechanisms of pathophysiology of EOPE and LOPE, and identify specific biomarkers or therapeutic targets. In this study, we conducted an untargeted, label-free quantitative proteomic analyses of plasma samples from pregnant women with EOPE (n = 17) and LOPE (n = 11), and age, BMI-matched normotensive controls (n = 18). Targeted proteomics approach was also employed to validate a subset of proteins (n = 17). In total, there were 26 and 20 differentially abundant proteins between EOPE or LOPE, and normotensive controls, respectively. A series of angiogenic and inflammatory proteins, including insulin-like growth factor-binding protein 4 (IGFBP4; EOPE: FDR = 0.0030 and LOPE: FDR = 0.00396) and inter-alpha-trypsin inhibitor heavy chain H2-4 (ITIH2-4), were significantly altered in abundance in both phenotypes. Through validation we confirmed that ITIH2 was perturbed only in LOPE (p = 0.005) whereas ITIH3 and ITIH4 were perturbed in both phenotypes (p < 0.05). Overall, lipid metabolism/transport proteins associated with atherosclerosis were highly abundant in LOPE, however, ECM proteins had a more pronounced role in EOPE. The complement cascade and binding and uptake of ligands by scavenger receptors, pathways, were associated with both EOPE and LOPE.
Collapse
Affiliation(s)
- Hao Chen
- grid.117476.20000 0004 1936 7611School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW Australia
| | - Ingrid Aneman
- grid.117476.20000 0004 1936 7611School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW Australia
| | - Valentina Nikolic
- grid.11374.300000 0001 0942 1176Department of Pharmacology and Toxicology, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Natasa Karadzov Orlic
- Department of Gynaecology and Obstetrics, Narodni Front, Belgrade, Serbia ,grid.7149.b0000 0001 2166 9385Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zeljko Mikovic
- Department of Gynaecology and Obstetrics, Narodni Front, Belgrade, Serbia ,grid.7149.b0000 0001 2166 9385Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milan Stefanovic
- grid.11374.300000 0001 0942 1176Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Nis, Nis, Serbia ,grid.418653.d0000 0004 0517 2741Gynaecology and Obstetrics Clinic, Clinical Centre Nis, Nis, Serbia
| | - Zoran Cakic
- Department of Gynaecology and Obstetrics, General Hospital of Leskovac, Leskovac, Serbia
| | - Hristina Jovanovic
- grid.11374.300000 0001 0942 1176Department of Pharmacology and Toxicology, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Stephanie E. L. Town
- grid.117476.20000 0004 1936 7611School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW Australia
| | - Matthew P. Padula
- grid.117476.20000 0004 1936 7611School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW Australia
| | - Lana McClements
- grid.117476.20000 0004 1936 7611School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW Australia ,grid.117476.20000 0004 1936 7611Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Ultimo, NSW Australia
| |
Collapse
|
37
|
Tarca AL, Romero R, Bhatti G, Gotsch F, Done B, Gudicha DW, Gallo DM, Jung E, Pique-Regi R, Berry SM, Chaiworapongsa T, Gomez-Lopez N. Human Plasma Proteome During Normal Pregnancy. J Proteome Res 2022; 21:2687-2702. [PMID: 36154181 PMCID: PMC10445406 DOI: 10.1021/acs.jproteome.2c00391] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human plasma proteome is underexplored despite its potential value for monitoring health and disease. Herein, using a recently developed aptamer-based platform, we profiled 7288 proteins in 528 plasma samples from 91 normal pregnancies (Gene Expression Omnibus identifier GSE206454). The coefficient of variation was <20% for 93% of analytes (median 7%), and a cross-platform correlation for selected key angiogenic and anti-angiogenic proteins was significant. Gestational age was associated with changes in 953 proteins, including highly modulated placenta- and decidua-specific proteins, and they were enriched in biological processes including regulation of growth, angiogenesis, immunity, and inflammation. The abundance of proteins corresponding to RNAs specific to populations of cells previously described by single-cell RNA-Seq analysis of the placenta was highly modulated throughout gestation. Furthermore, machine learning-based prediction of gestational age and of time from sampling to term delivery compared favorably with transcriptomic models (mean absolute error of 2 weeks). These results suggested that the plasma proteome may provide a non-invasive readout of placental cellular dynamics and serve as a blueprint for investigating obstetrical disease.
Collapse
Affiliation(s)
- Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan48202, United States
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan48103, United States
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan48824, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan48202, United States
- Detroit Medical Center, Detroit, Michigan48201, United States
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Dereje W Gudicha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Dahiana M Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, University of Valle 13, Cali, Valle del Cauca100-00, Colombia
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan48202, United States
| | - Stanley M Berry
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| |
Collapse
|
38
|
Comparative study of sialic acid content in saliva between preeclampsia and normal gestation patients. Placenta 2022; 130:12-16. [DOI: 10.1016/j.placenta.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
|
39
|
Louis JM, Parchem J, Vaught A, Tesfalul M, Kendle A, Tsigas E. Preeclampsia: a report and recommendations of the workshop of the Society for Maternal-Fetal Medicine and the Preeclampsia Foundation. Am J Obstet Gynecol 2022; 227:B2-B24. [PMID: 39491898 DOI: 10.1016/j.ajog.2022.06.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Preeclampsia is a substantial cause of perinatal and maternal morbidity and mortality. The prevalence of this condition has increased over the past several decades. Additional opportunities are needed to foster interdisciplinary collaborations and improve patient care in the setting of preeclampsia. In recognition of the Preeclampsia Foundation's 20th anniversary and its work to advance preeclampsia research and clinical agendas, a 2-day virtual workshop on preeclampsia was cosponsored by the Society for Maternal-Fetal Medicine and the Preeclampsia Foundation and held January 25-26, 2021 in conjunction with the 41st annual pregnancy meeting. Leaders with expertise in preeclampsia research, obstetrical care, primary care medicine, cardiology, endocrinology, global health, and patient advocacy gathered to discuss preeclampsia prediction, prevention, management, and long-term impacts. The goals of the workshop were to review the following issues and create consensus concerning research and clinical recommendations: This report, developed collaboratively between the SMFM and the Preeclampsia Foundation, presents the key findings and consensus-based recommendations from the workshop participants.
Collapse
|
40
|
Jarmund AH, Madssen TS, Giskeødegård GF. ALASCA: An R package for longitudinal and cross-sectional analysis of multivariate data by ASCA-based methods. Front Mol Biosci 2022; 9:962431. [PMID: 36387276 PMCID: PMC9645785 DOI: 10.3389/fmolb.2022.962431] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/20/2022] [Indexed: 01/24/2023] Open
Abstract
The increasing availability of multivariate data within biomedical research calls for appropriate statistical methods that can describe and model complex relationships between variables. The extended ANOVA simultaneous component analysis (ASCA+) framework combines general linear models and principal component analysis (PCA) to decompose and visualize the separate effects of experimental factors. It has recently been demonstrated how linear mixed models can be included in the framework to analyze data from longitudinal experimental designs with repeated measurements (RM-ASCA+). The ALASCA package for R makes the ASCA+ framework accessible for general use and includes multiple methods for validation and visualization. The package is especially useful for longitudinal data and the ability to easily adjust for covariates is an important strength. This paper demonstrates how the ALASCA package can be applied to gain insights into multivariate data from interventional as well as observational designs. Publicly available data sets from four studies are used to demonstrate the methods available (proteomics, metabolomics, and transcriptomics).
Collapse
Affiliation(s)
- Anders Hagen Jarmund
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway,Centre of Molecular Inflammation Research (CEMIR), NTNU, Trondheim, Norway,*Correspondence: Anders Hagen Jarmund,
| | | | - Guro F. Giskeødegård
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Trondheim, Norway
| |
Collapse
|
41
|
Romero R, Jung E, Chaiworapongsa T, Erez O, Gudicha DW, Kim YM, Kim JS, Kim B, Kusanovic JP, Gotsch F, Taran AB, Yoon BH, Hassan SS, Hsu CD, Chaemsaithong P, Gomez-Lopez N, Yeo L, Kim CJ, Tarca AL. Toward a new taxonomy of obstetrical disease: improved performance of maternal blood biomarkers for the great obstetrical syndromes when classified according to placental pathology. Am J Obstet Gynecol 2022; 227:615.e1-615.e25. [PMID: 36180175 PMCID: PMC9525890 DOI: 10.1016/j.ajog.2022.04.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The major challenge for obstetrics is the prediction and prevention of the great obstetrical syndromes. We propose that defining obstetrical diseases by the combination of clinical presentation and disease mechanisms as inferred by placental pathology will aid in the discovery of biomarkers and add specificity to those already known. OBJECTIVE To describe the longitudinal profile of placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1), and the PlGF/sFlt-1 ratio throughout gestation, and to determine whether the association between abnormal biomarker profiles and obstetrical syndromes is strengthened by information derived from placental examination, eg, the presence or absence of placental lesions of maternal vascular malperfusion. STUDY DESIGN This retrospective case cohort study was based on a parent cohort of 4006 pregnant women enrolled prospectively. The case cohort of 1499 pregnant women included 1000 randomly selected patients from the parent cohort and all additional patients with obstetrical syndromes from the parent cohort. Pregnant women were classified into six groups: 1) term delivery without pregnancy complications (n=540; control); 2) preterm labor and delivery (n=203); 3) preterm premature rupture of the membranes (n=112); 4) preeclampsia (n=230); 5) small-for-gestational-age neonate (n=334); and 6) other pregnancy complications (n=182). Maternal plasma concentrations of PlGF and sFlt-1 were determined by enzyme-linked immunosorbent assays in 7560 longitudinal samples. Placental pathologists, masked to clinical outcomes, diagnosed the presence or absence of placental lesions of maternal vascular malperfusion. Comparisons between mean biomarker concentrations in cases and controls were performed by utilizing longitudinal generalized additive models. Comparisons were made between controls and each obstetrical syndrome with and without subclassifying cases according to the presence or absence of placental lesions of maternal vascular malperfusion. RESULTS 1) When obstetrical syndromes are classified based on the presence or absence of placental lesions of maternal vascular malperfusion, significant differences in the mean plasma concentrations of PlGF, sFlt-1, and the PlGF/sFlt-1 ratio between cases and controls emerge earlier in gestation; 2) the strength of association between an abnormal PlGF/sFlt-1 ratio and the occurrence of obstetrical syndromes increases when placental lesions of maternal vascular malperfusion are present (adjusted odds ratio [aOR], 13.6 vs 6.7 for preeclampsia; aOR, 8.1 vs 4.4 for small-for-gestational-age neonates; aOR, 5.5 vs 2.1 for preterm premature rupture of the membranes; and aOR, 3.3 vs 2.1 for preterm labor (all P<0.05); and 3) the PlGF/sFlt-1 ratio at 28 to 32 weeks of gestation is abnormal in patients who subsequently delivered due to preterm labor with intact membranes and in those with preterm premature rupture of the membranes if both groups have placental lesions of maternal vascular malperfusion. Such association is not significant in patients with these obstetrical syndromes who do not have placental lesions. CONCLUSION Classification of obstetrical syndromes according to the presence or absence of placental lesions of maternal vascular malperfusion allows biomarkers to be informative earlier in gestation and enhances the strength of association between biomarkers and clinical outcomes. We propose that a new taxonomy of obstetrical disorders informed by placental pathology will facilitate the discovery and implementation of biomarkers as well as the prediction and prevention of such disorders.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI; Detroit Medical Center, Detroit, MI.
| | - Eunjung Jung
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Offer Erez
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Faculty of Health Sciences, Division of Obstetrics and Gynecology, Maternity Department "D," Soroka University Medical Center, School of Medicine, Ben-Gurion University of the Negev, Beersheba, Israel; Department of Obstetrics and Gynecology, HaEmek Medical Center, Afula, Israel
| | - Dereje W Gudicha
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Yeon Mee Kim
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Pathology, Wayne State University School of Medicine, Detroit, MI; Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Jung-Sun Kim
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Pathology, Wayne State University School of Medicine, Detroit, MI; Department of Pathology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Bomi Kim
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Pathology, Wayne State University School of Medicine, Detroit, MI; Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; División de Obstetricia y Ginecología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Investigación e Innovación en Medicina Materno-Fetal, Unidad de Alto Riesgo Obstétrico, Hospital Sotero Del Rio, Santiago, Chile
| | - Francesca Gotsch
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Andreea B Taran
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Bo Hyun Yoon
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sonia S Hassan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Office of Women's Health, Integrative Biosciences Center, Wayne State University, Detroit, MI; Department of Physiology, Wayne State University School of Medicine, Detroit, MI
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Physiology, Wayne State University School of Medicine, Detroit, MI; Department of Obstetrics and Gynecology, University of Arizona, College of Medicine - Tucson, Tucson, AZ
| | - Piya Chaemsaithong
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Faculty of Medicine, Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI
| | - Lami Yeo
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Chong Jai Kim
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Pathology, Wayne State University School of Medicine, Detroit, MI; Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Adi L Tarca
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Computer Science, Wayne State University College of Engineering, Detroit, MI
| |
Collapse
|
42
|
First trimester serum biomarker discovery study for early onset, preterm onset and preeclampsia at term. Placenta 2022; 128:39-48. [DOI: 10.1016/j.placenta.2022.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/05/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022]
|
43
|
Gomez-Lopez N, Romero R, Escobar MF, Carvajal JA, Echavarria MP, Albornoz LL, Nasner D, Miller D, Gallo DM, Galaz J, Arenas-Hernandez M, Bhatti G, Done B, Zambrano MA, Ramos I, Fernandez PA, Posada L, Chaiworapongsa T, Jung E, Garcia-Flores V, Suksai M, Gotsch F, Bosco M, Than NG, Tarca AL. Pregnancy-specific responses to COVID-19 are revealed by high-throughput proteomics of human plasma. RESEARCH SQUARE 2022:rs.3.rs-1906806. [PMID: 36032966 PMCID: PMC9413722 DOI: 10.21203/rs.3.rs-1906806/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pregnant women are at greater risk of adverse outcomes, including mortality, as well as obstetrical complications resulting from COVID-19. However, pregnancy-specific changes that underlie such worsened outcomes remain unclear. Herein, we profiled the plasma proteome of pregnant and non-pregnant COVID-19 patients and controls and showed alterations that display a dose-response relationship with disease severity; yet, such proteomic perturbations are dampened during pregnancy. In both pregnant and non-pregnant state, the proteome response induced by COVID-19 showed enrichment of mediators implicated in cytokine storm, endothelial dysfunction, and angiogenesis. Shared and pregnancy-specific proteomic changes were identified: pregnant women display a tailored response that may protect the conceptus from heightened inflammation, while non-pregnant individuals display a stronger response to repel infection. Furthermore, the plasma proteome can accurately identify COVID-19 patients, even when asymptomatic or with mild symptoms. This study represents the most comprehensive characterization of the plasma proteome of pregnant and non-pregnant COVID-19 patients.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
| | - María Fernanda Escobar
- Department of Obstetrics and Gynecology, Fundacion Valle del Lili, Cali, Colombia
- Department of Obstetrics and Gynecology, School of Medicine, Universidad Icesi, Cali, Colombia
| | - Javier Andres Carvajal
- Department of Obstetrics and Gynecology, Fundacion Valle del Lili, Cali, Colombia
- Department of Obstetrics and Gynecology, School of Medicine, Universidad Icesi, Cali, Colombia
| | - Maria Paula Echavarria
- Department of Obstetrics and Gynecology, Fundacion Valle del Lili, Cali, Colombia
- Department of Obstetrics and Gynecology, School of Medicine, Universidad Icesi, Cali, Colombia
| | - Ludwig L. Albornoz
- Department of Pathology and Laboratory Medicine, Fundación Valle del Lili, Cali, Colombia
- Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Daniela Nasner
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dahiana M. Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Maria Andrea Zambrano
- Department of Obstetrics and Gynecology, School of Medicine, Universidad Icesi, Cali, Colombia
| | - Isabella Ramos
- Department of Obstetrics and Gynecology, School of Medicine, Universidad Icesi, Cali, Colombia
| | - Paula Andrea Fernandez
- Department of Obstetrics and Gynecology, School of Medicine, Universidad Icesi, Cali, Colombia
| | - Leandro Posada
- Department of Obstetrics and Gynecology, School of Medicine, Universidad Icesi, Cali, Colombia
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| |
Collapse
|
44
|
Tamás P, Kovács K, Várnagy Á, Farkas B, Alemu Wami G, Bódis J. Preeclampsia subtypes: Clinical aspects regarding pathogenesis, signs, and management with special attention to diuretic administration. Eur J Obstet Gynecol Reprod Biol 2022; 274:175-181. [PMID: 35661540 DOI: 10.1016/j.ejogrb.2022.05.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 11/04/2022]
Abstract
During normal pregnancy, blood volume increases by nearly two liters. Distinctively, the absence coupled with the extreme extent regarding the volume expansion, are likely accompanied with pathological conditions. Undoubtedly, preeclampsia, defined as the appearance of hypertension and organ deficiency, such as proteinuria during the second half of pregnancy, is not a homogenous disease. Clinically speaking, two main types of preeclampsia can be distinguished, in which a marked difference between them is vascular condition, and consequently, the blood volume. The "classic" preeclampsia, as a two-phase disease, described in the first, latent phase, in which, placenta development is diminished. Agents from this malperfused placenta generate a maternal disease, the second phase, in which endothelial damage leads to hypertension and organ damage due to vasoconstriction and thrombotic microangiopathy. In this hypovolemia-associated condition, decreasing platelet count, signs of hemolysis, renal and liver involvement are characteristic findings; proteinuria is marked and increasing. In the terminal phase, visible edema develops due to increasing capillary transparency, augmenting end-organ damages. "Classic" preeclampsia is a severe and quickly progressing condition with placental insufficiency and consequent fetal growth restriction and oligohydramnios. The outcome of this condition often leads to fetal hypoxia, eclampsia or placental abruption. The management is limited to a diligent prolongation of pregnancy to accomplish improved neonatal pulmonary function, careful diminishing high blood pressure, and delivery induction in due time. The other subtype, associated with relaxed vasculature and high cardiac output, is a maternal disease, in which obesity is an important risk factor since predisposes to enhanced water retention, hypertension, and a weakened endothelial dysfunction. Initially, enhanced water retention leads to lowered extremity edema, which oftentimes progresses to a generalized form and hypertension. In several cases, proteinuria appears most likely due to tissue edema. This condition already fully meets preeclampsia criteria. Laboratory alterations, including proteinuria, are modest and platelet count remains within the normal range. Fetal weight is also normal or frequently over average due to enhanced placental blood supply. It is very likely, further water retention leads to venous congestion, a parenchyma stasis, responsible for ascites, eclampsia, or placental abruption. During the management of this hypervolemia-associated preeclampsia, the administration of diuretic furosemide treatment seemingly offers promise.
Collapse
Affiliation(s)
- Péter Tamás
- National Laboratory for Human Reproduction, University of Pécs, Pécs, Hungary; Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Pécs, Hungary; Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary; Institute of Emergency Care and Pedagogy of Health, Faculty of Health Sciences, University of Pécs, Pécs, Hungary.
| | - Kálmán Kovács
- National Laboratory for Human Reproduction, University of Pécs, Pécs, Hungary; Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Pécs, Hungary; Hungarian Academy of Sciences - University of Pécs Human Reproduction Scientific Research Group, University of Pécs, Pécs, Hungary
| | - Ákos Várnagy
- National Laboratory for Human Reproduction, University of Pécs, Pécs, Hungary; Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Pécs, Hungary; Hungarian Academy of Sciences - University of Pécs Human Reproduction Scientific Research Group, University of Pécs, Pécs, Hungary
| | - Bálint Farkas
- National Laboratory for Human Reproduction, University of Pécs, Pécs, Hungary; Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Pécs, Hungary; Hungarian Academy of Sciences - University of Pécs Human Reproduction Scientific Research Group, University of Pécs, Pécs, Hungary
| | - Girma Alemu Wami
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - József Bódis
- National Laboratory for Human Reproduction, University of Pécs, Pécs, Hungary; Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Pécs, Hungary; Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary; Hungarian Academy of Sciences - University of Pécs Human Reproduction Scientific Research Group, University of Pécs, Pécs, Hungary
| |
Collapse
|
45
|
Lan X, Guo L, Zhu S, Cao Y, Niu Y, Han S, Li Z, Li Y, Yan J. First-Trimester Serum Cytokine Profile in Pregnancies Conceived After Assisted Reproductive Technology (ART) With Subsequent Pregnancy-Induced Hypertension. Front Immunol 2022; 13:930582. [PMID: 35844528 PMCID: PMC9283642 DOI: 10.3389/fimmu.2022.930582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022] Open
Abstract
Pregnancy-induced hypertension (PIH) is one of the most common pregnancy complications that seriously affects the mother and fetus. The incidence of PIH is higher in pregnancies conceived after assisted reproductive technology (ART) than in spontaneous pregnancies; thus, exploring potential serum biomarkers before PIH onset is of great significance for effective early prediction and prevention of PIH in the ART population. Cytokines are involved in the inflammatory response and immune regulation, which play an essential role in the pathogenesis of PIH. A description of the cytokine profile in the first trimester of pregnancy could help identify new diagnostic tools and develop targeted therapies for PIH in the ART population. The concentrations of classical predictive markers for PIH and another 48 cytokines were measured in the first-trimester pregnancy serum samples from 33 PIH patients and 33 matched normotensive controls (NC), both of whom conceived after ART treatment. The measured values were compared and analyzed between NC and PIH, followed by comprehensive bioinformatic analysis and logistic regression analysis. There was no significant difference in classical predictive markers, including Activin A, PlGF, sFLT1 (VEGFR), and sFLT1/PlGF, between the PIH and NC groups (P > 0.05), while 29 cytokines were significantly lower in the PIH group than in the NC group (P < 0.05). Logistic regression analysis revealed that 17 cytokines (IL-2Rα, M-CSF, IL-6, IL-2, β-NGF, IL-7, IL-12 (p70), SCF, IL-10, IL-9, MIG, GM-CSF, LIF, IL-1α, MCP-3, IL-4, and HGF) in the first-trimester pregnancy serum were significantly negatively correlated with the subsequent onset of PIH. With the top 3 cytokines (IL-7, MIG, and SCF) of receiver operating characteristic (ROC) analysis, we constructed an efficient multifactor combined detection and prediction model for PIH in ART pregnancy. Classical early predictors for hypertensive disorder complicating pregnancy cannot distinguish PIH from their normal peers in ART pregnancy. In comparison, the description of the cytokine profile in the first trimester of pregnancy enables us to distinguish high-risk ART pregnancy for PIH, permitting enough time for PIH prevention therapy. The cytokine profile we described also provides immunological insight into the further mechanistic exploration of PIH.
Collapse
Affiliation(s)
- Xiangxin Lan
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
| | - Ling Guo
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
| | - Shiqin Zhu
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
| | - Yongzhi Cao
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Yue Niu
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
| | - Shuwen Han
- School of Biomedical Sciences, Shandong University, Jinan, China
| | - Zeyan Li
- Medical Integration and Practice Center, Shandong University, Jinan, China
| | - Yan Li
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
- Suzhou Research Institute, Shandong University, Suzhou, China
- *Correspondence: Junhao Yan, ; Yan Li,
| | - Junhao Yan
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- *Correspondence: Junhao Yan, ; Yan Li,
| |
Collapse
|
46
|
Longitudinal Proteomic Analysis of Plasma across Healthy Pregnancies Reveals Indicators of Gestational Age. Int J Mol Sci 2022; 23:ijms23137076. [PMID: 35806078 PMCID: PMC9266720 DOI: 10.3390/ijms23137076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Longitudinal changes in the blood proteome during gestation relate to fetal development and maternal homeostasis. Charting the maternal blood proteome in normal pregnancies is critical for establishing a baseline reference when assessing complications and disease. Using mass spectrometry-based shotgun proteomics, we surveyed the maternal plasma proteome across uncomplicated pregnancies. Results indicate a significant rise in proteins that govern placentation and are vital to the development and health of the fetus. Importantly, we uncovered proteome signatures that strongly correlated with gestational age. Fold increases and correlations between the plasma concentrations of ADAM12 (ρ = 0.973), PSG1 (ρ = 0.936), and/or CSH1/2 (ρ = 0.928) with gestational age were validated with ELISA. Proteomic and validation analyses demonstrate that the maternal plasma concentration of ADAM12, either independently or in combination with either PSG1 or CSH1/2, correlates with gestational age within ±8 days throughout pregnancy. These findings suggest that the gestational age in healthy pregnancies may be determined by referencing the concentration of select plasma proteins.
Collapse
|
47
|
Wang J, Dong X, Wu HY, Bu WH, Cong R, Wang X, Shang LX, Jiang W. Relationship of Placental and Serum Lipoprotein-Associated Phospholipase A2 Levels with Hypertensive Disorders of Pregnancy. Int J Womens Health 2022; 14:797-804. [PMID: 35747524 PMCID: PMC9211801 DOI: 10.2147/ijwh.s361859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background A series of studies has shown that lipoprotein-associated phospholipase A2 (Lp-PLA2) is closely associated with abnormal lipid metabolism and vascular endothelial cell injury, but its role in hypertensive disorders of pregnancy (HDP) remains unclear. This study aims to determine the relationship between placental and serum LP-PLA2 levels and HDP, and to provide a feasible method for predicting HDP. Methods The placental and serum Lp-PLA2 levels of 63 patients with HDP (20, 25, and 18 cases with gestational hypertension, mild preeclampsia, and severe preeclampsia, respectively) and 20 women with normal pregnancies (control group) were measured via a combination of tissue microarray and immunohistochemistry, real-time quantitative RT-PCR and enzyme-linked immunosorbent assay (ELISA). Results 1) The gene and protein expression levels of placental LP-PLA2: the HDP group had significantly higher levels than those of the control group (P < 0.05). The mild preeclampsia group had significantly higher levels than those of the control group (P < 0.05); the severe preeclampsia group had significantly higher levels than those of the mild preeclampsia group (P < 0.05). 2) Serum levels of Lp-PLA2: the HDP group had significantly higher levels than those of the control group (P < 0.05). The Lp-PLA2 levels increased gradually with the progression of the HDP; there were significant differences in the four groups using pair-wise comparisons (P < 0.05). 3) Serum levels of LP-PLA2 were positively correlated with placental LP-PLA2 levels in the HDP group (r = 0.435, P < 0.05). Conclusion Elevated Lp-PLA2 levels may be associated with the occurrence of HDP, and changes of Lp-PLA2 levels in the maternal blood may be regarded as a monitoring indicator for this disease.
Collapse
Affiliation(s)
- Jing Wang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xing Dong
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Hong-Yan Wu
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Wen-Hua Bu
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Rong Cong
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xin Wang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Li-Xin Shang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Wen Jiang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
48
|
Li S, Wang Z, Vieira LA, Zheutlin AB, Ru B, Schadt E, Wang P, Copperman AB, Stone JL, Gross SJ, Kao YH, Lau YK, Dolan SM, Schadt EE, Li L. Improving preeclampsia risk prediction by modeling pregnancy trajectories from routinely collected electronic medical record data. NPJ Digit Med 2022; 5:68. [PMID: 35668134 PMCID: PMC9170686 DOI: 10.1038/s41746-022-00612-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 05/19/2022] [Indexed: 11/15/2022] Open
Abstract
Preeclampsia is a heterogeneous and complex disease associated with rising morbidity and mortality in pregnant women and newborns in the US. Early recognition of patients at risk is a pressing clinical need to reduce the risk of adverse outcomes. We assessed whether information routinely collected in electronic medical records (EMR) could enhance the prediction of preeclampsia risk beyond what is achieved in standard of care assessments. We developed a digital phenotyping algorithm to curate 108,557 pregnancies from EMRs across the Mount Sinai Health System, accurately reconstructing pregnancy journeys and normalizing these journeys across different hospital EMR systems. We then applied machine learning approaches to a training dataset (N = 60,879) to construct predictive models of preeclampsia across three major pregnancy time periods (ante-, intra-, and postpartum). The resulting models predicted preeclampsia with high accuracy across the different pregnancy periods, with areas under the receiver operating characteristic curves (AUC) of 0.92, 0.82, and 0.89 at 37 gestational weeks, intrapartum and postpartum, respectively. We observed comparable performance in two independent patient cohorts. While our machine learning approach identified known risk factors of preeclampsia (such as blood pressure, weight, and maternal age), it also identified other potential risk factors, such as complete blood count related characteristics for the antepartum period. Our model not only has utility for earlier identification of patients at risk for preeclampsia, but given the prediction accuracy exceeds what is currently achieved in clinical practice, our model provides a path for promoting personalized precision therapeutic strategies for patients at risk.
Collapse
Affiliation(s)
| | | | - Luciana A Vieira
- Department of Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Pei Wang
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alan B Copperman
- Sema4, Stamford, CT, USA.,Department of Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Reproductive Endocrinology and Infertility, Reproductive Medicine associates of New York, New York, NY, USA
| | - Joanne L Stone
- Department of Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susan J Gross
- Sema4, Stamford, CT, USA.,Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Siobhan M Dolan
- Department of Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric E Schadt
- Sema4, Stamford, CT, USA. .,Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Li Li
- Sema4, Stamford, CT, USA. .,Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
49
|
Biophysical Markers of Suspected Preeclampsia, Fetal Growth Restriction and the Two Combined—How Accurate They Are? REPRODUCTIVE MEDICINE 2022. [DOI: 10.3390/reprodmed3020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives—To conduct a secondary analysis of prediction accuracy of biophysical markers for suspected Preeclampsia (PE), Fetal Growth Restriction (FGR) and the two combined near delivery in a Slovenian cohort. Methods—This was a secondary analysis of a database of a total 125 Slovenian pregnant women attending a high-risk pregnancy clinic due to suspected PE (n = 31), FGR (n = 16) and PE + FGR (n = 42) from 28–39 weeks gestation and their corresponding term (n = 21) and preterm (PTD, n = 15) controls. Data for Mean Arterial blood Pressure (MAP) and Uterine artery pulsatility index (UtA PI) estimated by Doppler sonography were extracted from the database of patients who were tested at admission to the high-risk clinic with the suspected complications. The reactive hyperemia index (RHI), and the Augmentation Index (AIX%) were extracted from the patient database using measured values obtained with the assistance of the Endo PAT, a device set to measure the signal of the peripheral arterial tone (PAT) from the blood vessels endothelium. Linear regression coefficients, Box and Whisker plots, Area under the Curve (AUC) of receiver Operation Characteristic (ROC) curves, and multiple regression were used to assess the marker accuracy using detection rate (DR) and false-positive rate (FPR) and previously reported cut-offs for estimating the positive and negative predictive value (NPV and PPV). The SPSS non-parametric statistics (Kruskal Wallis and Mann–Whitney) and Spearman’s regression coefficient were used to assess marker accuracy; p < 0.05 was considered significant. Results—MAP values reached diagnostic accuracy (AUC = 1.00, DR = 100%) for early PE cases delivered < 34, whereas UtA Doppler PI values yielded such results for early FGR < 34 weeks and the two combined reached such accuracy for PE + FGR. To reach diagnostic accuracy for all cases of the complications, the Endo PAT markers with values for MAP and UtA Doppler PI were required for cases near delivery. Multiple regression analyses showed added value for advanced maternal age and gestational week in risk assessment for all cases of PE, FGR, and PE + FGR. Spearman’s regression coefficient yielded r > 0.6 for UtA Doppler PI over GA for PE and FGR, whereas for RHI over BMI, the regression coefficient was r > 0.5 (p < 0.001 for each). Very high correlations were also found between UtA Doppler PI and sFlt-1/PlGF or PlGF (r = −0.495, p < 0.001), especially in cases of FGR. Conclusion—The classical biophysical markers MAP and UtA Doppler PI provided diagnostic accuracy for PE and FGR < 34 wks gestation. A multiple biophysical marker analysis was required to reach diagnostic accuracy for all cases of these complications. The UtA Doppler PI and maternal serum sFlt-1/PlGF or PlGF were equally accurate for early cases to enable the choice of the markers for the clinical use according to the more accessible method.
Collapse
|
50
|
Khalil A, Blakeway H, Samara A, O'Brien P. COVID-19 and stillbirth: direct vs indirect effect of the pandemic. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 59:288-295. [PMID: 34951732 DOI: 10.1002/uog.24846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Affiliation(s)
- A Khalil
- Fetal Medicine Unit, St George's University Hospitals NHS Foundation Trust, University of London, London, UK
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - H Blakeway
- Fetal Medicine Unit, St George's University Hospitals NHS Foundation Trust, University of London, London, UK
| | - A Samara
- Division of Clinical Paediatrics, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren, Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - P O'Brien
- University College London Hospitals NHS Foundation Trust, London, UK
- The Royal College of Obstetricians and Gynaecologists, London, UK
| |
Collapse
|