1
|
Li D, Ho V, Teng CF, Tsai HW, Liu Y, Bae S, Ajoyan H, Wettengel JM, Protzer U, Gloss BS, Rockett RJ, Al Asady R, Li J, So S, George J, Douglas MW, Tu T. Novel digital droplet inverse PCR assay shows that natural clearance of hepatitis B infection is associated with fewer viral integrations. Emerg Microbes Infect 2025; 14:2450025. [PMID: 39749570 PMCID: PMC11731057 DOI: 10.1080/22221751.2025.2450025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/04/2025]
Abstract
Hepatitis B virus (HBV) DNA integration into the host cell genome is reportedly a major cause of liver cancer, and a source of hepatitis B surface antigen (HBsAg). High HBsAg levels can alter immune responses which therefore contributes to the progression of HBV-related disease. However, to what extent integration leads to the persistent circulating HBsAg is unclear. Here, we aimed to determine if the extent of HBV DNA integration is associated with the persistence of circulating HBsAg in people exposed to HBV. We established a digital droplet quantitative inverse PCR (dd-qinvPCR) method to quantify integrated HBV DNA in patients who had been exposed to HBV (anti-HBc positive and HBeAg-negative). Total DNA extracts from both liver resections (n = 32; 14 HBsAg-negative and 18 HBsAg-positive) and fine-needle aspirates (FNA, n = 10; 2 HBsAg-negative and 8 HBsAg-positive) were analysed. Using defined in vitro samples for assay establishment, we showed that dd-qinvPCR could detect integrations within an input of <80 cells. The frequency of integrated HBV DNA in those who had undergone HBsAg loss (n = 14, mean ± SD of 1.514 × 10-3 ± 1.839 × 10-3 integrations per cell) was on average 9-fold lower than those with active HBV infection (n = 18, 1.16 × 10-2 ± 1.76 × 10-2 integrations per cell; p = 0.0179). In conclusion, we have developed and validated a highly precise, sensitive and quantitative PCR-based method for the quantification of HBV integrations in clinical samples. Natural clearance of HBV is associated with fewer viral integrations. Future studies are needed to determine if dynamics of integrated HBV DNA can inform the development of curative therapies.
Collapse
Affiliation(s)
- Dong Li
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and The University of Sydney, Westmead, NSW, Australia
| | - Vikki Ho
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and The University of Sydney, Westmead, NSW, Australia
| | - Chiao-Fang Teng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan
- Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yuanyuan Liu
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and The University of Sydney, Westmead, NSW, Australia
| | - Sarah Bae
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and The University of Sydney, Westmead, NSW, Australia
| | - Harout Ajoyan
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and The University of Sydney, Westmead, NSW, Australia
| | - Jochen M. Wettengel
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Brian S. Gloss
- Scientific Platforms, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Rebecca J. Rockett
- Centre for Infectious Diseases and Microbiology–Public Health, Westmead Hospital, Westmead, NSW, Australia
| | - Rafid Al Asady
- Department of Radiology, Westmead Hospital, Westmead, NSW, Australia
| | - Jane Li
- Department of Radiology, Westmead Hospital, Westmead, NSW, Australia
| | - Simon So
- Department of Radiology, Westmead Hospital, Westmead, NSW, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and The University of Sydney, Westmead, NSW, Australia
| | - Mark W. Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and The University of Sydney, Westmead, NSW, Australia
| | - Thomas Tu
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
2
|
Chen Y, Dong Y, Wei S, Gao X, Li W, Zhao P. Genomic Integration of Hepatitis B Virus Into Human Hepatocytes in Early Childhood Cirrhosis. Liver Int 2025; 45:e70080. [PMID: 40130949 DOI: 10.1111/liv.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 02/09/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND AND AIMS Hepatitis B virus (HBV) remains a major global health problem. HBV DNA can be integrated into the human chromosomes. The integration in young cirrhotic chronic hepatitis B children has not been explored. This study aims to investigate HBV DNA integration in early childhood cirrhosis. METHODS Biopsy liver specimens from cirrhotic and matched non-cirrhotic chronic hepatitis B children were collected. HBV DNA integration was detected through targeted HBV DNA fragment capture sequencing. RESULTS Twenty cirrhotic and 20 non-cirrhotic children with chronic hepatitis B were included in the study. The cirrhotic group included 14 males and 6 females, and the non-cirrhotic group included 13 males and 7 females. Compared to non-cirrhotic children, cirrhotic children had lower serum HBsAg quantification (p = 0.001). The median number of HBV integrants in the cirrhotic group was 59 and that in the non-cirrhotic group was 98. No significant difference existed between the two groups (p = 0.529). In the multivariate linear regression analysis, serum HBV DNA level was correlated with the number of HBV integrants (p < 0.001, R2 = 0.322). Six differential intragenic high-frequency viral integration sites in cirrhotic children were revealed, all of which have protein-coding functions. CONCLUSION Several frequently integrated genes were observed in early childhood cirrhosis. Detailed associations between genetic alterations induced by HBV integration and early childhood cirrhosis need further exploration.
Collapse
Affiliation(s)
- Ying Chen
- Department of Clinical Laboratory, 962nd Hospital of PLA Joint Logistic Support Force, Harbin, Heilongjiang Province, China
| | - Yi Dong
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
| | - Shizhang Wei
- Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Gao
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
| | - Weijie Li
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Pan Zhao
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
- Xinxiang Medical University, Xinxiang, Henan Province, China
| |
Collapse
|
3
|
Tu T, McQuaid TJ, Jacobson IM. HBV-Induced Carcinogenesis: Mechanisms, Correlation With Viral Suppression, and Implications for Treatment. Liver Int 2025; 45:e16202. [PMID: 39720865 DOI: 10.1111/liv.16202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/29/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) infection is a common but underdiagnosed and undertreated health condition and is the leading cause of hepatocellular carcinoma (HCC) worldwide. HBV (rated a Grade 1 carcinogen by the International Agency for Research on Cancer) drives the transformation of hepatocytes in multiple ways by inducing viral DNA integrations, genetic dysregulation, chromosomal translocations, chronic inflammation, and oncogenic pathways facilitated by some HBV proteins. Importantly, these mechanisms are active throughout all phases of HBV infection. Nevertheless, most clinical guidelines for antiviral therapy recommend treatment based on a complex combination of HBV DNA levels, transaminasemia, liver histology, and demographic factors, rather than prompt treatment for all people with infection. AIMS To determine if current frameworks for antiviral treatment address the impacts of chronic HBV infection particularly preventing cancer development. MATERIALS AND METHODS We reviewed the recent data demonstrating pro-oncogenic factors acting throughout a chronic HBV infection can be inhibited by antiviral therapy. RESULTS We extensively reviewed Hepatitis B virology data and correlating clinical outcome data. From thi, we suggest that new findings support simplifying and expanding treatment initiation to reduce the incidence ofnew infections, progressive liver disease, and risk of hepatocellular carcinoma. We also consider lessons learned from other blood-borne pathogens, including the benefits of antiviral treatment in preventing transmission, reducing stigma, and reframing treatment as cancer prevention. CONCLUSION Incorporating these practice changes into treatment is likely to reduce the overall burden of chronic HBV infections and HCC. Through this, we may better achieve the World Health Organization's goal of eliminating viral hepatitis as a public health threat and minimise its impact on people's lives.
Collapse
Affiliation(s)
- Thomas Tu
- Storr Liver Centre, Westmead Clinical School, Centre for Infectious Diseases and Microbiology and Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
4
|
Gu Z, Jiang Q, Abulaiti A, Chen X, Li M, Gao N, Guan G, Zhang T, Yang D, Xi J, Yu G, Liu S, Zhu Z, Gao Z, Zhao J, Huang H, Chen X, Lu F. Hepatitis B virus enhancer 1 activates preS1 and preS2 promoters of integrated HBV DNA impairing HBsAg secretion. JHEP Rep 2024; 6:101144. [PMID: 39253701 PMCID: PMC11381774 DOI: 10.1016/j.jhepr.2024.101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 09/11/2024] Open
Abstract
Background & Aims The expression of HBsAg from integrated HBV DNA limits the achievement of functional cure for chronic hepatitis B. Thus, characterising the unique expression and secretion of HBsAg derived from integrated HBV DNA is of clinical significance. Methods A total of 563 treatment-naive patients and 62 functionally cured patients were enrolled, and HBsAg and HBcAg immunohistochemistry of their liver biopsy tissues was conducted followed by semi-quantitative analysis. Then, based on stratified analysis of HBeAg-positive and -negative patients, long-read RNA sequencing analysis, as well as an in vitro HBV integration model, we explored the HBsAg secretion characteristics of integrated HBV DNA and underlying mechanisms. Results In contrast to the significantly lower serum HBsAg levels, no significant decrease of intrahepatic HBsAg protein was observed in HBeAg-negative patients, as compared with HBeAg-positive patients. The results of long-read RNA sequencing of liver tissues from patients with chronic HBV infection and in vitro studies using integrated HBV DNA mimicking dslDNA plasmid revealed that, the lower HBsAg secretion efficiency seen in HBeAg-negative patients might be attributed to an increased proportion of preS1 mRNA derived from integrated HBV DNA instead of covalently closed circular DNA. The latter resulted in an increased L-HBsAg proportion and impaired HBsAg secretion. Enhancer 1 (EnhI) in integrated HBV DNA could retarget preS1 (SP1) and preS2 (SP2) promoters to disrupt their transcriptional activity balance. Conclusions The secretion of HBsAg originating from integrated HBV DNA was impaired. Mechanistically, functional deficiency of core promoter leads to retargeting of EnhI and thus uneven activation of the SP1 over the SP2 promoter, resulting in an increase in the proportion of L-HBsAg. Impact and implications Integrated hepatitis B virus (HBV) DNA can serve as an important reservoir for HBV surface antigen (HBsAg) expression, and this limits the achievement of a functional cure. This study revealed that secretion efficiency is lower for HBsAg derived from integrated HBV DNA than HBsAg derived from covalently closed circular DNA, as determined by the unique sequence features of integrated HBV DNA. This study can broaden our understanding of the role of HBV integration and shed new light on antiviral strategies to facilitate a functional cure. We believe our results are of great general interest to a broad audience, including patients and patient organisations, the medical community, academia, the life science industry and the public.
Collapse
Affiliation(s)
- Zhiqiang Gu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qianqian Jiang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Abudurexiti Abulaiti
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaojie Chen
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China
| | - Mingwei Li
- Research Center for Clinical Medical Sciences, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Na Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Guiwen Guan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ting Zhang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Danli Yang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jingyuan Xi
- Department of Clinical Laboratory Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Guangxin Yu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shuhong Liu
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhijun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Jingmin Zhao
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Hongxin Huang
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiangmei Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| |
Collapse
|
5
|
Li D, Hamadalnil Y, Tu T. Hepatitis B Viral Protein HBx: Roles in Viral Replication and Hepatocarcinogenesis. Viruses 2024; 16:1361. [PMID: 39339838 PMCID: PMC11437454 DOI: 10.3390/v16091361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatitis B virus (HBV) infection remains a major public health concern worldwide, with approximately 296 million individuals chronically infected. The HBV-encoded X protein (HBx) is a regulatory protein of 17 kDa, reportedly responsible for a broad range of functions, including viral replication and oncogenic processes. In this review, we summarize the state of knowledge on the mechanisms underlying HBx functions in viral replication, the antiviral effect of therapeutics directed against HBx, and the role of HBx in liver cancer development (including a hypothetical model of hepatocarcinogenesis). We conclude by highlighting major unanswered questions in the field and the implications of their answers.
Collapse
Affiliation(s)
- Dong Li
- The Westmead Institute for Medical Research, Faculty of Medicine, The University of Sydney, Westmead, NSW 2145, Australia;
| | | | - Thomas Tu
- The Westmead Institute for Medical Research, Faculty of Medicine, The University of Sydney, Westmead, NSW 2145, Australia;
- Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
6
|
Yu X, Gong Q, Yu D, Chen Y, Jing Y, Zoulim F, Zhang X. Spatial transcriptomics reveals a low extent of transcriptionally active hepatitis B virus integration in patients with HBsAg loss. Gut 2024; 73:797-809. [PMID: 37968095 PMCID: PMC11041573 DOI: 10.1136/gutjnl-2023-330577] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023]
Abstract
OBJECTIVE Hepatitis B virus (HBV) can integrate into the chromosomes of infected hepatocytes, contributing to the production of hepatitis B surface antigen (HBsAg) and to hepatocarcinogenesis. In this study, we aimed to explore whether transcriptionally active HBV integration events spread throughout the liver tissue in different phases of chronic HBV infection, especially in patients with HBsAg loss. DESIGN We constructed high-resolution spatial transcriptomes of liver biopsies containing 13 059 tissue spots from 18 patients with chronic HBV infection to analyse the occurrence and relative distribution of transcriptionally active viral integration events. Immunohistochemistry was performed to evaluate the expression of HBsAg and HBV core antigen. Intrahepatic covalently closed circular DNA (cccDNA) levels were quantified by real-time qPCR. RESULTS Spatial transcriptome sequencing identified the presence of 13 154 virus-host chimeric reads in 7.86% (1026 of 13 059) of liver tissue spots in all patients, including three patients with HBsAg loss. These HBV integration sites were randomly distributed on chromosomes and can localise in host genes involved in hepatocarcinogenesis, such as ALB, CLU and APOB. Patients who were receiving or had received antiviral treatment had a significantly lower percentage of viral integration-containing spots and significantly fewer chimeric reads than treatment-naïve patients. Intrahepatic cccDNA levels correlated well with viral integration events. CONCLUSION Transcriptionally active HBV integration occurred in chronically HBV-infected patients at different phases, including in patients with HBsAg loss. Antiviral treatment was associated with a decreased number and extent of transcriptionally active viral integrations, implying that early treatment intervention may further reduce the number of viral integration events.
Collapse
Affiliation(s)
- Xiaoqi Yu
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Qiming Gong
- Department of Infectious Diseases, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Demin Yu
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Yongyan Chen
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Ying Jing
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, China
| | - Fabien Zoulim
- INSERM U1052- Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, UMR_S1052, CRCL, Lyon, France
- Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Xinxin Zhang
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| |
Collapse
|
7
|
Smekalova EM, Martinez MG, Combe E, Kumar A, Dejene S, Leboeuf D, Chen CY, Dorkin JR, Shuang LS, Kieft S, Young L, Barrera LA, Packer MS, Ciaramella G, Testoni B, Gregoire F, Zoulim F. Cytosine base editing inhibits hepatitis B virus replication and reduces HBsAg expression in vitro and in vivo. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102112. [PMID: 38292874 PMCID: PMC10825689 DOI: 10.1016/j.omtn.2023.102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024]
Abstract
Chronic hepatitis B virus (HBV) infection remains a global health problem due to the lack of treatments that prevent viral rebound from HBV covalently closed circular (ccc)DNA. In addition, HBV DNA integrates in the human genome, serving as a source of hepatitis B surface antigen (HBsAg) expression, which impairs anti-HBV immune responses. Cytosine base editors (CBEs) enable precise conversion of a cytosine into a thymine within DNA. In this study, CBEs were used to introduce stop codons in HBV genes, HBs and Precore. Transfection with mRNA encoding a CBE and a combination of two guide RNAs led to robust cccDNA editing and sustained reduction of the viral markers in HBV-infected HepG2-NTCP cells and primary human hepatocytes. Furthermore, base editing efficiently reduced HBsAg expression from HBV sequences integrated within the genome of the PLC/PRF/5 and HepG2.2.15 cell lines. Finally, in the HBV minicircle mouse model, using lipid nanoparticulate delivery, we demonstrated antiviral efficacy of the base editing approach with a >3log10 reduction in serum HBV DNA and >2log10 reduction in HBsAg, and 4/5 mice showing HBsAg loss. Combined, these data indicate that base editing can introduce mutations in both cccDNA and integrated HBV DNA, abrogating HBV replication and silencing viral protein expression.
Collapse
Affiliation(s)
| | - Maria G. Martinez
- INSERM U1052, Cancer Research Center of Lyon, CNRS UMR 5286, 69008 Lyon, France
- University of Lyon, UMR_S1052, UCBL, 69008 Lyon, France
- Hepatology Institute of Lyon, 69008 Lyon, France
| | - Emmanuel Combe
- INSERM U1052, Cancer Research Center of Lyon, CNRS UMR 5286, 69008 Lyon, France
- University of Lyon, UMR_S1052, UCBL, 69008 Lyon, France
- Hepatology Institute of Lyon, 69008 Lyon, France
| | - Anuj Kumar
- INSERM U1052, Cancer Research Center of Lyon, CNRS UMR 5286, 69008 Lyon, France
- University of Lyon, UMR_S1052, UCBL, 69008 Lyon, France
- Hepatology Institute of Lyon, 69008 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | - Barbara Testoni
- INSERM U1052, Cancer Research Center of Lyon, CNRS UMR 5286, 69008 Lyon, France
- University of Lyon, UMR_S1052, UCBL, 69008 Lyon, France
- Hepatology Institute of Lyon, 69008 Lyon, France
| | | | - Fabien Zoulim
- INSERM U1052, Cancer Research Center of Lyon, CNRS UMR 5286, 69008 Lyon, France
- University of Lyon, UMR_S1052, UCBL, 69008 Lyon, France
- Hepatology Institute of Lyon, 69008 Lyon, France
- Hepatology Department, Hospices Civils de Lyon (HCL), 69004 Lyon, France
| |
Collapse
|
8
|
Kim SC, Wallin JJ, Ghosheh Y, Zahoor MA, Sanchez Vasquez JD, Nkongolo S, Fung S, Mendez P, Feld JJ, Janssen HL, Gehring AJ. Efficacy of antiviral therapy and host-virus interactions visualised using serial liver sampling with fine-needle aspirates. JHEP Rep 2023; 5:100817. [PMID: 37600958 PMCID: PMC10432215 DOI: 10.1016/j.jhepr.2023.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/09/2023] [Indexed: 08/22/2023] Open
Abstract
Background & Aims Novel therapies for chronic hepatitis B (CHB), such as RNA interference, target all viral RNAs for degradation, whereas nucleoside analogues are thought to block reverse transcription with minimal impact on viral transcripts. However, limitations in technology and sampling frequency have been obstacles to measuring actual changes in HBV transcription in the liver of patients starting therapy. Methods We used elective liver sampling with fine-needle aspirates (FNAs) to investigate the impact of treatment on viral replication in patients with CHB. Liver FNAs were collected from patients with CHB at baseline and 12 and 24 weeks after starting tenofovir alafenamide treatment. Liver FNAs were subjected to single-cell RNA sequencing and analysed using the Viral-Track method. Results HBV was the only viral genome detected and was enriched within hepatocytes. The 5' sequencing technology identified protein-specific HBV transcripts and showed that tenofovir alafenamide therapy specifically reduced pre-genomic RNA transcripts with little impact on HBsAg or HBx transcripts. Infected hepatocytes displayed unique gene signatures associated with an immunological response to viral infection. Conclusions Longitudinal liver sampling, combined with single-cell RNA sequencing, captured the dynamic impact of antiviral therapy on the replication status of HBV and revealed host-pathogen interactions at the transcriptional level in infected hepatocytes. This sequencing-based approach is applicable to early-stage clinical studies, enabling mechanistic studies of immunopathology and the effect of novel therapeutic interventions. Impact and Implications Infection-dependent transcriptional changes and the impact of antiviral therapy on viral replication can be measured in longitudinal human liver biopsies using single-cell RNA sequencing data.
Collapse
Affiliation(s)
| | | | - Yanal Ghosheh
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Muhammad Atif Zahoor
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Juan Diego Sanchez Vasquez
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Shirin Nkongolo
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Internal Medicine IV (Gastroenterology, Hepatology, Infectious Diseases), University Hospital Heidelberg, Heidelberg, Germany
| | - Scott Fung
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | | | - Jordan J. Feld
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Harry L.A. Janssen
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Erasmus Medical Center, Division of Gastroenterology and Hepatology, Rotterdam, The Netherlands
| | - Adam J. Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Lafon-Hughes L. Towards Understanding Long COVID: SARS-CoV-2 Strikes the Host Cell Nucleus. Pathogens 2023; 12:806. [PMID: 37375496 PMCID: PMC10301789 DOI: 10.3390/pathogens12060806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Despite what its name suggests, the effects of the COVID-19 pandemic causative agent "Severe Acute Respiratory Syndrome Coronavirus-2" (SARS-CoV-2) were not always confined, neither temporarily (being long-term rather than acute, referred to as Long COVID) nor spatially (affecting several body systems). Moreover, the in-depth study of this ss(+) RNA virus is defying the established scheme according to which it just had a lytic cycle taking place confined to cell membranes and the cytoplasm, leaving the nucleus basically "untouched". Cumulative evidence shows that SARS-CoV-2 components disturb the transport of certain proteins through the nuclear pores. Some SARS-CoV-2 structural proteins such as Spike (S) and Nucleocapsid (N), most non-structural proteins (remarkably, Nsp1 and Nsp3), as well as some accessory proteins (ORF3d, ORF6, ORF9a) can reach the nucleoplasm either due to their nuclear localization signals (NLS) or taking a shuttle with other proteins. A percentage of SARS-CoV-2 RNA can also reach the nucleoplasm. Remarkably, controversy has recently been raised by proving that-at least under certain conditions-, SARS-CoV-2 sequences can be retrotranscribed and inserted as DNA in the host genome, giving rise to chimeric genes. In turn, the expression of viral-host chimeric proteins could potentially create neo-antigens, activate autoimmunity and promote a chronic pro-inflammatory state.
Collapse
Affiliation(s)
- Laura Lafon-Hughes
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo 11600, Uruguay; ; Tel.: +598-2-93779096
- Grupo de Biofisicoquímica, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República (CENUR-UdelaR), Salto 50000, Uruguay
| |
Collapse
|
10
|
Pregenomic RNA Launch Hepatitis B Virus Replication System Facilitates the Mechanistic Study of Antiviral Agents and Drug-Resistant Variants on Covalently Closed Circular DNA Synthesis. J Virol 2022; 96:e0115022. [PMID: 36448800 PMCID: PMC9769369 DOI: 10.1128/jvi.01150-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Hepatitis B virus (HBV) replicates its genomic DNA by reverse transcription of an RNA intermediate, termed pregenomic RNA (pgRNA), within nucleocapsid. It had been shown that transfection of in vitro-transcribed pgRNA initiated viral replication in human hepatoma cells. We demonstrated here that viral capsids, single-stranded DNA, relaxed circular DNA (rcDNA) and covalently closed circular DNA (cccDNA) became detectable sequentially at 3, 6, 12, and 24 h post-pgRNA transfection into Huh7.5 cells. The levels of viral DNA replication intermediates and cccDNA peaked at 24 and 48 h post-pgRNA transfection, respectively. HBV surface antigen (HBsAg) became detectable in culture medium at day 4 posttransfection. Interestingly, the early robust viral DNA replication and cccDNA synthesis did not depend on the expression of HBV X protein (HBx), whereas HBsAg production was strictly dependent on viral DNA replication and expression of HBx, consistent with the essential role of HBx in the transcriptional activation of cccDNA minichromosomes. While the robust and synchronized HBV replication within 48 h post-pgRNA transfection is particularly suitable for the precise mapping of the HBV replication steps, from capsid assembly to cccDNA formation, targeted by distinct antiviral agents, the treatment of cells starting at 48 h post-pgRNA transfection allows the assessment of antiviral agents on mature nucleocapsid uncoating, cccDNA synthesis, and transcription, as well as viral RNA stability. Moreover, the pgRNA launch system could be used to readily assess the impacts of drug-resistant variants on cccDNA formation and other replication steps in the viral life cycle. IMPORTANCE Hepadnaviral pgRNA not only serves as a template for reverse transcriptional replication of viral DNA but also expresses core protein and DNA polymerase to support viral genome replication and cccDNA synthesis. Not surprisingly, cytoplasmic expression of duck hepatitis B virus pgRNA initiated viral replication leading to infectious virion secretion. However, HBV replication and antiviral mechanism were studied primarily in human hepatoma cells transiently or stably transfected with plasmid-based HBV replicons. The presence of large amounts of transfected HBV DNA or transgenes in cellular chromosomes hampered the robust analyses of HBV replication and cccDNA function. As demonstrated here, the pgRNA launch HBV replication system permits the accurate mapping of antiviral target and investigation of cccDNA biosynthesis and transcription using secreted HBsAg as a convenient quantitative marker. The effect of drug-resistant variants on viral capsid assembly, genome replication, and cccDNA biosynthesis and function can also be assessed using this system.
Collapse
|
11
|
Demir AB, Benvenuto D, Karacicek B, Erac Y, Spoto S, Angeletti S, Ciccozzi M, Tosun M. Implications of Possible HBV-Driven Regulation of Gene Expression in Stem Cell-like Subpopulation of Huh-7 Hepatocellular Carcinoma Cell Line. J Pers Med 2022; 12:jpm12122065. [PMID: 36556285 PMCID: PMC9786676 DOI: 10.3390/jpm12122065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Elevated levels of STIM1, an endoplasmic reticulum Ca2+ sensor/buffering protein, appear to be correlated with poor cancer prognosis in which microRNAs are also known to play critical roles. The purpose of this study is to investigate possible HBV origins of specific microRNAs we identified in a stem cell-like subpopulation of Huh-7 hepatocellular carcinoma (HCC) cell lines with enhanced STIM1 and/or Orai1 expression that mimicked poor cancer prognosis. Computational strategies including phylogenetic analyses were performed on miRNome data we obtained from an EpCAM- and CD133-expressing Huh-7 HCC stem cell-like subpopulation with enhanced STIM1 and/or Orai1 expression originally cultured in the present work. Results revealed two putative regions in the HBV genome based on the apparent clustering pattern of stem loop sequences of microRNAs, including miR3653. Reciprocal analysis of these regions identified critical human genes, of which their transcripts are among the predicted targets of miR3653, which was increased significantly by STIM1 or Orai1 enhancement. Briefly, this study provides phylogenetic evidence for a possible HBV-driven epigenetic remodeling that alters the expression pattern of Ca2+ homeostasis-associated genes in STIM1- or Orai1 overexpressing liver cancer stem-like cells for a possible mutual survival outcome. A novel region on HBV-X protein may affect liver carcinogenesis in a genotype-dependent manner. Therefore, detection of the viral genotype would have a clinical impact on prognosis of HBV-induced liver cancers.
Collapse
Affiliation(s)
- Ayse Banu Demir
- Department of Medical Biology, Faculty of Medicine, Izmir University of Economics, 35330 Izmir, Turkey
| | - Domenico Benvenuto
- Faculty of Medicine, University Campus Bio-Medico of Rome (UCBM), 200 Rome, Italy
| | - Bilge Karacicek
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, 35340 Izmir, Turkey
| | - Yasemin Erac
- Department of Pharmacology, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey
| | - Silvia Spoto
- Diagnostic and Therapeutic Medicine Division, Fondazione Policlinico Universitario Campus Bio-Medico, 200 Rome, Italy
| | - Silvia Angeletti
- Clinical Laboratory Science Unit, Faculty of Medicine, University Campus Bio-Medico of Rome (UCBM), 200 Rome, Italy
- Clinical Laboratory Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico Via Alvaro del Portillo, 200 Rome, Italy
- Correspondence: (S.A.); (M.T.); Tel.: +39-06225411461 (S.A.); +90-2324889843 (M.T.)
| | - Massimo Ciccozzi
- Medical Statistics and Molecular Epidemiology Unit, Faculty of Medicine, University Campus Bio-Medico of Rome (UCBM), 200 Rome, Italy
| | - Metiner Tosun
- Department of Medical Pharmacology, Faculty of Medicine, Izmir University of Economics, 35330 Izmir, Turkey
- Correspondence: (S.A.); (M.T.); Tel.: +39-06225411461 (S.A.); +90-2324889843 (M.T.)
| |
Collapse
|
12
|
Grudda T, Hwang HS, Taddese M, Quinn J, Sulkowski MS, Sterling RK, Balagopal A, Thio CL. Integrated hepatitis B virus DNA maintains surface antigen production during antiviral treatment. J Clin Invest 2022; 132:e161818. [PMID: 35797115 PMCID: PMC9473722 DOI: 10.1172/jci161818] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The focus of hepatitis B functional cure, defined as sustained loss of hepatitis B virus (HBV) surface antigen (HBsAg) and HBV DNA from blood, is on eliminating or silencing the intranuclear template for HBV replication, covalently closed circular DNA (cccDNA). However, HBsAg also derives from HBV DNA integrated into the host genome (iDNA). Little is known about the contribution of iDNA to circulating HBsAg with current therapeutics. We applied a multiplex droplet digital PCR assay to demonstrate that iDNA is responsible for maintaining HBsAg quantities in some individuals. Using paired bulk liver tissue from 16 HIV/HBV-coinfected persons on nucleos(t)ide analog (NUC) therapy, we demonstrate that people with larger HBsAg declines between biopsies derive HBsAg from cccDNA, whereas people with stable HBsAg levels derive predominantly from iDNA. We applied our assay to individual hepatocytes in paired tissues from 3 people and demonstrated that the individual with significant HBsAg decline had a commensurate loss of infected cells with transcriptionally active cccDNA, while individuals without HBsAg decline had stable or increasing numbers of cells producing HBsAg from iDNA. We demonstrate that while NUC therapy may be effective at controlling cccDNA replication and transcription, innovative treatments are required to address iDNA transcription that sustains HBsAg production.
Collapse
Affiliation(s)
- Tanner Grudda
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Hyon S. Hwang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Maraake Taddese
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey Quinn
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark S. Sulkowski
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard K. Sterling
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ashwin Balagopal
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chloe L. Thio
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Gorsuch CL, Nemec P, Yu M, Xu S, Han D, Smith J, Lape J, van Buuren N, Ramirez R, Muench RC, Holdorf MM, Feierbach B, Falls G, Holt J, Shoop W, Sevigny E, Karriker F, Brown RV, Joshi A, Goodwin T, Tam YK, Lin PJC, Semple SC, Leatherbury N, Delaney Iv WE, Jantz D, Rhoden Smith A. Targeting the hepatitis B cccDNA with a sequence-specific ARCUS nuclease to eliminate hepatitis B virus in vivo. Mol Ther 2022; 30:2909-2922. [PMID: 35581938 PMCID: PMC9481990 DOI: 10.1016/j.ymthe.2022.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
Persistence of chronic hepatitis B (CHB) is attributed to maintenance of the intrahepatic pool of the viral covalently closed circular DNA (cccDNA), which serves as the transcriptional template for all viral gene products required for replication. Current nucleos(t)ide therapies for CHB prevent virus production and spread but have no direct impact on cccDNA or expression of viral genes. We describe a potential curative approach using a highly specific engineered ARCUS nuclease (ARCUS-POL) targeting the hepatitis B virus (HBV) genome. Transient ARCUS-POL expression in HBV-infected primary human hepatocytes produced substantial reductions in both cccDNA and hepatitis B surface antigen (HBsAg). To evaluate ARCUS-POL in vivo, we developed episomal adeno-associated virus (AAV) mouse and non-human primate (NHP) models containing a portion of the HBV genome serving as a surrogate for cccDNA. Clinically relevant delivery was achieved through systemic administration of lipid nanoparticles containing ARCUS-POL mRNA. In both mouse and NHP, we observed a significant decrease in total AAV copy number and high on-target indel frequency. In the case of the mouse model, which supports HBsAg expression, circulating surface antigen was durably reduced by 96%. Together, these data support a gene-editing approach for elimination of cccDNA toward an HBV cure.
Collapse
Affiliation(s)
| | - Paige Nemec
- Precision BioSciences Inc, Durham, NC 27701, USA
| | - Mei Yu
- Gilead Sciences, Inc, Foster City, CA 94404, USA
| | - Simin Xu
- Gilead Sciences, Inc, Foster City, CA 94404, USA
| | - Dong Han
- Gilead Sciences, Inc, Foster City, CA 94404, USA
| | - Jeff Smith
- Precision BioSciences Inc, Durham, NC 27701, USA
| | - Janel Lape
- Precision BioSciences Inc, Durham, NC 27701, USA
| | | | | | | | | | | | - Greg Falls
- Precision BioSciences Inc, Durham, NC 27701, USA
| | - Jason Holt
- Precision BioSciences Inc, Durham, NC 27701, USA
| | - Wendy Shoop
- Precision BioSciences Inc, Durham, NC 27701, USA
| | - Emma Sevigny
- Precision BioSciences Inc, Durham, NC 27701, USA
| | | | | | - Amod Joshi
- Precision BioSciences Inc, Durham, NC 27701, USA
| | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | - Derek Jantz
- Precision BioSciences Inc, Durham, NC 27701, USA.
| | | |
Collapse
|
14
|
Zhou H, Wang X, Steer CJ, Song G, Niu J. Efficient silencing of hepatitis B virus S gene through CRISPR-mediated base editing. Hepatol Commun 2022; 6:1652-1663. [PMID: 35338607 PMCID: PMC9234685 DOI: 10.1002/hep4.1933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 02/06/2022] [Accepted: 02/13/2022] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major risk factor of liver cirrhosis and hepatocellular carcinoma. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has been used to precisely edit the HBV genome and eliminate HBV through non-homologous end-joining repair of double-stranded break (DSB). However, the CRISPR/Cas9-mediated DSB triggers instability of host genome and exhibits low efficiency to edit genome, limiting its application. CRISPR cytidine base editors (CBEs) could silence genes by generating a premature stop codon. Here we developed a CRISPR base editor approach to precisely edit single nucleotide within the HBV genome to impair HBV gene expression. Specifically, a single-guide RNA (sgRNA) was designed to edit the 30th codon of HBV S gene, which encodes HBV surface antigen (HBsAg), from CAG (glutamine) to stop codon TAG. We next used human hepatoma PLC/PRF/5 cells carrying the HBV genome to establish a cell line that expresses a CBE (PLC/PRF/5-CBE). Lentivirus was used to introduce sgRNA into PLC/PRF/5-CBE cells. Phenotypically, 71% of PLC/PRF/5-CBE cells developed a premature stop codon within the S gene. Levels of HBs messenger RNA were significantly decreased. A 92% reduction of HBsAg secretion was observed in PLC/PRF/5-CBE cells. The intracellular HBsAg was also reduced by 84% after treatment of gRNA_S. Furthermore, no off-target effect was detected in predicted off-target loci within the HBV genome. Sequencing confirmed that 95%, 93%, 93%, 9%, and 72% S gene sequences of HBV genotypes B, C, F, G, and H had the binding site of sgRNA. Conclusion: Our findings indicate that CRISPR-mediated base editing is an efficient approach to silence the HBV S gene, suggesting its therapeutic potential to eliminate HBV.
Collapse
Affiliation(s)
- Hao Zhou
- Department of HepatologyThe First Hospital of Jilin UniversityChangchunChina
- Department of MedicineUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Xiaomei Wang
- Department of HepatologyThe First Hospital of Jilin UniversityChangchunChina
- Department of MedicineUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Clifford J. Steer
- Department of MedicineUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Guisheng Song
- Department of MedicineUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Junqi Niu
- Department of HepatologyThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
15
|
Wang W, Chen Y, Wu L, Zhang Y, Yoo S, Chen Q, Liu S, Hou Y, Chen XP, Chen Q, Zhu J. HBV genome-enriched single cell sequencing revealed heterogeneity in HBV-driven hepatocellular carcinoma (HCC). BMC Med Genomics 2022; 15:134. [PMID: 35710421 PMCID: PMC9205089 DOI: 10.1186/s12920-022-01264-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/05/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) related hepatocellular carcinoma (HCC) is heterogeneous and frequently contains multifocal tumors, but how the multifocal tumors relate to each other in terms of HBV integration and other genomic patterns is not clear. METHODS To interrogate heterogeneity of HBV-HCC, we developed a HBV genome enriched single cell sequencing (HGE-scSeq) procedure and a computational method to identify HBV integration sites and infer DNA copy number variations (CNVs). RESULTS We performed HGE-scSeq on 269 cells from four tumor sites and two tumor thrombi of a HBV-HCC patient. HBV integrations were identified in 142 out of 269 (53%) cells sequenced, and were enriched in two HBV integration hotspots chr1:34,397,059 (CSMD2) and chr8:118,557,327 (MED30/EXT1). There were also 162 rare integration sites. HBV integration sites were enriched in DNA fragile sites and sequences around HBV integration sites were enriched for microhomologous sequences between human and HBV genomes. CNVs were inferred for each individual cell and cells were grouped into four clonal groups based on their CNVs. Cells in different clonal groups had different degrees of HBV integration heterogeneity. All of 269 cells carried chromosome 1q amplification, a recurrent feature of HCC tumors, suggesting that 1q amplification occurred before HBV integration events in this case study. Further, we performed simulation studies to demonstrate that the sequential events (HBV infecting transformed cells) could result in the observed phenotype with biologically reasonable parameters. CONCLUSION Our HGE-scSeq data reveals high heterogeneity of HCC tumor cells in terms of both HBV integrations and CNVs. There were two HBV integration hotspots across cells, and cells from multiple tumor sites shared some HBV integration and CNV patterns.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave., New York, NY, 10029, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Sema4, Stamford, CT, USA
| | - Yan Chen
- The Hepatic Surgery Centre at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | | | - Yi Zhang
- Department of Mathematics, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave., New York, NY, 10029, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Sema4, Stamford, CT, USA
| | - Quan Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave., New York, NY, 10029, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Sema4, Stamford, CT, USA
| | | | | | - Xiao-Ping Chen
- The Hepatic Surgery Centre at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Qian Chen
- The Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave., New York, NY, 10029, USA.
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Sema4, Stamford, CT, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
16
|
Boettler T, Gill US, Allweiss L, Pollicino T, Tavis JE, Zoulim F. Assessing immunological and virological responses in the liver: Implications for the cure of chronic hepatitis B virus infection. JHEP Rep 2022; 4:100480. [PMID: 35493765 PMCID: PMC9039841 DOI: 10.1016/j.jhepr.2022.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/11/2022] Open
Abstract
Cure from chronic HBV infection is rare with current therapies. Basic research has helped to fundamentally improve our knowledge of the viral life cycle and virus-host interactions, and provided the basis for several novel drug classes that are currently being developed or are being tested in clinical trials. While these novel compounds targeting the viral life cycle or antiviral immune responses hold great promise, we are still lacking a comprehensive understanding of the immunological and virological processes that occur at the site of infection, the liver. At the International Liver Congress 2021 (ILC 2021), a research think tank on chronic HBV infection focused on mechanisms within the liver that facilitate persistent infection and looked at the research questions that need to be addressed to fill knowledge gaps and identify novel therapeutic strategies. Herein, we summarise the discussion by the think tank and identify the key basic research questions that must be addressed in order to develop more effective strategies for the functional cure of HBV infection.
Collapse
Affiliation(s)
- Tobias Boettler
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Upkar S. Gill
- Blizard Institute, Centre for Immunobiology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Lena Allweiss
- I. Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems sites, Germany
| | - Teresa Pollicino
- Department of Human Pathology, University Hospital "G. Martino" of Messina, Messina, Italy
| | - John E. Tavis
- Department of Molecular Microbiology and Immunology and Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis MO USA
| | - Fabien Zoulim
- INSERM Unit 1052 – Cancer Research Center of Lyon, Department of Hepatology Hospices Civils de Lyon, Lyon University, France
| |
Collapse
|
17
|
Targeting Subviral Particles: A Critical Step in Achieving HBV Functional Cure but Where Are We with Current Agents in Clinical Development? Viruses 2022; 14:v14061193. [PMID: 35746664 PMCID: PMC9227515 DOI: 10.3390/v14061193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
|
18
|
Hsu YC, Suri V, Nguyen MH, Huang YT, Chen CY, Chang IW, Tseng CH, Wu CY, Lin JT, Pan DZ, Gaggar A, Podlaha O. Inhibition of Viral Replication Reduces Transcriptionally Active Distinct Hepatitis B Virus Integrations With Implications on Host Gene Dysregulation. Gastroenterology 2022; 162:1160-1170.e1. [PMID: 34995536 DOI: 10.1053/j.gastro.2021.12.286] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 12/02/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Hepatocellular carcinogenesis of hepatitis B virus (HBV) infection may arise from integration of viral DNA into the host genome. We aimed to gauge the effect of viral inhibition on transcriptionally active HBV-host integration events and explore the correlation of viral integrations with host gene dysregulation. METHODS We leveraged data and biospecimens from an interventional trial, in which patients with HBV viremia above 2000 IU/mL and minimally raised serum liver enzyme were randomized to receive tenofovir disoproxil fumarate (TDF) or placebo for 3 years. Total RNA-sequencing was performed on paired liver biopsies taken before and after the 3-year intervention in 119 patients. Virus-host chimeric reads were captured to quantify the number of distinct viral integrations. Dysregulation of a host gene disrupted by viral integration was defined by aberrant expression >2 standard deviations away from samples without viral integration. RESULTS The TDF (n = 64) and placebo groups (n = 55) were comparable at baseline. Expressed viral integrations were detected in all pre- and posttreatment samples. The number of distinct viral integrations significantly correlated with circulatory biomarkers indicative of viral activities including HBV DNA, RNA, and viral antigens (P < .0003 for all correlations). Moreover, TDF vs placebo achieved a significantly greater reduction in distinct viral integrations, with 3.28-fold and 1.81-fold decreases in the expressed integrations per million reads, respectively (analysis of covariance, P = .037). Besides, viral integrations significantly correlated with host gene dysregulation. CONCLUSION Inhibition of viral replication reduces the number of transcriptionally active distinct HBV-host DNA integrations in patients with substantial viremia. Given the mutagenic potentials of viral integrations, such treatment effects should be considered in patient management.
Collapse
Affiliation(s)
- Yao-Chun Hsu
- Division of Gastroenterology and Hepatology, E-Da Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan; Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Gastroenterology and Hepatology, Fu-Jen Catholic University Hospital, New Taipei, Taiwan
| | - Vithika Suri
- Gilead Sciences Inc., Foster City, California, USA
| | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California, USA; Department of Epidemiology and Population Health, Stanford University Medical Center, Palo Alto, California, USA
| | - Yen-Tsung Huang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Chi-Yi Chen
- Division of Gastroenterology and Hepatology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - I-Wei Chang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Clinical Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Hao Tseng
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan; Division of Gastroenterology and Hepatology, E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - Chun-Ying Wu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Translational Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jaw-Town Lin
- Division of Gastroenterology and Hepatology, E-Da Hospital, Kaohsiung, Taiwan
| | - David Z Pan
- Gilead Sciences Inc., Foster City, California, USA
| | - Anuj Gaggar
- Gilead Sciences Inc., Foster City, California, USA
| | | |
Collapse
|
19
|
Hirode G, Choi HSJ, Chen CH, Su TH, Seto WK, Van Hees S, Papatheodoridi M, Lens S, Wong G, Brakenhoff SM, Chien RN, Feld J, Sonneveld MJ, Chan HLY, Forns X, Papatheodoridis GV, Vanwolleghem T, Yuen MF, Hsu YC, Kao JH, Cornberg M, Hansen BE, Jeng WJ, Janssen HLA. Off-Therapy Response After Nucleos(t)ide Analogue Withdrawal in Patients With Chronic Hepatitis B: An International, Multicenter, Multiethnic Cohort (RETRACT-B Study). Gastroenterology 2022; 162:757-771.e4. [PMID: 34762906 DOI: 10.1053/j.gastro.2021.11.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Functional cure, defined based on hepatitis B surface antigen (HBsAg) loss, is rare during nucleos(t)ide analogue (NA) therapy and guidelines on finite NA therapy have not been well established. We aim to analyze off-therapy outcomes after NA cessation in a large, international, multicenter, multiethnic cohort of patients with chronic hepatitis B (CHB). METHODS This cohort study included patients with virally suppressed CHB who were hepatitis B e antigen (HBeAg)-negative and stopped NA therapy. Primary outcome was HBsAg loss after NA cessation, and secondary outcomes included virologic, biochemical, and clinical relapse, alanine aminotransferase flare, retreatment, and liver-related events after NA cessation. RESULTS Among 1552 patients with CHB, cumulative probability of HBsAg loss was 3.2% at 12 months and 13.0% at 48 months of follow-up. HBsAg loss was higher among Whites (vs Asians: subdistribution hazard ratio, 6.8; 95% confidence interval, 2.7-16.8; P < .001) and among patients with HBsAg levels <100 IU/mL at end of therapy (vs ≥100 IU/mL: subdistribution hazard ratio, 22.5; 95% confidence interval, 13.1-38.7; P < .001). At 48 months of follow-up, Whites with HBsAg levels <1000 IU/mL and Asians with HBsAg levels <100 IU/mL at end of therapy had a high predicted probability of HBsAg loss (>30%). Incidence rate of hepatic decompensation and hepatocellular carcinoma was 0.48 per 1000 person-years and 0.29 per 1000 person-years, respectively. Death occurred in 7/19 decompensated patients and 2/14 patients with hepatocellular carcinoma. CONCLUSIONS The best candidates for NA withdrawal are virally suppressed, HBeAg- negative, noncirrhotic patients with CHB with low HBsAg levels, particularly Whites with <1000 IU/mL and Asians with <100 IU/mL. However, strict surveillance is recommended to prevent deterioration.
Collapse
Affiliation(s)
- Grishma Hirode
- Toronto Centre for Liver Disease, Toronto General Hospital, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; The Toronto Viral Hepatitis Care Network, Toronto, Canada
| | - Hannah S J Choi
- Toronto Centre for Liver Disease, Toronto General Hospital, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | | | - Tung-Hung Su
- National Taiwan University Hospital, Taipei, Taiwan
| | - Wai-Kay Seto
- Department of Medicine and State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Special administrative regions of China
| | - Stijn Van Hees
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | | | - Sabela Lens
- Hospital Clinic Barcelona, IDIBAPS and CIBEREHD, University of Barcelona, Barcelona, Spain
| | - Grace Wong
- The Chinese University of Hong Kong, Hong Kong, Special administrative regions of China
| | - Sylvia M Brakenhoff
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Rong-Nan Chien
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Linkou, Taiwan
| | - Jordan Feld
- Toronto Centre for Liver Disease, Toronto General Hospital, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; The Toronto Viral Hepatitis Care Network, Toronto, Canada
| | - Milan J Sonneveld
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Henry L Y Chan
- The Chinese University of Hong Kong, Hong Kong, Special administrative regions of China
| | - Xavier Forns
- Hospital Clinic Barcelona, IDIBAPS and CIBEREHD, University of Barcelona, Barcelona, Spain
| | | | - Thomas Vanwolleghem
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | - Man-Fung Yuen
- Department of Medicine and State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Special administrative regions of China
| | - Yao-Chun Hsu
- E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | | | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany Centre for Individualized Infection Medicine, Hannover, Germany
| | - Bettina E Hansen
- Toronto Centre for Liver Disease, Toronto General Hospital, University Health Network, Toronto, Canada; The Toronto Viral Hepatitis Care Network, Toronto, Canada
| | - Wen-Juei Jeng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Linkou, Taiwan
| | - Harry L A Janssen
- Toronto Centre for Liver Disease, Toronto General Hospital, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; The Toronto Viral Hepatitis Care Network, Toronto, Canada.
| |
Collapse
|
20
|
Nečasová I, Stojaspal M, Motyčáková E, Brom T, Janovič T, Hofr C. Transcriptional regulators of human oncoviruses: structural and functional implications for anticancer therapy. NAR Cancer 2022; 4:zcac005. [PMID: 35252867 PMCID: PMC8892037 DOI: 10.1093/narcan/zcac005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 11/26/2022] Open
Abstract
Transcription is often the first biosynthetic event of viral infection. Viruses produce preferentially viral transcriptional regulators (vTRs) essential for expressing viral genes and regulating essential host cell proteins to enable viral genome replication. As vTRs are unique viral proteins that promote the transcription of viral nucleic acid, vTRs interact with host proteins to suppress detection and immune reactions to viral infection. Thus, vTRs are promising therapeutic targets that are sequentially and structurally distinct from host cell proteins. Here, we review vTRs of three human oncoviruses: HBx of hepatitis B virus, HBZ of human T-lymphotropic virus type 1, and Rta of Epstein-Barr virus. We present three cunningly exciting and dangerous transcription strategies that make viral infections so efficient. We use available structural and functional knowledge to critically examine the potential of vTRs as new antiviral-anticancer therapy targets. For each oncovirus, we describe (i) the strategy of viral genome transcription; (ii) vTRs' structure and binding partners essential for transcription regulation; and (iii) advantages and challenges of vTR targeting in antiviral therapies. We discuss the implications of vTR regulation for oncogenesis and perspectives on developing novel antiviral and anticancer strategies.
Collapse
Affiliation(s)
- Ivona Nečasová
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, Královopolská 135, Brno 612 65, Czech Republic
| | - Martin Stojaspal
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, Královopolská 135, Brno 612 65, Czech Republic
| | - Edita Motyčáková
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, Královopolská 135, Brno 612 65, Czech Republic
| | - Tomáš Brom
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Tomáš Janovič
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Ctirad Hofr
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, Královopolská 135, Brno 612 65, Czech Republic
| |
Collapse
|
21
|
van Buuren N, Ramirez R, Soulette C, Suri V, Han D, May L, Turner S, Parvangada P, Martin R, Chan HLY, Marcellin P, Buti M, Bui N, Bhardwaj N, Gaggar A, Li L, Mo H, Feierbach B. Targeted long-read sequencing reveals clonally expanded HBV-associated chromosomal translocations in patients with chronic hepatitis B. JHEP Rep 2022; 4:100449. [PMID: 35295767 PMCID: PMC8918852 DOI: 10.1016/j.jhepr.2022.100449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/08/2023] Open
Abstract
Background & Aims Methods Results Conclusions Lay summary Fresh frozen liver biopsies from patients with CHB were subjected to targeted long-read RNA and DNA sequencing. Inter-chromosomal translocations associated with HBV integration events detected in one-third of patients. Chromosomal translocations were unique to each biopsy sample, suggesting that each originated randomly. A larger fraction of the HBV transcriptome originates from cccDNA in patients who are HBeAg-positive.
Collapse
|
22
|
Salpini R, D’Anna S, Benedetti L, Piermatteo L, Gill U, Svicher V, Kennedy PTF. Hepatitis B virus DNA integration as a novel biomarker of hepatitis B virus-mediated pathogenetic properties and a barrier to the current strategies for hepatitis B virus cure. Front Microbiol 2022; 13:972687. [PMID: 36118192 PMCID: PMC9478028 DOI: 10.3389/fmicb.2022.972687] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic infection with Hepatitis B Virus (HBV) is a major cause of liver-related morbidity and mortality worldwide. HBV-DNA integration into the human genome is recognized as a frequent event occurring during the early phases of HBV infection and characterizing the entire course of HBV natural history. The development of refined molecular biology technologies sheds new light on the functional implications of HBV-DNA integration into the human genome, including its role in the progression of HBV-related pathogenesis and in triggering the establishment of pro-oncogenic mechanisms, promoting the development of hepatocellular carcinoma. The present review provides an updated and comprehensive overview of the current body of knowledge on HBV-DNA integration, focusing on the molecular mechanisms underlying HBV-DNA integration and its occurrence throughout the different phases characterizing the natural history of HBV infection. Furthermore, here we discuss the main clinical implications of HBV integration as a biomarker of HBV-related pathogenesis, particularly in reference to hepatocarcinogenesis, and how integration may act as a barrier to the achievement of HBV cure with current and novel antiviral therapies. Overall, a more refined insight into the mechanisms and functionality of HBV integration is paramount, since it can potentially inform the design of ad hoc diagnostic tools with the ability to reveal HBV integration events perturbating relevant intracellular pathways and for identifying novel therapeutic strategies targeting alterations directly related to HBV integration.
Collapse
Affiliation(s)
- Romina Salpini
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Stefano D’Anna
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Livia Benedetti
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Lorenzo Piermatteo
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Upkar Gill
- Barts Liver Centre, Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Valentina Svicher
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
- *Correspondence: Valentina Svicher,
| | - Patrick T. F. Kennedy
- Barts Liver Centre, Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
- Patrick T. F. Kennedy,
| |
Collapse
|
23
|
Tsuge M. The association between hepatocarcinogenesis and intracellular alterations due to hepatitis B virus infection. Liver Int 2021; 41:2836-2848. [PMID: 34559952 DOI: 10.1111/liv.15065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is a worldwide health problem leading to severe liver dysfunction, including liver cirrhosis and hepatocellular carcinoma. Although current antiviral therapies for chronic HBV infection have been improved and can lead to a strong suppression of viral replication, it is difficult to completely eliminate the virus with these therapies once chronic HBV infection is established in the host. Furthermore, chronic HBV infection alters intracellular metabolism and signalling pathways, resulting in the activation of carcinogenesis in the liver. HBV produces four viral proteins: hepatitis B surface-, hepatitis B core-, hepatitis B x protein, and polymerase; each plays an important role in HBV replication and the intracellular signalling pathways associated with hepatocarcinogenesis. In vitro and in vivo experimental models for analyzing HBV infection and replication have been established, and gene expression analyses using microarrays or next-generation sequencing have also been developed. Thus, it is possible to clarify the molecular mechanisms for intracellular alterations, such as endoplasmic reticulum stress, oxidative stress, and epigenetic modifications. In this review, the impact of HBV viral proteins and intracellular alterations in HBV-associated hepatocarcinogenesis are discussed.
Collapse
Affiliation(s)
- Masataka Tsuge
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan.,Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
24
|
Silva LA, Camargo BR, Araújo AC, Batista TL, Ribeiro BM, Ardisson-Araújo DMP. Easily purified baculovirus/insect-system-expressed recombinant hepatitis B virus surface antigen fused to the N- or C-terminus of polyhedrin. Arch Virol 2021; 167:345-354. [PMID: 34839419 DOI: 10.1007/s00705-021-05305-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 10/05/2021] [Indexed: 11/27/2022]
Abstract
Baculoviruses are circular double-stranded DNA viruses that infect insects and are widely used as the baculoviral expression vectors (BEVs), which provide a eukaryotic milieu for heterologous expression. The most frequently used vector is based on Autographa californica multiple nucleopolyhedrovirus (AcMNPV). However, purification of recombinant proteins produced using BEVs is laborious, time-consuming, and often expensive. Numerous strategies have been explored to facilitate purification of heterologous proteins, such as fusion with occlusion body (OBs)-forming proteins like polyhedrin (Polh). Baculoviruses produce OBs in the late stages of infection to protect the virion in the cellular environment, and the main protein responsible for OB formation is Polh. In this study, we investigated the effect of fusing the gene that encodes the surface antigen (S-HBsAg) of hepatitis B virus (HBV) to either the N- or C-terminus of the AcMNPV Polh. The production of recombinant viruses and recombinant proteins was confirmed, and the ability to form chimeric S-HBsAg-containing OBs was accessed by light and scanning electron microscopy of infected cells. The fusion was found to affect the shape and size of the OBs when compared to wild-type OBs, with the N-terminal fusion producing less-amorphous OBs than the C-terminal construct. In addition, the N-terminal construct gave higher levels of expression than the C-terminal construct. Quantitative and qualitative immunoassays with human serum or plasma antibodies against HBsAg showed that the two forms of the antigen reacted differently. Although both reacted with the antibody, the N-terminal fusion protein reacted with more sensitivity (2.27-fold) and is therefore more suitable for quantitative assays than the C-terminal version. In summary, the BEVs represents a promising tool for the production of reagents for the diagnosis of HBV infection.
Collapse
Affiliation(s)
- Leonardo A Silva
- Laboratory of Baculovirus, Cell Biology Department, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - Brenda R Camargo
- Laboratory of Baculovirus, Cell Biology Department, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - Ana Carolina Araújo
- Laboratory of Baculovirus, Cell Biology Department, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - Taylice Leonel Batista
- Laboratory of Insect Virology, Cell Biology Department, University of Brasília, Brasília, DF, 70910900, Brazil
| | - Bergmann M Ribeiro
- Laboratory of Baculovirus, Cell Biology Department, University of Brasilia, Brasília, DF, 70910-900, Brazil.
| | - Daniel M P Ardisson-Araújo
- Laboratory of Baculovirus, Cell Biology Department, University of Brasilia, Brasília, DF, 70910-900, Brazil.
- Laboratory of Insect Virology, Cell Biology Department, University of Brasília, Brasília, DF, 70910900, Brazil.
| |
Collapse
|
25
|
Meier MA, Calabrese D, Suslov A, Terracciano LM, Heim MH, Wieland S. Ubiquitous expression of HBsAg from integrated HBV DNA in patients with low viral load. J Hepatol 2021; 75:840-847. [PMID: 34004216 DOI: 10.1016/j.jhep.2021.04.051] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Loss of serum HBsAg is a hallmark of spontaneous and therapy induced resolution of HBV infection, since it generally reflects a profound decrease in viral replication. However, integrated HBV DNA can contribute to HBsAg expression independent of viral replication. The relative contributions of these sources of HBsAg are not well understood. Specifically, it is not known whether actively transcribed HBV integration could spread throughout the entire liver. METHODS The relative distribution of HBsAg and HBV RNA in liver biopsy tissue from HBeAg-negative (HBe-) patients was analyzed by immunohistochemistry and in situ hybridization (ISH), respectively. Frozen biopsy tissue was used for molecular analysis of intrahepatic viral RNA, virus-host chimeric transcripts and viral DNA. RESULTS Immunohistochemistry and ISH analysis revealed HBsAg and HBV RNA positivity in virtually all hepatocytes in the liver of some HBe- patients despite very low viremia. Reverse transcription quantitative PCR and RNA-sequencing analysis confirmed high expression levels of HBV envelope-encoding RNAs. However, the amount of viral transcriptional template (covalently closed circular (ccc)DNA) was too low to support this ubiquitous HBV RNA expression. In contrast, levels of total cellular HBV DNA were consistent with ubiquitous HBV integration. Finally, RNA-sequencing revealed the presence of many HBV-host chimeric transcripts with the potential for HBsAg expression. CONCLUSIONS Transcriptionally active HBV integration can extend to the entire liver in some HBe- patients. This can lead to ubiquitous HBsAg expression independent of HBV replication. In such patients, HBsAg is probably not a clinically useful surrogate marker for viral resolution or functional cure. LAY SUMMARY Loss of serum hepatitis B surface antigen (HBsAg) indicates resolution of HBV infection. However, integrated HBV DNA can contribute to HBsAg production independently of viral replication. We investigated the extent of HBsAg-producing viral integration in the livers of patients with low serum viral loads. Our findings suggest that transcriptionally active HBV integration can extend to the entire liver in some patients, questioning the clinical utility of HBsAg as a surrogate marker for viral replication.
Collapse
Affiliation(s)
- Marie-Anne Meier
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland; Institute of Pathology, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland
| | - Diego Calabrese
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland
| | - Aleksei Suslov
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland
| | - Luigi M Terracciano
- Division of Gastroenterology and Hepatology, University Hospital Basel, Basel CH-4031, Switzerland
| | - Markus H Heim
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland; Institute of Pathology, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland.
| | - Stefan Wieland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland.
| |
Collapse
|
26
|
Ghosh S, Chakraborty A, Banerjee S. Persistence of Hepatitis B Virus Infection: A Multi-Faceted Player for Hepatocarcinogenesis. Front Microbiol 2021; 12:678537. [PMID: 34526974 PMCID: PMC8435854 DOI: 10.3389/fmicb.2021.678537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV) infection has a multi-dimensional effect on the host, which not only alters the dynamics of immune response but also persists in the hepatocytes to predispose oncogenic factors. The virus exists in multiple forms of which the nuclear localized covalently closed circular DNA (cccDNA) is the most stable and the primary reason for viral persistence even after clearance of surface antigen and viral DNA. The second reason is the existence of pregenomic RNA (pgRNA) containing virion particles. On the other hand, the integration of the viral genome in the host chromosome also leads to persistent production of viral proteins along with the chromosomal instabilities. The interferon treatment or administration of nucleot(s)ide analogs leads to reduction in the viral DNA load, but the pgRNA and surface antigen clearance are a slow process and complete loss of serological HBsAg is rare. The prolonged exposure of immune cells to the viral antigens, particularly HBs antigen, in the blood circulation results in T-cell exhaustion, which disrupts immune clearance of the virus and virus-infected cells. In addition, it predisposes immune-tolerant microenvironment, which facilitates the tumor progression. Thus cccDNA, pgRNA, and HBsAg along with the viral DNA could be the therapeutic targets in the early disease stages that may improve the quality of life of chronic hepatitis B patients by impeding the progression of the disease toward hepatocellular carcinoma.
Collapse
Affiliation(s)
| | | | - Soma Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| |
Collapse
|
27
|
Targeted Long-Read Sequencing Reveals Comprehensive Architecture, Burden and Transcriptional Signatures from HBV-Associated Integrations and Translocations in HCC Cell Lines. J Virol 2021; 95:e0029921. [PMID: 34287049 DOI: 10.1128/jvi.00299-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) can integrate into the chromosomes of infected hepatocytes, creating potentially oncogenic lesions that can lead to hepatocellular carcinoma (HCC). However, our current understanding of integrated HBV DNA architecture, burden and transcriptional activity is incomplete due to technical limitations. A combination of genomics approaches was used to describe HBV integrations and corresponding transcriptional signatures in three HCC cell lines: huH-1, PLC/PRF/5 and Hep3B. To generate high coverage long-read sequencing data, a custom panel of HBV-targeting biotinylated oligonucleotide probes was designed. Targeted long-read DNA sequencing captured entire HBV integration events within individual reads, revealing that integrations may include deletions and inversions of viral sequences. Surprisingly, all three HCC cell lines contain integrations that are associated with host chromosomal translocations. In addition, targeted long-read RNA sequencing allowed for the assignment of transcriptional activity to specific integrations and resolved the contribution of overlapping HBV transcripts. HBV transcripts chimeric with host sequences were resolved in their entirety and often included >1000bp of host sequence. This study provides the first comprehensive description of HBV integrations and associated transcriptional activity in three commonly utilized HCC-derived cell lines. The application of novel methods sheds new light on the complexity of these integrations, including HBV bidirectional transcription, nested transcripts, silent integrations and host genomic rearrangements. The observation of multiple HBV-associated chromosomal translocations gives rise to the hypothesis that HBV may be a driver of genetic instability and provides a potential new mechanism for HCC development. Importance HCC-derived cell lines have served as practical models to study HBV biology for decades. These cell lines harbor multiple HBV integrations and express only HBV surface antigen (HBsAg). To date, an accurate description of the integration burden, architecture and transcriptional profile of these cell lines has been limited due to technical constraints. We have developed a targeted long-read sequencing assay which reveals the entire architecture of integrations in these cell lines. In addition, we identified five chromosomal translocations with integrated HBV DNA at the inter-chromosomal junctions. Incorporation of long-read RNA-Seq data indicated that many integrations and translocations were transcriptionally silent. The observation of multiple HBV-associated translocations has strong implications regarding the potential mechanisms for the development of HBV-associated HCC.
Collapse
|
28
|
Goyal A. Modeling reveals no direct role of the extent of HBV DNA integrations on the outcome of infection. J Theor Biol 2021; 526:110793. [PMID: 34087271 DOI: 10.1016/j.jtbi.2021.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/15/2021] [Accepted: 05/30/2021] [Indexed: 11/27/2022]
Abstract
Hepatitis B virus (HBV) with its high prevalence and death toll is one of the most important infectious diseases to study. Yet, there is very little progress in the development of within-host models for HBV, which has subsequently hindered our understanding of this virus. The uncertainty around the proliferation of infected hepatocytes has been studied but never in association with other important biological continuous events such as integrations and superinfections. This is despite the fact that these processes affect the diversity and composition of infected cell population in the liver and an improved understanding of the cellular composition will undoubtedly assist in strategizing against this viral infection. Here, we developed novel mathematical models that incorporate these key biological processes and analyzed them both analytically and numerically. Unaffected by the extent of integrated DNA (IDNA), the outcome of HBV infection was primarily dictated by the balance between processes generating and killing infected hepatocytes containing covalent closed circular DNA (cccDNA). The superinfection was found to be a key process in the spread of HBV infection as its exclusion could not reproduce experimentally observed composition of infected hepatocytes at peak of acute HBV infection, a stage where our model predicts that infected hepatocytes most likely carry both cccDNA and IDNA. Our analysis further suggested the existence of some form of selective advantage of infected hepatocytes containing only IDNA to explain the viral dynamics observed during antiviral treatment and the transition from peak to acute infection. Finally, the fine line between liver destruction and resolution of acute HBV infection was found to be highly influenced by the fate of cccDNA during cellular proliferation.
Collapse
Affiliation(s)
- Ashish Goyal
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, United States
| |
Collapse
|
29
|
Maepa MB, Bloom K, Ely A, Arbuthnot P. Hepatitis B virus: promising drug targets and therapeutic implications. Expert Opin Ther Targets 2021; 25:451-466. [PMID: 33843412 DOI: 10.1080/14728222.2021.1915990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Current therapy for infection with hepatitis B virus (HBV) rarely clears the virus, and viremia commonly resurges following treatment withdrawal. To prevent serious complications of the infection, research has been aimed at identifying new viral and host targets that can be exploited to inactivate HBV replication.Areas covered: This paper reviews the use of these new molecular targets to advance anti-HBV therapy. Emphasis is on appraising data from pre-clinical and early clinical studies described in journal articles published during the past 10 years and available from PubMed.Expert opinion: The wide range of viral and host factors that can be targeted to disable HBV is impressive and improved insight into HBV molecular biology continues to provide the basis for new drug design. In addition to candidate therapies that have direct or indirect actions on HBV covalently closed circular DNA (cccDNA), compounds that inhibit HBsAg secretion, viral entry, destabilize viral RNA and effect enhanced immune responses to HBV show promise. Preclinical and clinical evaluation of drug candidates, as well as investigating use of treatment combinations, are encouraging. The field is poised at an interesting stage and indications are that reliably achieving functional cure from HBV infection is a tangible goal.
Collapse
Affiliation(s)
- Mohube Betty Maepa
- School of Pathology, Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Kristie Bloom
- School of Pathology, Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Abdullah Ely
- School of Pathology, Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick Arbuthnot
- School of Pathology, Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
30
|
Garcia-Garcia S, Cortese MF, Rodríguez-Algarra F, Tabernero D, Rando-Segura A, Quer J, Buti M, Rodríguez-Frías F. Next-generation sequencing for the diagnosis of hepatitis B: current status and future prospects. Expert Rev Mol Diagn 2021; 21:381-396. [PMID: 33880971 DOI: 10.1080/14737159.2021.1913055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hepatitis B virus (HBV) causes a complex and persistent infection with a major impact on patients health. Viral-genome sequencing can provide valuable information for characterizing virus genotype, infection dynamics and drug and vaccine resistance. AREAS COVERED This article reviews the current literature to describe the next-generation sequencing progress that facilitated a more comprehensive study of HBV quasispecies in diagnosis and clinical monitoring. EXPERT OPINION HBV variability plays a key role in liver disease progression and treatment efficacy. Second-generation sequencing improved the sensitivity for detecting and quantifying mutations, mixed genotypes and viral recombination. Third-generation sequencing enables the analysis of the entire HBV genome, although the high error rate limits its use in clinical practice.
Collapse
Affiliation(s)
- Selene Garcia-Garcia
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona Spain
- Clinical Biochemistry Research Group, Vall d'Hebron Institut Recerca (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Francesca Cortese
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona Spain
- Clinical Biochemistry Research Group, Vall d'Hebron Institut Recerca (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisco Rodríguez-Algarra
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David Tabernero
- Centro De Investigación Biomédica En Red De Enfermedades Hepáticas Y Digestivas, Instituto De Salud Carlos III, Madrid Spain
| | - Ariadna Rando-Segura
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona Spain
| | - Josep Quer
- Centro De Investigación Biomédica En Red De Enfermedades Hepáticas Y Digestivas, Instituto De Salud Carlos III, Madrid Spain
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d'Hebron Institut Recerca-Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona Spain
| | - Maria Buti
- Centro De Investigación Biomédica En Red De Enfermedades Hepáticas Y Digestivas, Instituto De Salud Carlos III, Madrid Spain
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona Spain
| | - Francisco Rodríguez-Frías
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona Spain
- Clinical Biochemistry Research Group, Vall d'Hebron Institut Recerca (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro De Investigación Biomédica En Red De Enfermedades Hepáticas Y Digestivas, Instituto De Salud Carlos III, Madrid Spain
| |
Collapse
|
31
|
HBV-Integration Studies in the Clinic: Role in the Natural History of Infection. Viruses 2021; 13:v13030368. [PMID: 33652619 PMCID: PMC7996909 DOI: 10.3390/v13030368] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major global health problem causing acute and chronic liver disease that can lead to liver cirrhosis and hepatocellular carcinoma (HCC). HBV covalently closed circular DNA (cccDNA) is essential for viral replication and the establishment of a persistent infection. Integrated HBV DNA represents another stable form of viral DNA regularly observed in the livers of infected patients. HBV DNA integration into the host genome occurs early after HBV infection. It is a common occurrence during the HBV life cycle, and it has been detected in all the phases of chronic infection. HBV DNA integration has long been considered to be the main contributor to liver tumorigenesis. The recent development of highly sensitive detection methods and research models has led to the clarification of some molecular and pathogenic aspects of HBV integration. Though HBV integration does not lead to replication-competent transcripts, it can act as a stable source of viral RNA and proteins, which may contribute in determining HBV-specific T-cell exhaustion and favoring virus persistence. The relationship between HBV DNA integration and the immune response in the liver microenvironment might be closely related to the development and progression of HBV-related diseases. While many new antiviral agents aimed at cccDNA elimination or silencing have been developed, integrated HBV DNA remains a difficult therapeutic challenge.
Collapse
|
32
|
D’Arienzo V, Ferguson J, Giraud G, Chapus F, Harris JM, Wing PAC, Claydon A, Begum S, Zhuang X, Balfe P, Testoni B, McKeating JA, Parish JL. The CCCTC-binding factor CTCF represses hepatitis B virus enhancer I and regulates viral transcription. Cell Microbiol 2021; 23:e13274. [PMID: 33006186 PMCID: PMC7116737 DOI: 10.1111/cmi.13274] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/09/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022]
Abstract
Hepatitis B virus (HBV) infection is of global importance with over 2 billion people exposed to the virus during their lifetime and at risk of progressive liver disease, cirrhosis and hepatocellular carcinoma. HBV is a member of the Hepadnaviridae family that replicates via episomal copies of a covalently closed circular DNA (cccDNA) genome. The chromatinization of this small viral genome, with overlapping open reading frames and regulatory elements, suggests an important role for epigenetic pathways to regulate viral transcription. The chromatin-organising transcriptional insulator protein, CCCTC-binding factor (CTCF), has been reported to regulate transcription in a diverse range of viruses. We identified two conserved CTCF binding sites in the HBV genome within enhancer I and chromatin immunoprecipitation (ChIP) analysis demonstrated an enrichment of CTCF binding to integrated or episomal copies of the viral genome. siRNA knock-down of CTCF results in a significant increase in pre-genomic RNA levels in de novo infected HepG2 cells and those supporting episomal HBV DNA replication. Furthermore, mutation of these sites in HBV DNA minicircles abrogated CTCF binding and increased pre-genomic RNA levels, providing evidence of a direct role for CTCF in repressing HBV transcription.
Collapse
Affiliation(s)
| | - Jack Ferguson
- institute of Cancer and Genomic sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Guillaume Giraud
- CRCL INSERM and Cancer Research Center of Lyon (CRCL), Lyon, France
| | - Fleur Chapus
- CRCL INSERM and Cancer Research Center of Lyon (CRCL), Lyon, France
| | - James M. Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter A. C. Wing
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Adam Claydon
- institute of Cancer and Genomic sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sophia Begum
- institute of Cancer and Genomic sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter Balfe
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Barbara Testoni
- CRCL INSERM and Cancer Research Center of Lyon (CRCL), Lyon, France
| | | | - Joanna L. Parish
- institute of Cancer and Genomic sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
33
|
Fergusson JR, Wallace Z, Connolly MM, Woon AP, Suckling RJ, Hine DW, Barber C, Bunjobpol W, Choi B, Crespillo S, Dembek M, Dieckmann N, Donoso J, Godinho LF, Grant T, Howe D, McCully ML, Perot C, Sarkar A, Seifert FU, Singh PK, Stegmann KA, Turner B, Verma A, Walker A, Leonard S, Maini MK, Wiederhold K, Dorrell L, Simmons R, Knox A. Immune-Mobilizing Monoclonal T Cell Receptors Mediate Specific and Rapid Elimination of Hepatitis B-Infected Cells. Hepatology 2020; 72:1528-1540. [PMID: 32770836 PMCID: PMC7702151 DOI: 10.1002/hep.31503] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/17/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Therapies for chronic hepatitis B virus (HBV) infection are urgently needed because of viral integration, persistence of viral antigen expression, inadequate HBV-specific immune responses, and treatment regimens that require lifelong adherence to suppress the virus. Immune mobilizing monoclonal T Cell receptors against virus (ImmTAV) molecules represent a therapeutic strategy combining an affinity-enhanced T Cell receptor with an anti-CD3 T Cell-activating moiety. This bispecific fusion protein redirects T cells to specifically lyse infected cells expressing the target virus-derived peptides presented by human leukocyte antigen (HLA). APPROACH AND RESULTS ImmTAV molecules specific for HLA-A*02:01-restricted epitopes from HBV envelope, polymerase, and core antigens were engineered. The ability of ImmTAV-Env to activate and redirect polyclonal T cells toward cells containing integrated HBV and cells infected with HBV was assessed using cytokine secretion assays and imaging-based killing assays. Elimination of infected cells was further quantified using a modified fluorescent hybridization of viral RNA assay. Here, we demonstrate that picomolar concentrations of ImmTAV-Env can redirect T cells from healthy and HBV-infected donors toward hepatocellular carcinoma (HCC) cells containing integrated HBV DNA resulting in cytokine release, which could be suppressed by the addition of a corticosteroid in vitro. Importantly, ImmTAV-Env redirection of T cells induced cytolysis of antigen-positive HCC cells and cells infected with HBV in vitro, causing a reduction of hepatitis B e antigen and specific loss of cells expressing viral RNA. CONCLUSIONS The ImmTAV platform has the potential to enable the elimination of infected cells by redirecting endogenous non-HBV-specific T cells, bypassing exhausted HBV-specific T cells. This represents a promising therapeutic option in the treatment of chronic hepatitis B, with our lead candidate now entering trials.
Collapse
MESH Headings
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- CD3 Complex/antagonists & inhibitors
- Cell Line, Tumor
- Epitopes/immunology
- HLA-A2 Antigen/immunology
- Hepatitis B Surface Antigens/immunology
- Hepatitis B virus/immunology
- Hepatitis B virus/isolation & purification
- Hepatitis B, Chronic/drug therapy
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/virology
- Hepatocytes
- Humans
- Immunoconjugates/genetics
- Immunoconjugates/immunology
- Immunoconjugates/pharmacology
- Immunoconjugates/therapeutic use
- Lymphocyte Activation/drug effects
- Primary Cell Culture
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/therapeutic use
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/pharmacology
- Recombinant Fusion Proteins/therapeutic use
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Dawn Howe
- Immunocore LtdAbingdonUnited Kingdom
| | | | | | | | | | | | - Kerstin A. Stegmann
- Division of Infection and ImmunityInstitute of Immunity and TransplantationUniversity College LondonLondonUnited Kingdom
| | | | | | | | | | - Mala K. Maini
- Division of Infection and ImmunityInstitute of Immunity and TransplantationUniversity College LondonLondonUnited Kingdom
| | | | - Lucy Dorrell
- Immunocore LtdAbingdonUnited Kingdom
- Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
- Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUnited Kingdom
| | | | | |
Collapse
|
34
|
Hall S, Howell J, Visvanathan K, Thompson A. The Yin and the Yang of Treatment for Chronic Hepatitis B-When to Start, When to Stop Nucleos(t)ide Analogue Therapy. Viruses 2020; 12:v12090934. [PMID: 32854335 PMCID: PMC7552074 DOI: 10.3390/v12090934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022] Open
Abstract
Over 257 million individuals worldwide are chronically infected with the Hepatitis B Virus (HBV). Nucleos(t)ide analogues (NAs) are the first-line treatment option for most patients. Entecavir (ETV) and tenofovir disoproxil fumarate (TDF) are both potent, safe antiviral agents, have a high barrier to resistance, and are now off patent. They effectively suppress HBV replication to reduce the risk of cirrhosis, liver failure, and hepatocellular carcinoma (HCC). Treatment is continued long-term in most patients, as NA therapy rarely induces HBsAg loss or functional cure. Two diverging paradigms in the treatment of chronic hepatitis B have recently emerged. First, the public health focussed "treat-all" strategy, advocating for early and lifelong antiviral therapy to minimise the risk of HCC as well as the risk of HBV transmission. In LMICs, this strategy may be cost saving compared to monitoring off treatment. Second, the concept of "stopping" NA therapy in patients with HBeAg-negative disease after long-term viral suppression, a personalised treatment strategy aiming for long-term immune control and even HBsAg loss off treatment. In this manuscript, we will briefly review the current standard of care approach to the management of hepatitis B, before discussing emerging evidence to support both the "treat-all" strategy, as well as the "stop" strategy, and how they may both have a role in the management of patients with chronic hepatitis B.
Collapse
Affiliation(s)
- Samuel Hall
- Gastroenterology Department, St Vincent’s Hospital Melbourne, 41 Victoria Pde, Fitzroy, VIC 3065, Australia; (J.H.); (A.T.)
- Correspondence:
| | - Jessica Howell
- Gastroenterology Department, St Vincent’s Hospital Melbourne, 41 Victoria Pde, Fitzroy, VIC 3065, Australia; (J.H.); (A.T.)
| | - Kumar Visvanathan
- Infectious Diseases Department, St Vincent’s Hospital Melbourne, 41 Victoria Pde, Fitzroy, VIC 3065, Australia;
| | - Alexander Thompson
- Gastroenterology Department, St Vincent’s Hospital Melbourne, 41 Victoria Pde, Fitzroy, VIC 3065, Australia; (J.H.); (A.T.)
| |
Collapse
|
35
|
Hadziyannis E, Hadziyannis S. Current practice and contrasting views on discontinuation of nucleos(t)ide analog therapy in chronic hepatitis B. Expert Rev Gastroenterol Hepatol 2020; 14:243-251. [PMID: 32162562 DOI: 10.1080/17474124.2020.1738219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Long-term, even indefinite treatment with nucleos(t)ide analogs (NAs) is the current first-line therapy for patients with chronic hepatitis B (CHB), regardless of its histological stage. Guidelines and recommendations on duration and endpoints of NA therapy in CHB are not identical and change over time.Areas covered: The authors review NA discontinuation approaches and views with an emphasis on HBeAg-negative patients based on published studies relevant to the topic, stressing on whether or not the optimal endpoint of HBsAg loss is practically achievable.Expert opinion: Discontinuation of NA therapy in HBeAg-negative noncirrhotic patients has to be considered after long-term effective treatment with controlled liver disease activity, undetectable viremia, and significant decline in serum HBsAg titers. Close post-treatment monitoring is required for early intervention in cases of severe clinical relapse. Immediate retreatment hampers the favorable outcome of HBsAg clearance (functional cure) and should be avoided in transient ALT flares. Predictors of such relapses are still under investigation and include viral and patient factors. For HBeAg-positive noncirrhotic patients, there is wide acceptance of the endpoint of HBeAg seroconversion, after a long consolidation period.
Collapse
Affiliation(s)
- Emilia Hadziyannis
- Second Academic Department of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Stephanos Hadziyannis
- Second Academic Department of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| |
Collapse
|
36
|
Prakash K, Larsson SB, Rydell GE, Andersson ME, Ringlander J, Norkrans G, Norder H, Lindh M. Hepatitis B Virus RNA Profiles in Liver Biopsies by Digital Polymerase Chain Reaction. Hepatol Commun 2020; 4:973-982. [PMID: 32626830 PMCID: PMC7327224 DOI: 10.1002/hep4.1507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Replication of hepatitis B virus (HBV) originates from covalently closed circular DNA (cccDNA) and involves reverse transcription of pregenomic RNA (pgRNA), which is also called core RNA and encodes the capsid protein. The RNA coding for hepatitis B surface antigen (HBsAg) in the envelope of viral or subviral particles is produced from cccDNA or from HBV DNA integrated into the host genome. Because only cccDNA can generate the core and the 3′ redundancy regions of HBV RNA, we aimed to clarify to what extent such HBV integrations are expressed by quantifying the different HBV RNA species in liver tissue. Digital droplet polymerase chain reaction (ddPCR) was employed to quantify six HBV RNA targets in 76 liver biopsies from patients with chronic infection, comprising 14 who were hepatitis B e antigen (HBeAg) positive and 62 who were HBeAg negative. In patients who were HBeAg negative, HBV RNA from the S RNA region was >1.6 log10 units higher than in the core and 3′ redundancy regions (P < 0.0001), indicating that >90% of S RNA was integration derived. HBeAg‐negative samples showed 10 times lower levels of pgRNA (5′ core) compared with core RNA (3′ part of core; P < 0.0001), suggesting that a large proportion of core RNA might have a downstream shift of the transcription starting point. In multiple regression analysis, HBV DNA levels in serum were most strongly dependent on pgRNA. Conclusion: In patients who were HBeAg negative, integration‐derived S RNA seemed to predominate and a large proportion of the core RNA lacked the 5′ part. Because this part comprises the down‐regulator of transcription 1 sequences, which are necessary for virus production (plus strand translocation), the finding might help to explain the low level of HBV DNA in serum that frequently is observed in patients with chronic HBV infection who are HBeAg negative.
Collapse
Affiliation(s)
- Kasthuri Prakash
- Department of Infectious Diseases Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Simon B Larsson
- Department of Infectious Diseases Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Gustaf E Rydell
- Department of Infectious Diseases Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Maria E Andersson
- Department of Infectious Diseases Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Johan Ringlander
- Department of Infectious Diseases Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Gunnar Norkrans
- Department of Infectious Diseases Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Heléne Norder
- Department of Infectious Diseases Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Magnus Lindh
- Department of Infectious Diseases Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| |
Collapse
|
37
|
Abstract
Chronic hepatitis B (CHB) is a widespread global infection and a leading cause of hepatocellular carcinoma and liver failure. Current approaches to treat CHB involve the suppression of viral replication with either interferon or nucleos(t)ide analog therapy, but neither of these approaches can reliably induce viral eradication, immunologic control or long-lived viral suppression in the absence of continued therapy. In this update, we explore the major obstacles of CHB cure and review new therapeutic strategies and drug candidates.
Collapse
Affiliation(s)
- Lydia Tang
- Division of Clinical Care & Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Oncology, University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Shyam Kottilil
- Division of Clinical Care & Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Oncology, University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Eleanor Wilson
- Division of Clinical Care & Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Oncology, University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
38
|
Bender D, Hildt E. Effect of Hepatitis Viruses on the Nrf2/Keap1-Signaling Pathway and Its Impact on Viral Replication and Pathogenesis. Int J Mol Sci 2019; 20:ijms20184659. [PMID: 31546975 PMCID: PMC6769940 DOI: 10.3390/ijms20184659] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
With respect to their genome and their structure, the human hepatitis B virus (HBV) and hepatitis C virus (HCV) are complete different viruses. However, both viruses can cause an acute and chronic infection of the liver that is associated with liver inflammation (hepatitis). For both viruses chronic infection can lead to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Reactive oxygen species (ROS) play a central role in a variety of chronic inflammatory diseases. In light of this, this review summarizes the impact of both viruses on ROS-generating and ROS-inactivating mechanisms. The focus is on the effect of both viruses on the transcription factor Nrf2 (nuclear factor erythroid 2 (NF-E2)-related factor 2). By binding to its target sequence, the antioxidant response element (ARE), Nrf2 triggers the expression of a variety of cytoprotective genes including ROS-detoxifying enzymes. The review summarizes the literature about the pathways for the modulation of Nrf2 that are deregulated by HBV and HCV and describes the impact of Nrf2 deregulation on the viral life cycle of the respective viruses and the virus-associated pathogenesis.
Collapse
Affiliation(s)
- Daniela Bender
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straβe 51-59, D-63225 Langen, Germany.
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straβe 51-59, D-63225 Langen, Germany.
| |
Collapse
|