1
|
Durham ND, Jain A, Howard A, Luban J, Munro JB. Molecular basis for the increased fusion activity of the Ebola virus glycoprotein epidemic variant A82V: Insights from simulations and experiments. Cell Rep 2025; 44:115521. [PMID: 40186866 PMCID: PMC12087377 DOI: 10.1016/j.celrep.2025.115521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/29/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025] Open
Abstract
During the 2013-2016 Ebola virus (EBOV) epidemic in Western Africa, an A82V mutation emerged in the envelope glycoprotein (GP) that persisted in most circulating isolates. Previous studies demonstrated that A82V increased GP-mediated membrane fusion and altered its dependence on host factors. The mechanistic basis for these observations, in particular the impact of A82V on the conformational changes in GP that are needed for membrane fusion, has not been evaluated in molecular detail. Here, using molecular dynamics simulations, fluorescence correlation spectroscopy, and single-molecule Förster resonance energy transfer imaging, we specify the molecular mechanism by which A82V alters GP conformation to enhance viral entry. In so doing, we identify an allosteric network of interactions that links the receptor-binding site to the fusion loop of GP. Thus, the naturally occurring A82V mutation can tune the conformational dynamics of EBOV GP to enhance fusion loop mobility and subsequent viral fusion and infectivity in human cells.
Collapse
Affiliation(s)
- Natasha D Durham
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, USA.
| | - Aastha Jain
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Angela Howard
- Program in Molecular Microbiology, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Jeremy Luban
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - James B Munro
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
2
|
Hogan VA, Harmon J, Cid-Rosas M, Hall LR, Johnson WE. Conserved residues of the immunosuppressive domain of MLV are essential for regulating the fusion-critical SU-TM disulfide bond. J Virol 2024; 98:e0098924. [PMID: 39470209 PMCID: PMC11575397 DOI: 10.1128/jvi.00989-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
The Env protein of murine leukemia virus (MLV) is the prototype of a large clade of retroviral fusogens, collectively known as gamma-type Envs. Gamma-type Envs are found in retroviruses and endogenous retroviruses (ERVs) representing a broad range of vertebrate hosts. All gamma-type Envs contain a highly conserved stretch of 26-residues in the transmembrane subunit (TM) comprising two motifs, a putative immunosuppressive domain (ISD) and a CX6CC motif. Extraordinary conservation of the ISD and its invariant association with the CX6CC suggests a fundamental contribution to Env function. To investigate ISD function, we characterized several mutants with single amino acid substitutions at conserved positions in the MLV ISD. A majority abolished infectivity, although we did not observe a corresponding loss in intrinsic ability to mediate membrane fusion. Ratios of the surface subunit (SU) to capsid protein (CA) in virions were diminished for a majority of the ISD mutants, while TM:CA ratios were similar to wild type. Specific loss of SU reflected premature isomerization of the labile disulfide bond that links SU and TM prior to fusion. Indeed, all non-infectious mutants displayed significantly lower disulfide stability than wild-type Env. These results reveal a role for ISD positions 2, 3, 4, 7, and 10 in regulating a late step in entry after fusion peptide insertion but prior to creation of the fusion pore. This implies that the ISD is part of a larger domain, comprising the ISD and CX6CC motifs, that is critical for the formation and regulation of the metastable, intersubunit disulfide bond.IMPORTANCEThe gamma-type Env is a prevalent viral fusogen, found within retroviruses and endogenous retroviruses across vertebrate species and in filoviruses such as Ebolavirus. The fusion mechanism of gamma-type Envs is unique from other Class I fusogens such as those of influenza A virus and HIV-1. Gamma-type Envs contain a hallmark feature known as the immunosuppressive domain (ISD) that has been the subject of some controversy in the literature surrounding its putative immunosuppressive effects. Despite the distinctive conservation of the ISD, little has been done to investigate the role of this region for the function of this widespread fusogen. Our work demonstrates the importance of the ISD for the function of gamma-type Envs in infection, particularly in regulating the intermediate steps of membrane fusion. Understanding the fusion mechanism of gamma-type Envs has broad implications for understanding the entry of extant viruses and aspects of host biology connected to co-opted endogenous gamma-type Envs.
Collapse
Affiliation(s)
- Victoria A Hogan
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Julia Harmon
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Miguel Cid-Rosas
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Laura R Hall
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Welkin E Johnson
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| |
Collapse
|
3
|
Bodmer BS, Hoenen T, Wendt L. Molecular insights into the Ebola virus life cycle. Nat Microbiol 2024; 9:1417-1426. [PMID: 38783022 DOI: 10.1038/s41564-024-01703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Ebola virus and other orthoebolaviruses cause severe haemorrhagic fevers in humans, with very high case fatality rates. Their non-segmented single-stranded RNA genome encodes only seven structural proteins and a small number of non-structural proteins to facilitate the virus life cycle. The basics of this life cycle are well established, but recent advances have substantially increased our understanding of its molecular details, including the viral and host factors involved. Here we provide a comprehensive overview of our current knowledge of the molecular details of the orthoebolavirus life cycle, with a special focus on proviral host factors. We discuss the multistep entry process, viral RNA synthesis in specialized phase-separated intracellular compartments called inclusion bodies, the expression of viral proteins and ultimately the assembly of new virus particles and their release at the cell surface. In doing so, we integrate recent studies into the increasingly detailed model that has developed for these fundamental aspects of orthoebolavirus biology.
Collapse
Affiliation(s)
- Bianca S Bodmer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| | - Lisa Wendt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
4
|
Jain A, Govindan R, Berkman AR, Luban J, Díaz-Salinas MA, Durham ND, Munro JB. Regulation of Ebola GP conformation and membrane binding by the chemical environment of the late endosome. PLoS Pathog 2023; 19:e1011848. [PMID: 38055723 PMCID: PMC10727438 DOI: 10.1371/journal.ppat.1011848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/18/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Interaction between the Ebola virus envelope glycoprotein (GP) and the endosomal membrane is an essential step during virus entry into the cell. Acidic pH and Ca2+ have been implicated in mediating the GP-membrane interaction. However, the molecular mechanism by which these environmental factors regulate the conformational changes that enable engagement of GP with the target membrane is unknown. Here, we apply fluorescence correlation spectroscopy (FCS) and single-molecule Förster resonance energy transfer (smFRET) imaging to elucidate how the acidic pH, Ca2+ and anionic phospholipids in the late endosome promote GP-membrane interaction, thereby facilitating virus entry. We find that bis(monoacylglycero)phosphate (BMP), which is specific to the late endosome, is especially critical in determining the Ca2+-dependence of the GP-membrane interaction. Molecular dynamics (MD) simulations suggested residues in GP that sense pH and induce conformational changes that make the fusion loop available for insertion into the membrane. We similarly confirm residues in the fusion loop that mediate GP's interaction with Ca2+, which likely promotes local conformational changes in the fusion loop and mediates electrostatic interactions with the anionic phospholipids. Collectively, our results provide a mechanistic understanding of how the environment of the late endosome regulates the timing and efficiency of virus entry.
Collapse
Affiliation(s)
- Aastha Jain
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Ramesh Govindan
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
- Medical Scientist Training Program, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Alex R. Berkman
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Jeremy Luban
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Marco A. Díaz-Salinas
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Natasha D. Durham
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - James B. Munro
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
5
|
Jain A, Govindan R, Berkman A, Luban J, Durham ND, Munro J. Regulation of Ebola GP conformation and membrane binding by the chemical environment of the late endosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524651. [PMID: 36711925 PMCID: PMC9882366 DOI: 10.1101/2023.01.18.524651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Interaction between the Ebola virus envelope glycoprotein (GP) and the endosomal membrane is an essential step during virus entry into the cell. Acidic pH and Ca2+ have been implicated in mediating the GP-membrane interaction. However, the molecular mechanism by which these environmental factors regulate the conformational changes that enable engagement of GP with the target membrane is unknown. Here, we apply fluorescence correlation spectroscopy (FCS) and single-molecule Forster resonance energy transfer (smFRET) imaging to elucidate how the acidic pH, Ca2+ and anionic phospholipids in the late endosome promote GP-membrane interaction, thereby facilitating virus entry. We find that bis(monoacylglycero)phosphate (BMP), which is specific to the late endosome, is especially critical in determining the Ca2+-dependence of the GP-membrane interaction. Molecular dynamics (MD) simulations suggested residues in GP that sense pH and induce conformational changes that make the fusion loop available for insertion into the membrane. We similarly confirm residues in the fusion loop that mediate GPs interaction with Ca2+, which likely promotes local conformational changes in the fusion loop and mediates electrostatic interactions with the anionic phospholipids. Collectively, our results provide a mechanistic understanding of how the environment of the late endosome regulates the timing and efficiency of virus entry.
Collapse
|
6
|
Odongo L, Habtegebrael BH, Kiessling V, White JM, Tamm LK. A novel in vitro system of supported planar endosomal membranes (SPEMs) reveals an enhancing role for cathepsin B in the final stage of Ebola virus fusion and entry. Microbiol Spectr 2023; 11:e0190823. [PMID: 37728342 PMCID: PMC10581071 DOI: 10.1128/spectrum.01908-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 09/21/2023] Open
Abstract
Ebola virus (EBOV) causes a hemorrhagic fever with fatality rates up to 90%. The EBOV entry process is complex and incompletely understood. Following attachment to host cells, EBOV is trafficked to late endosomes/lysosomes where its glycoprotein (GP) is processed to a 19-kDa form, which binds to the EBOV intracellular receptor Niemann-Pick type C1. We previously showed that the cathepsin protease inhibitor, E-64d, blocks infection by pseudovirus particles bearing 19-kDa GP, suggesting that further cathepsin action is needed to trigger fusion. This, however, has not been demonstrated directly. Since 19-kDa Ebola GP fusion occurs in late endosomes, we devised a system in which enriched late endosomes are used to prepare supported planar endosomal membranes (SPEMs), and fusion of fluorescent (pseudo)virus particles is monitored by total internal reflection fluorescence microscopy. We validated the system by demonstrating the pH dependencies of influenza virus hemagglutinin (HA)-mediated and Lassa virus (LASV) GP-mediated fusion. Using SPEMs, we showed that fusion mediated by 19-kDa Ebola GP is dependent on low pH, enhanced by Ca2+, and augmented by the addition of cathepsins. Subsequently, we found that E-64d inhibits full fusion, but not lipid mixing, mediated by 19-kDa GP, which we corroborated with the reversible cathepsin inhibitor VBY-825. Hence, we provide both gain- and loss-of-function evidence that further cathepsin action enhances the fusion activity of 19-kDa Ebola GP. In addition to providing new insights into how Ebola GP mediates fusion, the approach we developed employing SPEMs can now be broadly used for studies of virus and toxin entry through endosomes. IMPORTANCE Ebola virus is the causative agent of Ebola virus disease, which is severe and frequently lethal. EBOV gains entry into cells via late endosomes/lysosomes. The events immediately preceding fusion of the viral and endosomal membranes are incompletely understood. In this study, we report a novel in vitro system for studying virus fusion with endosomal membranes. We validated the system by demonstrating the low pH dependencies of influenza and Lassa virus fusion. Moreover, we show that further cathepsin B action enhances the fusion activity of the primed Ebola virus glycoprotein. Finally, this model endosomal membrane system should be useful in studying the mechanisms of bilayer breaching by other enveloped viruses, by non-enveloped viruses, and by acid-activated bacterial toxins.
Collapse
Affiliation(s)
- Laura Odongo
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Betelihem H. Habtegebrael
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Judith M. White
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Lukas K. Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
7
|
Plescia CB, Lindstrom AR, Quintero MV, Keiser P, Anantpadma M, Davey R, Stahelin RV, Davisson VJ. Evaluation of Phenol-Substituted Diphyllin Derivatives as Selective Antagonists for Ebola Virus Entry. ACS Infect Dis 2022; 8:942-957. [PMID: 35357134 PMCID: PMC9112336 DOI: 10.1021/acsinfecdis.1c00474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Ebola
virus (EBOV) is an aggressive filoviral pathogen that can
induce severe hemorrhagic fever in humans with up to 90% fatality
rate. To date, there are no clinically effective small-molecule drugs
for postexposure therapies to treat filoviral infections. EBOV cellular
entry and infection involve uptake via macropinocytosis, navigation
through the endocytic pathway, and pH-dependent escape into the cytoplasm.
We report the inhibition of EBOV cell entry via selective inhibition
of vacuolar (V)-ATPase by a new series of phenol-substituted derivatives
of the natural product scaffold diphyllin. In cells challenged with
Ebola virus, the diphyllin derivatives inhibit viral entry dependent
upon structural variations to low nanomolar potencies. Mechanistically,
the diphyllin derivatives had no effect on uptake and colocalization
of viral particles with endocytic marker LAMP1 but directly modulated
endosomal pH. The most potent effects were reversible exhibiting higher
selectivity than bafilomycin or the parent diphyllin. Unlike general
lysosomotrophic agents, the diphyllin derivatives showed no major
disruptions of endocytic populations or morphology when examined with
Rab5 and LAMP1 markers. The dilated vacuole phenotype induced by apilimod
treatment or in constitutively active Rab5 mutant Q79L-expressing
cells was both blocked and reversed by the diphyllin derivatives.
The results are consistent with the action of the diphyllin scaffold
as a selective pH-dependent viral entry block in late endosomes. Overall,
the compounds show improved selectivity and minimal cytotoxicity relative
to classical endosomal acidification blocking agents.
Collapse
Affiliation(s)
| | | | - Maritza V. Quintero
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio 78229-3900, United States
| | - Patrick Keiser
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts 02118, United States
| | - Manu Anantpadma
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts 02118, United States
| | - Robert Davey
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts 02118, United States
| | | | | |
Collapse
|
8
|
Abstract
Retroviral elements from endogenous retroviruses have functions in mammalian physiology. The best-known examples are the envelope proteins that function in placenta development and immune suppression. Porcine endogenous retroviruses (PERVs) are an understudied class of endogenous retroviruses that infect cultured human cells, raising concern regarding porcine xenografts. The PERV envelope glycoprotein has also been proposed as a possible swine syncytin with a role in placental development. Despite the growing interest in PERVs, their envelope glycoproteins remain poorly characterized. Here, we successfully determined the postfusion crystal structure of the PERV core fusion ectodomain. The PERV fusion protein structure reveals a conserved class I viral fusion protein six-helix bundle. Biophysical experiments demonstrated that the thermodynamic stability of the PERV fusion protein secondary structure was the same at physiological and acidic pHs. A conserved surface analysis highlights the high degree of sequence conservation among retroviral fusogens in the chain reversal region that facilitates the large-scale conformational change required for membrane fusion. Further structural alignment of class I viral fusogens revealed a phylogenetic clustering that shows evolution into various lineages that correlate with virus mechanisms of cell entry. Our work indicates that structural dendrograms can be used to qualitatively infer insights into the fusion mechanisms of newly discovered class I viral fusogen structures. IMPORTANCE Class I viral fusion proteins represent a diverse group of fusogens that catalyze membrane fusion. Although structural studies have focused on those from exogenous viruses, ancient retroviral infections of germ line cells have immortalized ancient fusogens in eukaryotic genomes. These "fossilized" glycoproteins are poorly defined compared to modern fusogens. In this study, we characterized and determined the structure of the porcine endogenous retrovirus fusogen, an ancient retroviral element captured by swine. This fusion protein revealed remarkable alignment to exogenous retroviral fusion proteins, suggesting that fossil fusogens utilize similar structural determinants to perform membrane fusion. Moreover, structural phylogenetic analysis demonstrates that class I viral fusogens cluster into distinct lineages defined by mechanism of membrane fusion. Our results suggest that structural dendrograms can be used to infer mechanistic insights for uncharacterized fusion proteins.
Collapse
|
9
|
Webster ER, Liu KN, Rawle RJ, Boxer SG. Modulating the Influenza A Virus-Target Membrane Fusion Interface With Synthetic DNA-Lipid Receptors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2354-2362. [PMID: 35143209 PMCID: PMC9038422 DOI: 10.1021/acs.langmuir.1c03247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Influenza A virus (IAV) binds to sialylated glycans on the cell membrane before endocytosis and fusion. Cell-surface glycans are highly heterogeneous in length and glycosylation density, which leads to variations in the distance and rigidity with which IAV is held away from the cell membrane. To gain mechanistic insight into how receptor length and rigidity impact the mechanism of IAV entry, we employed synthetic DNA-lipids as highly tunable surrogate receptors. We tethered IAV to target membranes with a panel of DNA-lipids to investigate the effects of the distance and tether flexibility between virions and target membranes on the kinetics of IAV binding and fusion. Tether length and the presence of a flexible linker led to higher rates of IAV binding, while the efficiencies of lipid and content mixing were typically lower for longer and more rigid DNA tethers. For all DNA tether modifications, we found that the rates of IAV lipid and content mixing were unchanged. These results suggest that variations in the interface between IAV and a target membrane do not significantly impact the rate-limiting step of fusion or the low-pH-triggered engagement of viral fusion peptides with the target membrane. However, our results imply that the flexibility of the viral receptor is important for ensuring that hemifusion events are able to successfully proceed to pore formation.
Collapse
Affiliation(s)
- Elizabeth R Webster
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Katherine N Liu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert J Rawle
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
10
|
Düzgüneş N, Fernandez-Fuentes N, Konopka K. Inhibition of Viral Membrane Fusion by Peptides and Approaches to Peptide Design. Pathogens 2021; 10:1599. [PMID: 34959554 PMCID: PMC8709411 DOI: 10.3390/pathogens10121599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Fusion of lipid-enveloped viruses with the cellular plasma membrane or the endosome membrane is mediated by viral envelope proteins that undergo large conformational changes following binding to receptors. The HIV-1 fusion protein gp41 undergoes a transition into a "six-helix bundle" after binding of the surface protein gp120 to the CD4 receptor and a co-receptor. Synthetic peptides that mimic part of this structure interfere with the formation of the helix structure and inhibit membrane fusion. This approach also works with the S spike protein of SARS-CoV-2. Here we review the peptide inhibitors of membrane fusion involved in infection by influenza virus, HIV-1, MERS and SARS coronaviruses, hepatitis viruses, paramyxoviruses, flaviviruses, herpesviruses and filoviruses. We also describe recent computational methods used for the identification of peptide sequences that can interact strongly with protein interfaces, with special emphasis on SARS-CoV-2, using the PePI-Covid19 database.
Collapse
Affiliation(s)
- Nejat Düzgüneş
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
| | - Narcis Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EE, UK;
| | - Krystyna Konopka
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
| |
Collapse
|
11
|
Rutten L, Gilman MSA, Blokland S, Juraszek J, McLellan JS, Langedijk JPM. Structure-Based Design of Prefusion-Stabilized Filovirus Glycoprotein Trimers. Cell Rep 2021; 30:4540-4550.e3. [PMID: 32234486 PMCID: PMC7118701 DOI: 10.1016/j.celrep.2020.03.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/27/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Ebola virus causes severe hemorrhagic fever, often leading to death in humans. The trimeric fusion glycoprotein (GP) is the sole target for neutralizing antibodies and is the major focus of vaccine development. Soluble GP ectodomains are unstable and mostly monomeric when not fused to a heterologous trimerization domain. Here, we report structure-based designs of Ebola and Marburg GP trimers based on a stabilizing mutation in the hinge loop in refolding region 1 and substitution of a partially buried charge at the interface of the GP1 and GP2 subunits. The combined substitutions (T577P and K588F) substantially increased trimer expression for Ebola GP proteins. We determined the crystal structure of stabilized GP from the Makona Zaire ebolavirus strain without a trimerization domain or complexed ligand. The structure reveals that the stabilized GP adopts the same trimeric prefusion conformation, provides insight into triggering of GP conformational changes, and should inform future filovirus vaccine development. Filovirus GP expression increases by stabilizing mutations in hinge loop and base helix Charged lysine in base helix and GP1 N terminus are trapped in metastable conformation Crystal structure of stabilized Makona Δmucin GP confirms successful stabilization These findings may be useful for understanding fusion mechanisms and vaccine design
Collapse
Affiliation(s)
- Lucy Rutten
- Janssen Vaccines & Prevention, Archimedesweg 4-6, Leiden 2333 CN, the Netherlands
| | - Morgan S A Gilman
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sven Blokland
- Janssen Vaccines & Prevention, Archimedesweg 4-6, Leiden 2333 CN, the Netherlands
| | - Jarek Juraszek
- Janssen Vaccines & Prevention, Archimedesweg 4-6, Leiden 2333 CN, the Netherlands
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
12
|
Formulation, Stability, Pharmacokinetic, and Modeling Studies for Tests of Synergistic Combinations of Orally Available Approved Drugs against Ebola Virus In Vivo. Microorganisms 2021; 9:microorganisms9030566. [PMID: 33801811 PMCID: PMC7998926 DOI: 10.3390/microorganisms9030566] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/28/2022] Open
Abstract
Outbreaks of Ebola ebolavirus (EBOV) have been associated with high morbidity and mortality. Milestones have been reached recently in the management of EBOV disease (EVD) with licensure of an EBOV vaccine and two monoclonal antibody therapies. However, neither vaccines nor therapies are available for other disease-causing filoviruses. In preparation for such outbreaks, and for more facile and cost-effective management of EVD, we seek a cocktail containing orally available and room temperature stable drugs with strong activity against multiple filoviruses. We previously showed that (bepridil + sertraline) and (sertraline + toremifene) synergistically suppress EBOV in cell cultures. Here, we describe steps towards testing these combinations in a mouse model of EVD. We identified a vehicle suitable for oral delivery of the component drugs and determined that, thus formulated the drugs are equally active against EBOV as preparations in DMSO, and they maintain activity upon storage in solution for up to seven days. Pharmacokinetic (PK) studies indicated that the drugs in the oral delivery vehicle are well tolerated in mice at the highest doses tested. Collectively the data support advancement of these combinations to tests for synergy in a mouse model of EVD. Moreover, mathematical modeling based on human oral PK projects that the combinations would be more active in humans than their component single drugs.
Collapse
|
13
|
A Glycoprotein Mutation That Emerged during the 2013-2016 Ebola Virus Epidemic Alters Proteolysis and Accelerates Membrane Fusion. mBio 2021; 12:mBio.03616-20. [PMID: 33593971 PMCID: PMC8545129 DOI: 10.1128/mbio.03616-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic surveillance of viral isolates during the 2013–2016 Ebola virus epidemic in Western Africa, the largest and most devastating filovirus outbreak on record, revealed several novel mutations. The responsible strain, named Makona, carries an A-to-V substitution at position 82 (A82V) in the glycoprotein (GP), which is associated with enhanced infectivity in vitro. Here, we investigated the mechanistic basis for this enhancement as well as the interplay between A82V and a T-to-I substitution at residue 544 of GP, which also modulates infectivity in cell culture. We found that both 82V and 544I destabilize GP, with the residue at position 544 impacting overall stability, while 82V specifically destabilizes proteolytically cleaved GP. Both residues also promote faster kinetics of lipid mixing of the viral and host membranes in live cells, individually and in tandem, which correlates with faster times to fusion following colocalization with the viral receptor Niemann-Pick C1 (NPC1). Furthermore, GPs bearing 82V are more sensitive to proteolysis by cathepsin L (CatL), a key host factor for viral entry. Intriguingly, CatL processed 82V variant GPs to a novel product with a molecular weight of approximately 12,000 (12K), which we hypothesize corresponds to a form of GP that is pre-triggered for fusion. We thus propose a model in which 82V promotes more efficient GP processing by CatL, leading to faster viral fusion kinetics and higher levels of infectivity.
Collapse
|
14
|
Lee J, Kreutzberger AJB, Odongo L, Nelson EA, Nyenhuis DA, Kiessling V, Liang B, Cafiso DS, White JM, Tamm LK. Ebola virus glycoprotein interacts with cholesterol to enhance membrane fusion and cell entry. Nat Struct Mol Biol 2021; 28:181-189. [PMID: 33462517 PMCID: PMC7992113 DOI: 10.1038/s41594-020-00548-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Cholesterol serves critical roles in enveloped virus fusion by modulating membrane properties. The glycoprotein (GP) of Ebola virus (EBOV) promotes fusion in the endosome, a process that requires the endosomal cholesterol transporter NPC1. However, the role of cholesterol in EBOV fusion is unclear. Here we show that cholesterol in GP-containing membranes enhances fusion and the membrane-proximal external region and transmembrane (MPER/TM) domain of GP interacts with cholesterol via several glycine residues in the GP2 TM domain, notably G660. Compared to wild-type (WT) counterparts, a G660L mutation caused a more open angle between MPER and TM domains in an MPER/TM construct, higher probability of stalling at hemifusion for GP2 proteoliposomes and lower cell entry of virus-like particles (VLPs). VLPs with depleted cholesterol show reduced cell entry, and VLPs produced under cholesterol-lowering statin conditions show less frequent entry than respective controls. We propose that cholesterol-TM interactions affect structural features of GP2, thereby facilitating fusion and cell entry.
Collapse
Affiliation(s)
- Jinwoo Lee
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Alex J B Kreutzberger
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Laura Odongo
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Elizabeth A Nelson
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - David A Nyenhuis
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Binyong Liang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - David S Cafiso
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Judith M White
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA.
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
15
|
Lay Mendoza MF, Acciani MD, Levit CN, Santa Maria C, Brindley MA. Monitoring Viral Entry in Real-Time Using a Luciferase Recombinant Vesicular Stomatitis Virus Producing SARS-CoV-2, EBOV, LASV, CHIKV, and VSV Glycoproteins. Viruses 2020; 12:E1457. [PMID: 33348746 PMCID: PMC7766484 DOI: 10.3390/v12121457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023] Open
Abstract
Viral entry is the first stage in the virus replication cycle and, for enveloped viruses, is mediated by virally encoded glycoproteins. Viral glycoproteins have different receptor affinities and triggering mechanisms. We employed vesicular stomatitis virus (VSV), a BSL-2 enveloped virus that can incorporate non-native glycoproteins, to examine the entry efficiencies of diverse viral glycoproteins. To compare the glycoprotein-mediated entry efficiencies of VSV glycoprotein (G), Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S), Ebola (EBOV) glycoprotein (GP), Lassa (LASV) GP, and Chikungunya (CHIKV) envelope (E) protein, we produced recombinant VSV (rVSV) viruses that produce the five glycoproteins. The rVSV virions encoded a nano luciferase (NLucP) reporter gene fused to a destabilization domain (PEST), which we used in combination with the live-cell substrate EndurazineTM to monitor viral entry kinetics in real time. Our data indicate that rVSV particles with glycoproteins that require more post-internalization priming typically demonstrate delayed entry in comparison to VSV G. In addition to determining the time required for each virus to complete entry, we also used our system to evaluate viral cell surface receptor preferences, monitor fusion, and elucidate endocytosis mechanisms. This system can be rapidly employed to examine diverse viral glycoproteins and their entry requirements.
Collapse
Affiliation(s)
- Maria Fernanda Lay Mendoza
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (M.F.L.M.); (M.D.A.); (C.N.L.); (C.S.M.)
| | - Marissa Danielle Acciani
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (M.F.L.M.); (M.D.A.); (C.N.L.); (C.S.M.)
| | - Courtney Nina Levit
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (M.F.L.M.); (M.D.A.); (C.N.L.); (C.S.M.)
| | - Christopher Santa Maria
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (M.F.L.M.); (M.D.A.); (C.N.L.); (C.S.M.)
| | - Melinda Ann Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (M.F.L.M.); (M.D.A.); (C.N.L.); (C.S.M.)
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
16
|
A Virion-Based Assay for Glycoprotein Thermostability Reveals Key Determinants of Filovirus Entry and Its Inhibition. J Virol 2020; 94:JVI.00336-20. [PMID: 32611759 DOI: 10.1128/jvi.00336-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/26/2020] [Indexed: 11/20/2022] Open
Abstract
Ebola virus (EBOV) entry into cells is mediated by its spike glycoprotein (GP). Following attachment and internalization, virions traffic to late endosomes where GP is cleaved by host cysteine proteases. Cleaved GP then binds its cellular receptor, Niemann-Pick C1. In response to an unknown cellular trigger, GP undergoes conformational rearrangements that drive fusion of viral and endosomal membranes. The temperature-dependent stability (thermostability) of the prefusion conformers of class I viral fusion glycoproteins, including those of filovirus GPs, has provided insights into their propensity to undergo fusion-related rearrangements. However, previously described assays have relied on soluble glycoprotein ectodomains. Here, we developed a simple enzyme-linked immunosorbent assay (ELISA)-based assay that uses the temperature-dependent loss of conformational epitopes to measure thermostability of GP embedded in viral membranes. The base and glycan cap subdomains of all filovirus GPs tested suffered a concerted loss of prefusion conformation at elevated temperatures but did so at different temperature ranges, indicating virus-specific differences in thermostability. Despite these differences, all of these GPs displayed reduced thermostability upon cleavage to GP conformers (GPCL). Surprisingly, acid pH enhanced, rather than decreased, GP thermostability, suggesting it could enhance viral survival in hostile endo/lysosomal compartments. Finally, we confirmed and extended previous findings that some small-molecule inhibitors of filovirus entry destabilize EBOV GP and uncovered evidence that the most potent inhibitors act through multiple mechanisms. We establish the epitope-loss ELISA as a useful tool for studies of filovirus entry, engineering of GP variants with enhanced stability for use in vaccine development, and discovery of new stability-modulating antivirals.IMPORTANCE The development of Ebola virus countermeasures is challenged by our limited understanding of cell entry, especially at the step of membrane fusion. The surface-exposed viral protein, GP, mediates membrane fusion and undergoes major structural rearrangements during this process. The stability of GP at elevated temperatures (thermostability) can provide insights into its capacity to undergo these rearrangements. Here, we describe a new assay that uses GP-specific antibodies to measure GP thermostability under a variety of conditions relevant to viral entry. We show that proteolytic cleavage and acid pH have significant effects on GP thermostability that shed light on their respective roles in viral entry. We also show that the assay can be used to study how small-molecule entry inhibitors affect GP stability. This work provides a simple and readily accessible assay to engineer stabilized GP variants for antiviral vaccines and to discover and improve drugs that act by modulating GP stability.
Collapse
|
17
|
Plewe MB, Sokolova NV, Gantla VR, Brown ER, Naik S, Fetsko A, Lorimer DD, Dranow DM, Smutney H, Bullen J, Sidhu R, Master A, Wang J, Kallel EA, Zhang L, Kalveram B, Freiberg AN, Henkel G, McCormack K. Discovery of Adamantane Carboxamides as Ebola Virus Cell Entry and Glycoprotein Inhibitors. ACS Med Chem Lett 2020; 11:1160-1167. [PMID: 32550996 DOI: 10.1021/acsmedchemlett.0c00025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/21/2020] [Indexed: 12/24/2022] Open
Abstract
We identified and explored the structure-activity-relationship (SAR) of an adamantane carboxamide chemical series of Ebola virus (EBOV) inhibitors. Selected analogs exhibited half-maximal inhibitory concentrations (EC50 values) of ∼10-15 nM in vesicular stomatitis virus (VSV) pseudotyped EBOV (pEBOV) infectivity assays, low hundred nanomolar EC50 activity against wild type EBOV, aqueous solubility >20 mg/mL, and attractive metabolic stability in human and nonhuman liver microsomes. X-ray cocrystallographic characterizations of a lead compound with the EBOV glycoprotein (GP) established the EBOV GP as a target for direct compound inhibitory activity and further provided relevant structural models that may assist in identifying optimized therapeutic candidates.
Collapse
Affiliation(s)
- Michael B. Plewe
- Arisan Therapeutics, 11189 Sorrento Valley Road, Suite 104, San Diego, California 92121, United States
| | - Nadezda V. Sokolova
- Arisan Therapeutics, 11189 Sorrento Valley Road, Suite 104, San Diego, California 92121, United States
| | - Vidyasagar Reddy Gantla
- Arisan Therapeutics, 11189 Sorrento Valley Road, Suite 104, San Diego, California 92121, United States
| | - Eric R. Brown
- Arisan Therapeutics, 11189 Sorrento Valley Road, Suite 104, San Diego, California 92121, United States
| | - Shibani Naik
- Arisan Therapeutics, 11189 Sorrento Valley Road, Suite 104, San Diego, California 92121, United States
| | - Alexandra Fetsko
- Arisan Therapeutics, 11189 Sorrento Valley Road, Suite 104, San Diego, California 92121, United States
| | - Donald D. Lorimer
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98105, United States
- UCB Pharma, 7869 NE Day Road West, Bainbridge Island, Washington 98110, United States
| | - David M. Dranow
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98105, United States
- UCB Pharma, 7869 NE Day Road West, Bainbridge Island, Washington 98110, United States
| | - Hayden Smutney
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98105, United States
- UCB Pharma, 3 Preston Court, Bedford, Massachusetts 01730, United States
| | - Jameson Bullen
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98105, United States
- UCB Pharma, 7869 NE Day Road West, Bainbridge Island, Washington 98110, United States
| | - Rana Sidhu
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98105, United States
- UCB Pharma, 3 Preston Court, Bedford, Massachusetts 01730, United States
| | - Arshil Master
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98105, United States
- UCB Pharma, 3 Preston Court, Bedford, Massachusetts 01730, United States
| | - Junru Wang
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98105, United States
- UCB Pharma, 3 Preston Court, Bedford, Massachusetts 01730, United States
| | - E. Adam Kallel
- Victrix, 12631 Bendito Drive, San Diego, California 92128, United States
| | | | | | | | - Greg Henkel
- Arisan Therapeutics, 11189 Sorrento Valley Road, Suite 104, San Diego, California 92121, United States
| | - Ken McCormack
- Arisan Therapeutics, 11189 Sorrento Valley Road, Suite 104, San Diego, California 92121, United States
| |
Collapse
|