1
|
Zhang N, Ma X, He X, Zhang Y, Guo X, Shen Z, Guo X, Zhang D, Tian S, Ma X, Xing Y. Inhibition of YIPF2 Improves the Vulnerability of Oligodendrocytes to Human Islet Amyloid Polypeptide. Neurosci Bull 2024; 40:1403-1420. [PMID: 39078594 PMCID: PMC11422328 DOI: 10.1007/s12264-024-01263-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/21/2024] [Indexed: 07/31/2024] Open
Abstract
Excessive secretion of human islet amyloid polypeptide (hIAPP) is an important pathological basis of diabetic encephalopathy (DE). In this study, we aimed to investigate the potential implications of hIAPP in DE pathogenesis. Brain magnetic resonance imaging and cognitive scales were applied to evaluate white matter damage and cognitive function. We found that the concentration of serum hIAPP was positively correlated with white matter damage but negatively correlated with cognitive scores in patients with type 2 diabetes mellitus. In vitro assays revealed that oligodendrocytes, compared with neurons, were more prone to acidosis under exogenous hIAPP stimulation. Moreover, western blotting and co-immunoprecipitation indicated that hIAPP interfered with the binding process of monocarboxylate transporter (MCT)1 to its accessory protein CD147 but had no effect on the binding of MCT2 to its accessory protein gp70. Proteomic differential analysis of proteins co-immunoprecipitated with CD147 in oligodendrocytes revealed Yeast Rab GTPase-Interacting protein 2 (YIPF2, which modulates the transfer of CD147 to the cell membrane) as a significant target. Furthermore, YIPF2 inhibition significantly improved hIAPP-induced acidosis in oligodendrocytes and alleviated cognitive dysfunction in DE model mice. These findings suggest that increased CD147 translocation by inhibition of YIPF2 optimizes MCT1 and CD147 binding, potentially ameliorating hIAPP-induced acidosis and the consequent DE-related demyelination.
Collapse
Affiliation(s)
- Nan Zhang
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Neuromedical Technology Innovation Center of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xiaoying Ma
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xinyu He
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050000, China
| | - Yaxin Zhang
- Neuromedical Technology Innovation Center of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, 050000, China
| | - Xin Guo
- Neuromedical Technology Innovation Center of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, 050000, China
| | - Zhiyuan Shen
- Neuromedical Technology Innovation Center of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, 050000, China
| | - Xiaosu Guo
- Neuromedical Technology Innovation Center of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, 050000, China
| | - Danshen Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050000, China
| | - Shujuan Tian
- Neuromedical Technology Innovation Center of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, 050000, China.
| | - Xiaowei Ma
- Neuromedical Technology Innovation Center of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, 050000, China.
| | - Yuan Xing
- Neuromedical Technology Innovation Center of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
2
|
Acun AD, Kantar D. Modulation of oxidative stress and apoptosis by alteration of bioactive lipids in the pancreas, and effect of zinc chelation in a rat model of Alzheimer's disease. J Trace Elem Med Biol 2024; 85:127480. [PMID: 38875759 DOI: 10.1016/j.jtemb.2024.127480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION Increasing epidemiological evidence highlights the association between systemic insulin resistance and Alzheimer's disease (AD). It is known that peripheral insulin resistance in the early stages of AD precedes and is a precursor to amyloid-β (Aβ) deposition. Although it is known that improving the CNS insulin sensitivity of AD patients is an important therapeutic goal and that the majority of insulin in the brain comes from the periphery, there has been little attention to the changes that occur in the pancreatic tissue of AD patients. Therefore, it is crucial to elucidate the mechanisms affecting insulin resistance in pancreatic tissue in AD. It is known that zinc (Zn2+) chelation is effective in reducing peripheral insulin resistance, cell apoptosis, cell death, and oxidative stress. OBJECTIVE It was aimed to determine the changes in bioactive lipids, amylin (AIPP), oxidative stress and apoptosis in pancreatic cells in the early stages of Alzheimer's disease. The main aim is to reveal the therapeutic effect of the Cyclo-Z agent on these changes seen in the pancreas due to AD disease. METHODS AD and ADC rats were intracerebroventricular (i.c.v.) Aβ1-42 oligomers. Cyclo-Z gavage was applied to ADC and SHC rats for 21 days. First of all, the effects of AIPP, bioactive ceramides, apoptosis and oxidative stress on the pancreatic tissue of AD group rats were evaluated. Then, the effect of Cyclo-Z treatment on these was examined. ELISA kit was used in biochemical analyses. RESULTS AIPP and ceramide (CER) levels and CER/ sphingosine-1 phosphate (S1P) ratio were increased in the pancreatic tissue of AD rats. It also increased the level of CER kinase (CERK), which is known to increase the concentration of CER 1-phosphate (C1P), which is known to be toxic to cells in the presence of excessive CER concentration. Due to the increase in CER level, it was observed that apoptosis and oxidative stress increased in the pancreatic cells of AD group rats. CONCLUSION Cyclo-Z, which has Zn2+ chelating properties, reduced AD model rats' AIPP level and oxidative stress and could prevent pancreatic apoptosis. Similar therapeutic effects were not observed in the pancreatic tissue of Cyclo-Z administered to the SH group. For this reason, it is thought that Cyclo-Z agent may have a therapeutic effect on the peripheral hyperinsulinemia observed in the early stages of AD disease and the resulting low amount of insulin transported to the brain, by protecting pancreatic cells from apoptosis and oxidative stress by regulating their bioactive metabolites.
Collapse
Affiliation(s)
- Alev Duygu Acun
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, Antalya 07070, Turkey.
| | - Deniz Kantar
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, Antalya 07070, Turkey
| |
Collapse
|
3
|
Pocevičiūtė D, Roth B, Ohlsson B, Wennström M. Okinawa-Based Nordic Diet Decreases Plasma Levels of IAPP and IgA against IAPP Oligomers in Type 2 Diabetes Patients. Int J Mol Sci 2024; 25:7665. [PMID: 39062913 PMCID: PMC11276895 DOI: 10.3390/ijms25147665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Pancreas-derived islet amyloid polypeptide (IAPP) aggregates and deposits in the pancreas and periphery of Type 2 Diabetes (T2D) patients, contributing to diabetic complications. The excess IAPP can be removed by autoantibodies, and increased levels of immunoglobulin (Ig) G against IAPP have been reported in T2D patients. However, whether other Ig classes are also affected and if the levels can be managed is less known. This pre-post study examines IgA levels against IAPP oligomers (IAPPO-IgA) in T2D patients and assesses the impact of the Okinawa-based Nordic (O-BN) diet-a low-carbohydrate, high-fiber diet-on these levels after following the diet for 3 months. IAPP, IAPPO-IgA, and total IgA levels were measured in plasma and fecal samples from n = 30 T2D patients collected at baseline, after 3 months of diet, and after additional 4 months of unrestricted diets (a clinical follow-up). The IAPP and IAPPO-IgA levels were significantly lower after 3 months, with the latter also being significantly reduced at the clinical follow-up. The reduction in plasma IAPP and IAPPO-IgA levels correlated with reductions in plasma levels of metabolic and inflammatory markers. Hence, following the O-BN diet for at least 3 months is sufficient to reduce circulating IAPP and IAPPO-IgA levels, which may be principal in managing T2D.
Collapse
Affiliation(s)
- Dovilė Pocevičiūtė
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden;
| | - Bodil Roth
- Department of Internal Medicine, Skåne University Hospital, 205 02 Malmö, Sweden; (B.R.); (B.O.)
| | - Bodil Ohlsson
- Department of Internal Medicine, Skåne University Hospital, 205 02 Malmö, Sweden; (B.R.); (B.O.)
- Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden
| | - Malin Wennström
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden;
| |
Collapse
|
4
|
Yasir M, Park J, Han ET, Park WS, Han JH, Kwon YS, Lee HJ, Hassan M, Kloczkowski A, Chun W. Investigation of Flavonoid Scaffolds as DAX1 Inhibitors against Ewing Sarcoma through Pharmacoinformatic and Dynamic Simulation Studies. Int J Mol Sci 2023; 24:9332. [PMID: 37298283 PMCID: PMC10253386 DOI: 10.3390/ijms24119332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 (DAX1) is an orphan nuclear receptor encoded by the NR0B1 gene. The functional study showed that DAX1 is a physiologically significant target for EWS/FLI1-mediated oncogenesis, particularly Ewing Sarcoma (ES). In this study, a three-dimensional DAX1 structure was modeled by employing a homology modeling approach. Furthermore, the network analysis of genes involved in Ewing Sarcoma was also carried out to evaluate the association of DAX1 and other genes with ES. Moreover, a molecular docking study was carried out to check the binding profile of screened flavonoid compounds against DAX1. Therefore, 132 flavonoids were docked in the predicted active binding pocket of DAX1. Moreover, the pharmacogenomics analysis was performed for the top ten docked compounds to evaluate the ES-related gene clusters. As a result, the five best flavonoid-docked complexes were selected and further evaluated by Molecular Dynamics (MD) simulation studies at 100 ns. The MD simulation trajectories were evaluated by generating RMSD, hydrogen bond plot analysis, and interaction energy graphs. Our results demonstrate that flavonoids showed interactive profiles in the active region of DAX1 and can be used as potential therapeutic agents against DAX1-mediated augmentation of ES after in-vitro and in-vivo evaluations.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.); (H.-J.L.)
| | - Jinyoung Park
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.); (H.-J.L.)
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (E.-T.H.); (J.-H.H.)
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea;
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (E.-T.H.); (J.-H.H.)
| | - Yong-Soo Kwon
- College of Pharmacy, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea;
| | - Hee-Jae Lee
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.); (H.-J.L.)
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (M.H.); (A.K.)
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (M.H.); (A.K.)
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.); (H.-J.L.)
| |
Collapse
|
5
|
Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Papadakis M, Saad HM, Batiha GES. The potential role of human islet amyloid polypeptide in type 2 diabetes mellitus and Alzheimer's diseases. Diabetol Metab Syndr 2023; 15:101. [PMID: 37173803 PMCID: PMC10182652 DOI: 10.1186/s13098-023-01082-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
Human Islet amyloid polypeptide (hIAPP) from pancreatic β cells in the islet of Langerhans has different physiological functions including inhibiting the release of insulin and glucagon. Type 2 diabetes mellitus (T2DM) is an endocrine disorder due to relative insulin insufficiency and insulin resistance (IR) is associated with increased circulating hIAPP. Remarkably, hIAPP has structural similarity with amyloid beta (Aβ) and can engage in the pathogenesis of T2DM and Alzheimer's disease (AD). Therefore, the present review aimed to elucidate how hIAPP acts as a link between T2DM and AD. IR, aging and low β cell mass increase expression of hIAPP which binds cell membrane leading to the aberrant release of Ca2+ and activation of the proteolytic enzymes leading to a series of events causing loss of β cells. Peripheral hIAPP plays a major role in the pathogenesis of AD, and high circulating hIAPP level increase AD risk in T2DM patients. However, there is no hard evidence for the role of brain-derived hIAPP in the pathogenesis of AD. Nevertheless, oxidative stress, mitochondrial dysfunction, chaperon-mediated autophagy, heparan sulfate proteoglycan (HSPG), immune response, and zinc homeostasis in T2DM could be the possible mechanisms for the induction of the aggregation of hIAPP which increase AD risk. In conclusion, increasing hIAPP circulating levels in T2DM patients predispose them to the development and progression of AD. Dipeptidyl peptidase 4 (DPP4) inhibitors and glucagon-like peptide-1 (GLP-1) agonists attenuate AD in T2DM by inhibiting expression and deposition of hIAP.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961 Saudi Arabia
| | - Hayder M. Al-Kuraishy
- Department of clinical pharmacology and therapeutic medicine, college of medicine, ALmustansiriyiah University, M.B.Ch.B, FRCP, Baghdad, Box 14132, Iraq
| | - Ali I. Al-Gareeb
- Department of clinical pharmacology and therapeutic medicine, college of medicine, ALmustansiriyiah University, M.B.Ch.B, FRCP, Baghdad, Box 14132, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia
- AFNP Med, Wien, 1030 Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744 Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| |
Collapse
|
6
|
Pocevičiūtė D, Roth B, Schultz N, Nuñez-Diaz C, Janelidze S, Olofsson A, Hansson O, Wennström M. Plasma IAPP-Autoantibody Levels in Alzheimer's Disease Patients Are Affected by APOE4 Status. Int J Mol Sci 2023; 24:ijms24043776. [PMID: 36835187 PMCID: PMC9960837 DOI: 10.3390/ijms24043776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Pancreas-derived islet amyloid polypeptide (IAPP) crosses the blood-brain barrier and co-deposits with amyloid beta (Aβ) in brains of type 2 diabetes (T2D) and Alzheimer's disease (AD) patients. Depositions might be related to the circulating IAPP levels, but it warrants further investigation. Autoantibodies recognizing toxic IAPP oligomers (IAPPO) but not monomers (IAPPM) or fibrils have been found in T2D, but studies on AD are lacking. In this study, we have analyzed plasma from two cohorts and found that levels of neither immunoglobulin (Ig) M, nor IgG or IgA against IAPPM or IAPPO were altered in AD patients compared with controls. However, our results show significantly lower IAPPO-IgA levels in apolipoprotein E (APOE) 4 carriers compared with non-carriers in an allele dose-dependent manner, and the decrease is linked to the AD pathology. Furthermore, plasma IAPP-Ig levels, especially IAPP-IgA, correlated with cognitive decline, C-reactive protein, cerebrospinal fluid Aβ and tau, neurofibrillary tangles, and brain IAPP exclusively in APOE4 non-carriers. We speculate that the reduction in IAPPO-IgA levels may be caused by increased plasma IAPPO levels or masked epitopes in APOE4 carriers and propose that IgA and APOE4 status play a specific role in clearance of circulatory IAPPO, which may influence the amount of IAPP deposition in the AD brain.
Collapse
Affiliation(s)
- Dovilė Pocevičiūtė
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden
| | - Bodil Roth
- Department of Internal Medicine, Lund University, Skåne University Hospital, 214 28 Malmö, Sweden
| | - Nina Schultz
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 223 62 Lund, Sweden
| | - Cristina Nuñez-Diaz
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 223 62 Lund, Sweden
| | | | - Anders Olofsson
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 223 62 Lund, Sweden
- Memory Clinic, Skåne University Hospital, 212 24 Malmö, Sweden
| | - Malin Wennström
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden
- Correspondence:
| |
Collapse
|
7
|
Cullinane PW, de Pablo Fernandez E, König A, Outeiro TF, Jaunmuktane Z, Warner TT. Type 2 Diabetes and Parkinson's Disease: A Focused Review of Current Concepts. Mov Disord 2023; 38:162-177. [PMID: 36567671 DOI: 10.1002/mds.29298] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 12/27/2022] Open
Abstract
Highly reproducible epidemiological evidence shows that type 2 diabetes (T2D) increases the risk and rate of progression of Parkinson's disease (PD), and crucially, the repurposing of certain antidiabetic medications for the treatment of PD has shown early promise in clinical trials, suggesting that the effects of T2D on PD pathogenesis may be modifiable. The high prevalence of T2D means that a significant proportion of patients with PD may benefit from personalized antidiabetic treatment approaches that also confer neuroprotective benefits. Therefore, there is an immediate need to better understand the mechanistic relation between these conditions and the specific molecular pathways affected by T2D in the brain. Although there is considerable evidence that processes such as insulin signaling, mitochondrial function, autophagy, and inflammation are involved in the pathogenesis of both PD and T2D, the primary aim of this review is to highlight the evidence showing that T2D-associated dysregulation of these pathways occurs not only in the periphery but also in the brain and how this may facilitate neurodegeneration in PD. We also discuss the challenges involved in disentangling the complex relationship between T2D, insulin resistance, and PD, as well as important questions for further research. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Patrick W Cullinane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Eduardo de Pablo Fernandez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom.,Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom.,Queen Square Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Thomas T Warner
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Queen Square Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
8
|
Pocevičiūtė D, Nuñez-Diaz C, Roth B, Janelidze S, Giannisis A, Hansson O, Wennström M. Increased plasma and brain immunoglobulin A in Alzheimer’s disease is lost in apolipoprotein E ε4 carriers. Alzheimers Res Ther 2022; 14:117. [PMID: 36008818 PMCID: PMC9414424 DOI: 10.1186/s13195-022-01062-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Background Alzheimer’s disease (AD) is foremost characterized by β-amyloid (Aβ)-extracellular plaques, tau-intraneuronal fibrillary tangles (NFT), and neuroinflammation, but over the last years it has become evident that peripheral inflammation might also contribute to the disease. AD patients often demonstrate increased levels of circulating proinflammatory mediators and altered antibody levels in the blood. In our study, we investigated the plasma Immunoglobulin A (IgA) levels in association with apolipoprotein E (APOE) ε4 status and Aβ pathology. Methods IgA levels in antemortem-collected (cohort I) and postmortem-collected (cohort II) plasma samples from AD patients (n = 30 in cohort I and n = 16 in cohort II) and non-demented age-matched controls (NC) (n = 42 in cohort I and n = 7 in cohort II) were measured using ELISA. Hippocampal sections from cohort II were immunostained against IgA, and the IgA area fraction as well as the number of IgA positive (IgA+) cells in the cornu ammonis region were analysed using ImageJ. The relationship between plasma IgA levels and cognition, C-reactive protein (CRP), and cerebrospinal fluid (CSF) AD biomarkers in cohort I as well as neuropathology, IgA+ cell number, and IgA area fraction in cohort II was analysed before and after grouping the cohorts into APOEε4 carriers and APOEε4 non-carriers. Results Plasma IgA levels were higher in AD patients compared to NC in both cohorts. Also, AD patients demonstrated higher IgA area fraction and IgA+ cell number compared to NC. When APOEε4 status was considered, higher plasma IgA levels in AD patients were only seen in APOEε4 non-carriers. Finally, plasma IgA levels, exclusively in APOEε4 non-carriers, were associated with cognition, CRP, and CSF Aβ levels in cohort I as well as with IgA area fraction, IgA+ cell number, and Aβ, Lewy body, and NFT neuropathology in cohort II. Conclusions Our study suggests that AD pathology and cognitive decline are associated with increased plasma IgA levels in an APOE allele-dependent manner, where the associations are lost in APOEε4 carriers. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01062-z.
Collapse
|
9
|
Manzine PR, Vatanabe IP, Grigoli MM, Pedroso RV, de Almeida MPOMEP, de Oliveira DDSMS, Crispim Nascimento CM, Peron R, de Souza Orlandi F, Cominetti MR. Potential Protein Blood-Based Biomarkers in Different Types of Dementia: A Therapeutic Overview. Curr Pharm Des 2022; 28:1170-1186. [DOI: 10.2174/1381612828666220408124809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Biomarkers capable of identifying and distinguishing types of dementia such as Alzheimer's disease (AD), Parkinson's disease dementia (PDD), Lewy body dementia (LBD), and frontotemporal dementia (FTD) have been become increasingly relentless. Studies of possible biomarker proteins in the blood that can help formulate new diagnostic proposals and therapeutic visions of different types of dementia are needed. However, due to several limitations of these biomarkers, especially in discerning dementia, their clinical applications are still undetermined. Thus, the updating of biomarker blood proteins that can help in the diagnosis and discrimination of these main dementia conditions is essential to enable new pharmacological and clinical management strategies, with specificities for each type of dementia. To review the literature concerning protein blood-based AD and non-AD biomarkers as new pharmacological targets and/or therapeutic strategies. Recent findings for protein-based AD, PDD, LBD, and FTD biomarkers are focused on in this review. Protein biomarkers were classified according to the pathophysiology of the dementia types. The diagnosis and distinction of dementia through protein biomarkers is still a challenge. The lack of exclusive biomarkers for each type of dementia highlights the need for further studies in this field. Only after this, blood biomarkers may have a valid use in clinical practice as they are promising to help in diagnosis and in the differentiation of diseases.
Collapse
Affiliation(s)
- Patricia Regina Manzine
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Izabela Pereira Vatanabe
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Marina Mantellatto Grigoli
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Renata Valle Pedroso
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | | | | | | | - Rafaela Peron
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Fabiana de Souza Orlandi
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Márcia Regina Cominetti
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| |
Collapse
|
10
|
Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Sahib S, Tian ZR, Bryukhovetskiy I, Manzhulo I, Menon PK, Patnaik R, Wiklund L, Sharma A. Alzheimer's disease neuropathology is exacerbated following traumatic brain injury. Neuroprotection by co-administration of nanowired mesenchymal stem cells and cerebrolysin with monoclonal antibodies to amyloid beta peptide. PROGRESS IN BRAIN RESEARCH 2021; 265:1-97. [PMID: 34560919 DOI: 10.1016/bs.pbr.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Military personnel are prone to traumatic brain injury (TBI) that is one of the risk factors in developing Alzheimer's disease (AD) at a later stage. TBI induces breakdown of the blood-brain barrier (BBB) to serum proteins into the brain and leads to extravasation of plasma amyloid beta peptide (ΑβP) into the brain fluid compartments causing AD brain pathology. Thus, there is a need to expand our knowledge on the role of TBI in AD. In addition, exploration of the novel roles of nanomedicine in AD and TBI for neuroprotection is the need of the hour. Since stem cells and neurotrophic factors play important roles in TBI and in AD, it is likely that nanodelivery of these agents exert superior neuroprotection in TBI induced exacerbation of AD brain pathology. In this review, these aspects are examined in details based on our own investigations in the light of current scientific literature in the field. Our observations show that TBI exacerbates AD brain pathology and TiO2 nanowired delivery of mesenchymal stem cells together with cerebrolysin-a balanced composition of several neurotrophic factors and active peptide fragments, and monoclonal antibodies to amyloid beta protein thwarted the development of neuropathology following TBI in AD, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
11
|
Rees TA, Hay DL, Walker CS. Amylin antibodies frequently display cross-reactivity with CGRP: characterization of eight amylin antibodies. Am J Physiol Regul Integr Comp Physiol 2021; 320:R697-R703. [PMID: 33565362 PMCID: PMC11961109 DOI: 10.1152/ajpregu.00338.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 01/07/2023]
Abstract
Amylin is a 37-amino acid endocrine hormone secreted from the pancreas in response to nutrient intake, acting centrally to promote meal-ending satiation. With many studies linking amylin action to the nervous system, determining the distribution or expression of amylin in the nervous system is critical. However, amylin shares sequence identity and structural homology to the related neuropeptide calcitonin gene-related peptide (CGRP). This creates challenges in identifying selective amylin antibodies that do not cross-react with CGRP, especially in neural tissues, where CGRP is densely packed into secretory vesicles. Here, we characterized eight amylin antibodies to determine their ability to detect amylin and cross-react with rat or human αCGRP, using immunoblots and preabsorption controls in rat pancreas. We observed that amylin antibodies frequently cross-reacted with αCGRP and are therefore not suitable for use in tissues that highly express CGRP. Earlier work using these antibodies should be revisited in light of our findings.
Collapse
Affiliation(s)
- Tayla A Rees
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Debbie L Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Ly H, Verma N, Sharma S, Kotiya D, Despa S, Abner EL, Nelson PT, Jicha GA, Wilcock DM, Goldstein LB, Guerreiro R, Brás J, Hanson AJ, Craft S, Murray AJ, Biessels GJ, Troakes C, Zetterberg H, Hardy J, Lashley T, AESG, Despa F. The association of circulating amylin with β-amyloid in familial Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12130. [PMID: 33521236 PMCID: PMC7816817 DOI: 10.1002/trc2.12130] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 01/11/2023]
Abstract
INTRODUCTION This study assessed the hypothesis that circulating human amylin (amyloid-forming) cross-seeds with amyloid beta (Aβ) in early Alzheimer's disease (AD). METHODS Evidence of amylin-AD pathology interaction was tested in brains of 31 familial AD mutation carriers and 20 cognitively unaffected individuals, in cerebrospinal fluid (CSF) (98 diseased and 117 control samples) and in genetic databases. For functional testing, we genetically manipulated amylin secretion in APP/PS1 and non-APP/PS1 rats. RESULTS Amylin-Aβ cross-seeding was identified in AD brains. High CSF amylin levels were associated with decreased CSF Aβ42 concentrations. AD risk and amylin gene are not correlated. Suppressed amylin secretion protected APP/PS1 rats against AD-associated effects. In contrast, hypersecretion or intravenous injection of human amylin in APP/PS1 rats exacerbated AD-like pathology through disruption of CSF-brain Aβ exchange and amylin-Aβ cross-seeding. DISCUSSION These findings strengthened the hypothesis of circulating amylin-AD interaction and suggest that modulation of blood amylin levels may alter Aβ-related pathology/symptoms.
Collapse
Affiliation(s)
- Han Ly
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA,The Research Center for Healthy MetabolismUniversity of KentuckyLexingtonKentuckyUSA
| | - Nirmal Verma
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA,The Research Center for Healthy MetabolismUniversity of KentuckyLexingtonKentuckyUSA
| | - Savita Sharma
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - Deepak Kotiya
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA,The Research Center for Healthy MetabolismUniversity of KentuckyLexingtonKentuckyUSA
| | - Sanda Despa
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA,The Research Center for Healthy MetabolismUniversity of KentuckyLexingtonKentuckyUSA
| | - Erin L. Abner
- Department of EpidemiologyCollege of Public HealthUniversity of KentuckyLexingtonKentuckyUSA,Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Peter T. Nelson
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Gregory A. Jicha
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA,Department of NeurologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Donna M. Wilcock
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA,Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Rita Guerreiro
- Center for Neurodegenerative ScienceVan Andel Research InstituteGrand RapidsMichiganUSA
| | - José Brás
- Center for Neurodegenerative ScienceVan Andel Research InstituteGrand RapidsMichiganUSA
| | - Angela J. Hanson
- Memory & Brain Wellness CenterUniversity of WashingtonSeattleWashingtonUSA
| | - Suzanne Craft
- Department of Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Andrew J. Murray
- Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Geert Jan Biessels
- Department of NeurologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Claire Troakes
- Basic and Clinical Neuroscience DepartmentKing's College LondonLondonUK
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden,Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden,Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyQueen Square, LondonUK,UK Dementia Research Institute at UCL and Department of Neurodegenerative DiseaseUCL Institute of NeurologyUniversity College LondonLondonUK
| | - John Hardy
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyQueen Square, LondonUK,UK Dementia Research Institute at UCL and Department of Neurodegenerative DiseaseUCL Institute of NeurologyUniversity College LondonLondonUK,Reta Lila Weston InstituteUCL Queen Square Institute of NeurologyLondonUK,UCL Movement Disorders CentreUniversity College LondonLondonUK,Institute for Advanced StudyThe Hong Kong University of Science and TechnologyHong Kong SARChina
| | - Tammaryn Lashley
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyQueen Square, LondonUK,Queen Square Brain Bank for Neurological DisordersDepartment of Clinical and Movement NeuroscienceUCL Queen Square Institute of NeurologyLondonUK
| | - AESG
- Alzheimer's disease Exome Sequencing Group: Guerreiro R, Brás J, Sassi C, Gibbs JR, Hernandez D, Lupton MK, Brown K, Morgan K, Powell J, Singleton A, Hardy J.
| | - Florin Despa
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA,The Research Center for Healthy MetabolismUniversity of KentuckyLexingtonKentuckyUSA,Department of NeurologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
13
|
Ferreira S, Raimundo AF, Menezes R, Martins IC. Islet amyloid polypeptide & amyloid beta peptide roles in Alzheimer's disease: two triggers, one disease. Neural Regen Res 2021; 16:1127-1130. [PMID: 33269760 PMCID: PMC8224102 DOI: 10.4103/1673-5374.300323] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that affects millions worldwide. Due to population ageing, the incidence of AD is increasing. AD patients develop cognitive decline and dementia, features for which is known, requiring permanent care. This poses a major socio-economic burden on healthcare systems as AD patients’ relatives and healthcare workers are forced to cope with rising numbers of affected people. Despite recent advances, AD pathological mechanisms are not fully understood. Nevertheless, it is clear that the amyloid beta (Aβ) peptide, which forms amyloid plaques in AD patients’ brains, plays a key role. Type 2 diabetes, the most common form of diabetes, affects hundreds of million people globally. Islet amyloid polypeptide (IAPP) is a hormone co-produced and secreted with insulin in pancreatic β-cells, with a key role in diabetes, as it helps regulate glucose levels and control adiposity and satiation. Similarly to Aβ, IAPP is very amyloidogenic, generating intracellular amyloid deposits that cause β-cell dysfunction and death. It is now clear that IAPP can also have a pathological role in AD, decreasing cognitive function. IAPP harms the blood-brain barrier, directly interacts and co-deposits with Aβ, promoting diabetes-associated dementia. IAPP can cause a metabolic dysfunction in the brain, leading to other diabetes-related forms of AD. Thus, here we discuss IAPP association with diabetes, Aβ and dementia, in the context of what we designate a “diabetes brain phenotype” AD hypothesis. Such approach helps to set a conceptual framework for future IAPP-based drugs against AD.
Collapse
Affiliation(s)
- Sofia Ferreira
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras; CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ana F Raimundo
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras; CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa; ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Regina Menezes
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras; CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa; ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
14
|
Manzine PR, Vatanabe IP, Peron R, Grigoli MM, Pedroso RV, Nascimento CMC, Cominetti MR. Blood-based Biomarkers of Alzheimer's Disease: The Long and Winding Road. Curr Pharm Des 2020; 26:1300-1315. [PMID: 31942855 DOI: 10.2174/1381612826666200114105515] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Blood-based biomarkers can be very useful in formulating new diagnostic and treatment proposals in the field of dementia, especially in Alzheimer's disease (AD). However, due to the influence of several factors on the reproducibility and reliability of these markers, their clinical use is still very uncertain. Thus, up-to-date knowledge about the main blood biomarkers that are currently being studied is extremely important in order to discover clinically useful and applicable tools, which could also be used as novel pharmacological strategies for the AD treatment. METHODS A narrative review was performed based on the current candidates of blood-based biomarkers for AD to show the main results from different studies, focusing on their clinical applicability and association with AD pathogenesis. OBJECTIVE The aim of this paper was to carry out a literature review on the major blood-based biomarkers for AD, connecting them with the pathophysiology of the disease. RESULTS Recent advances in the search of blood-based AD biomarkers were summarized in this review. The biomarkers were classified according to the topics related to the main hallmarks of the disease such as inflammation, amyloid, and tau deposition, synaptic degeneration and oxidative stress. Moreover, molecules involved in the regulation of proteins related to these hallmarks were described, such as non-coding RNAs, neurotrophins, growth factors and metabolites. Cells or cellular components with the potential to be considered as blood-based AD biomarkers were described in a separate topic. CONCLUSION A series of limitations undermine new discoveries on blood-based AD biomarkers. The lack of reproducibility of findings due to the small size and heterogeneity of the study population, different analytical methods and other assay conditions make longitudinal studies necessary in this field to validate these structures, especially when considering a clinical evaluation that includes a broad panel of these potential and promising blood-based biomarkers.
Collapse
Affiliation(s)
- Patricia R Manzine
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Izabela P Vatanabe
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Rafaela Peron
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Marina M Grigoli
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Renata V Pedroso
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Carla M C Nascimento
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Marcia R Cominetti
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| |
Collapse
|
15
|
Delamarre A, Rigalleau V, Meissner WG. Insulin resistance, diabetes and Parkinson's disease: The match continues. Parkinsonism Relat Disord 2020; 80:199-200. [PMID: 33036905 DOI: 10.1016/j.parkreldis.2020.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Anna Delamarre
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France
| | | | - Wassilios G Meissner
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France; Service de Neurologie des Maladies Neurodégénératives, CHU Bordeaux, 33000, Bordeaux, France; Dept. Medicine, University of Otago, Christchurch, and New Zealand Brain Research Institute, Christchurch, New Zealand.
| |
Collapse
|
16
|
Sánchez-Gómez A, Alcarraz-Vizán G, Fernández M, Fernández-Santiago R, Ezquerra M, Cámara A, Serrano M, Novials A, Muñoz E, Valldeoriola F, Compta Y, Martí MJ. Peripheral insulin and amylin levels in Parkinson's disease. Parkinsonism Relat Disord 2020; 79:91-96. [DOI: 10.1016/j.parkreldis.2020.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/26/2020] [Accepted: 08/12/2020] [Indexed: 01/12/2023]
|
17
|
Boccia L, Gamakharia S, Coester B, Whiting L, Lutz TA, Le Foll C. Amylin brain circuitry. Peptides 2020; 132:170366. [PMID: 32634450 DOI: 10.1016/j.peptides.2020.170366] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
Amylin is a peptide hormone that is mainly known to be produced by pancreatic β-cells in response to a meal but amylin is also produced by brain cells in discrete brain areas albeit in a lesser amount. Amylin receptor (AMY) is composed of the calcitonin core-receptor (CTR) and one of the 3 receptor activity modifying protein (RAMP), thus forming AMY1-3; RAMP enhances amylin binding properties to the CTR. However, amylin receptor agonist such as salmon calcitonin is able to bind CTR alone. Peripheral amylin's main binding site is located in the area postrema (AP) which then propagate the signal to the nucleus of the solitary tract and lateral parabrachial nucleus (LPBN) and it is then transmitted to the forebrain areas such as central amygdala and bed nucleus of the stria terminalis. Amylin's activation of these different brain areas mediates eating and other metabolic pathways controlling energy expenditure and glucose homeostasis. Peripheral amylin can also bind in the arcuate nucleus of the hypothalamus where it acts independently of the AP to activate POMC and NPY neurons. Amylin activation of NPY neurons has been shown to be transmitted to LPBN neurons to act on eating while amylin POMC signaling affects energy expenditure and locomotor activity. While a large amount of experiments have already been conducted, future studies will have to further investigate how amylin is taken up by forebrain areas and deepen our understanding of amylin action on peripheral metabolism.
Collapse
Affiliation(s)
- Lavinia Boccia
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Salome Gamakharia
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Bernd Coester
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Lynda Whiting
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland.
| |
Collapse
|
18
|
Araújo AR, Reis RL, Pires RA. Natural Polyphenols as Modulators of the Fibrillization of Islet Amyloid Polypeptide. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1250:159-176. [PMID: 32601944 DOI: 10.1007/978-981-15-3262-7_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Diabetes mellitus type 2 (type-2 diabetes) is a metabolic disorder characterized by the increased blood glucose concentration and insulin resistance in peripheral tissues (e.g., muscles and adipose tissue). The initiation of the pathological cascade of events that lead to type-2 diabetes has been subject of debate; however, it has been commonly accepted that the oversecretion of human islet amyloid polypeptide (hIAPP, a hormone co-secreted with insulin) by the pancreatic 𝛽-cells is the main trigger of type-2 diabetes. In fact, 90% of the type-2 diabetes patients present hIAPP deposits in the extracellular space of the 𝛽-cells. These hIAPP supramolecular arrangements (both fibrillar and oligomeric) have been reported to be the origin of cytotoxicity, which leads to 𝛽-cell dysfunction through a series of different mechanisms, including the interaction of hIAPP oligomers with the cell membrane that leads to the influx of Ca2+ and increase in the cellular oxidative stress, among others. This overview shows the importance of developing type-2 diabetes treatment strategies able to (1) remodel of the secondary structure of cytotoxic hIAPP oligomers entrapping them into off-pathway nontoxic species and (2) reestablish physiological levels of oxidative stress. Natural polyphenols are a class of antioxidant compounds that are able to perform both functions. Herein we review the published literature of the most studied polyphenols, in particular for their ability to remodel the hIAPP aggregation pathway, to rescue the in vitro pancreatic 𝛽-cell viability and function, as well as to perform under a complex biological environment, i.e., in vivo animal models and clinical trials. Overall, natural polyphenols are able to control the cytotoxic hIAPP aggregation and minimize hIAPP-mediated cellular dysfunction and can be considered as important lead compounds for the treatment of type-2 diabetes.
Collapse
Affiliation(s)
- Ana R Araújo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Ricardo A Pires
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal.
| |
Collapse
|