1
|
Dai L, Mei B, Zhu M, Zhou H, Shao Y, Peng L. Heterogeneity of OAS family expression in tuberculosis and the impact of different sample selection: a comprehensive analysis. Diagn Microbiol Infect Dis 2025; 111:116692. [PMID: 39864306 DOI: 10.1016/j.diagmicrobio.2025.116692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/01/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
The 2'-5' oligoadenylate synthetase (OAS)family, comprising OAS1, OAS2, OAS3, and OASL, has been shown to participate in the host immune response against Mycobacterium tuberculosis (Mtb). However, their expression profiles in tuberculosis (TB) remain inconsistent. In two TB-related datasets, the OAS family exhibits contrasting expression trends. To further investigate, we examined the expression of the OAS family in whole blood, peripheral blood mononuclear cells (PBMC), and pleural fluid mononuclear cells (PFMC) as study samples, focusing on pulmonary tuberculosis (PTB) and tuberculous pleuritis (TPE). The results revealed differing expression patterns of the OAS family in the two diseases. In PFMC samples from TPE patients, the OAS family showed overall upregulation. Additionally, matched samples from nine TPE patients indicated overlapping expression of the OAS family in both PBMC and PFMC samples.
Collapse
Affiliation(s)
- Lingshan Dai
- Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China
| | - Bin Mei
- Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China
| | - Mingzhi Zhu
- Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China
| | - Hongjuan Zhou
- Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China
| | - Yanqin Shao
- Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China
| | - Lijun Peng
- Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
2
|
Göcz B, Rumpler É, Szentkirályi-Tóth S, Skrapits K, Takács S, Sárvári M, Farkas I, Póliska S, Hrabovszky E. Laser-capture microdissection for spatial transcriptomics of immunohistochemically detected neurons. J Biol Chem 2025; 301:108150. [PMID: 39736395 PMCID: PMC11910328 DOI: 10.1016/j.jbc.2024.108150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/29/2024] [Accepted: 12/25/2024] [Indexed: 01/01/2025] Open
Abstract
We developed a versatile 'IHC/LCM-Seq' method for spatial transcriptomics of immunohistochemically detected neurons collected with laser-capture microdissection (LCM). IHC/LCM-Seq uses aluminon and polyvinyl sulfonic acid for inventive RNA-preserving strategies to maintain RNA integrity in free-floating sections of 4% formaldehyde-fixed brains. To validate IHC/LCM-Seq, we first immunostained and harvested striatal cholinergic interneurons with LCM. RNA preparations were subjected to random primer-based cDNA library preparation and bulk sequencing on the NextSeq Illumina platform. IHC/LCM-Seq detected ∼16,000 transcripts, reaching the sensitivity of a reference 'LCM-Seq method' developed for fluorescently tagged neurons microdissected from lightly formaldehyde-fixed and slide-mounted brain sections of transgenic mice. We successfully used the new IHC/LCM-Seq approach to provide unprecedented insight into the transcriptome of immunohistochemically detected gonadotropin-releasing hormone (GnRH) neurons regulating reproduction. The ∼13,000 to 14,000 transcripts identified in GnRH neurons of adult male rats and mice encoded 28 proteins implicated previously in human infertility, 35 neuropeptides, 34 nuclear receptors, and 164 G protein-coupled receptors. Functional experiments using slice electrophysiology established that the heavy Ntsr2 expression conveys a strong excitatory action of neurotensin on GnRH neurons. As an unexpected species difference, we found that GnRH neurons exclusively expressed estrogen receptor-β in rats and against the current consensus, the alpha estrogen receptor isoform in mice. The IHC/LCM-Seq technique we are reporting is a highly sensitive and accurate bulk sequencing approach to characterize the transcriptome landscape of immunohistochemically labeled neurons, including neuroendocrine GnRH cells. This method is readily applicable to any species, opening new perspectives also for future studies of the post mortem human brain.
Collapse
Affiliation(s)
- Balázs Göcz
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary.
| | - Éva Rumpler
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary.
| | - Soma Szentkirályi-Tóth
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Miklós Sárvári
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Imre Farkas
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
3
|
Stefanovic F, Brown LG, MacDonald J, Bammler T, Rinchai D, Nguyen S, Zeng Y, Shinkawa V, Adams K, Chaussabel D, Berthier E, Haack AJ, Theberge AB. Your Blood is Out for Delivery: Considerations of Shipping Time and Temperature on Degradation of RNA from Stabilized Whole Blood. Anal Chem 2025; 97:1635-1644. [PMID: 39818791 PMCID: PMC12036334 DOI: 10.1021/acs.analchem.4c04591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Remote research studies are an invaluable tool for reaching populations with limited access to large medical centers or universities. To expand the remote study toolkit, we previously developed homeRNA, which allows for at-home self-collection and stabilization of blood and demonstrated the feasibility of using homeRNA in high temperature climates. Here, we expand upon this work through a systematic study exploring the effects of high temperature on RNA integrity (represented as RNA Integrity Number, RIN) through in-lab and field experiments. Compared to the frozen controls (overall mean RIN of 8.2, n = 8), samples kept at 37 °C for 2, 4, and 8 days had mean RINs of 7.6, 5.9, and 5.2 (n = 3), respectively, indicating that typical shipping conditions (∼2 days) yield samples suitable for downstream RNA sequencing. Shorter time intervals (6 h) resulted in minimal RNA degradation (median RIN of 6.4, n = 3) even at higher temperatures (50 °C) compared to the frozen control (mean RIN of 7.8, n = 3). Additionally, we shipped homeRNA-stabilized blood from a single donor to 14 states and back during the summer with continuous temperature probes (7.1 median RIN, n = 42). Samples from all locations were analyzed with 3' mRNA-seq to assess differences in gene counts, with the data suggesting that there was no preferential degradation of transcripts as a result of different shipping times, temperatures, and regions. Overall, our data support that homeRNA can be used in elevated temperature conditions, enabling decentralized sample collection for telemedicine, global health, and clinical research.
Collapse
Affiliation(s)
- Filip Stefanovic
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Lauren G. Brown
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Theo Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Darawan Rinchai
- Department of Infectious Diseases, St Jude’s Children Research Hospital, TN, Memphis 38105, United States
| | - Serena Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yuting Zeng
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Victoria Shinkawa
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Karen Adams
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Institute of Translational Health Sciences, School of Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Damien Chaussabel
- Computer Sciences Department, The Jackson Laboratory, Farmington, CT, 06032, United States
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Amanda J. Haack
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- School of Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Ashleigh B. Theberge
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department of Urology, School of Medicine, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Kornienko IV, Aramova OY, Tishchenko AA, Rudoy DV, Chikindas ML. RNA Stability: A Review of the Role of Structural Features and Environmental Conditions. Molecules 2024; 29:5978. [PMID: 39770066 PMCID: PMC11676819 DOI: 10.3390/molecules29245978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The stability of RNA is a critical factor in determining its functionality and degradation in the cell. In recent years, it has been shown that the stability of RNA depends on a complex interaction of external and internal factors. External conditions, such as temperature fluctuations, the level of acidity of the environment, the presence of various substances and ions, as well as the effects of oxidative stress, can change the structure of RNA and affect its stability. Internal factors, including the specific structural features of RNA and its interactions with protein molecules, also have a significant impact on the regulation of the stability of these molecules. In this article, we review the main factors influencing RNA stability, since understanding the factors influencing this extremely complex process is important not only for understanding the regulation of expression at the RNA level but also for developing new methods for isolating and stabilizing RNA in preparation for creating biobanks of genetic material. We reviewed a modern solution to this problem and formulated basic recommendations for RNA storage aimed at minimizing degradation and damage to the molecule.
Collapse
Affiliation(s)
- Igor V. Kornienko
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq. 1, Rostov-on-Don 344003, Russia; (I.V.K.); (D.V.R.); (M.L.C.)
- Federal Research Centre Southern Scientific Centre of the Russian Academy of Sciences, Chekhov Ave. 41, Rostov-on-Don 344006, Russia
- Department of Genetics Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave. 194/1, Rostov-on-Don 344090, Russia
| | - Olga Yu. Aramova
- Federal Research Centre Southern Scientific Centre of the Russian Academy of Sciences, Chekhov Ave. 41, Rostov-on-Don 344006, Russia
- Department of Genetics Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave. 194/1, Rostov-on-Don 344090, Russia
| | - Anna A. Tishchenko
- Department of Big Data and Machine Learning, St. Petersburg National Research University of Information Technologies, Mechanics and Optics, Kronverksky Pr. 49, St. Petersburg 197101, Russia;
| | - Dmitriy V. Rudoy
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq. 1, Rostov-on-Don 344003, Russia; (I.V.K.); (D.V.R.); (M.L.C.)
| | - Michael Leonidas Chikindas
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq. 1, Rostov-on-Don 344003, Russia; (I.V.K.); (D.V.R.); (M.L.C.)
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, New Brunswick, NJ 08901-8525, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8, Bldg 2, Moscow 119048, Russia
| |
Collapse
|
5
|
Stefanovic F, Brown LG, MacDonald J, Bammler T, Rinchai D, Nguyen S, Zeng Y, Shinkawa V, Adams K, Chausabel D, Berthier E, Haack AJ, Theberge AB. Your Blood is Out for Delivery: Considerations of Shipping Time and Temperature on Degradation of RNA from Stabilized Whole Blood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.609519. [PMID: 39229214 PMCID: PMC11370555 DOI: 10.1101/2024.08.24.609519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Remote research studies are an invaluable tool for reaching populations in geographical regions with limited access to large medical centers or universities. To expand the remote study toolkit, we have previously developed homeRNA, which allows for at-home self-collection and stabilization of blood and demonstrated the feasibility of using homeRNA in high temperature climates. Here, we expand upon this work through a systematic study exploring the effects of high temperature on RNA integrity through in-lab and field experiments. Compared to the frozen controls (overall mean RIN of 8.2, n = 8), samples kept at 37°C for 2, 4, and 8 days had mean RINs of 7.6, 5.9, and 5.2 (n = 3), respectively, indicating that typical shipping conditions (~2 days) yield samples suitable for downstream RNA sequencing. Shorter time intervals (6 hours) resulted in minimal RNA degradation (median RIN of 6.4, n = 3) even at higher temperatures (50°C) compared to the frozen control (mean RIN of 7.8, n = 3). Additionally, we shipped homeRNA-stabilized blood from a single donor to 14 different states and back during the summer with continuous temperature probes (7.1 median RIN, n = 42). Samples from all locations were analyzed with 3' mRNA-seq to assess differences in gene counts, with the transcriptomic data suggesting that there was no preferential degradation of transcripts as a result of different shipping times, temperatures, and regions. Overall, our data support that homeRNA can be used in elevated temperature conditions, enabling decentralized sample collection for telemedicine, global health, and clinical research.
Collapse
Affiliation(s)
- Filip Stefanovic
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Lauren G. Brown
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Theo Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Darawan Rinchai
- Department of Infectious Diseases, St Jude’s Children Research Hospital, TN, Memphis 38105, United States
| | - Serena Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yuting Zeng
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Victoria Shinkawa
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Karen Adams
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Institute of Translational Health Sciences, School of Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Damien Chausabel
- Computer Sciences Department, The Jackson Laboratory, Farmington, CT, 06032, United States
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Amanda J. Haack
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- School of Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Ashleigh B. Theberge
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department of Urology, School of Medicine, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Gambarino S, Galliano I, Clemente A, Calvi C, Montanari P, Pau A, Dini M, Bergallo M. Characteristics of RNA Stabilizer RNApro for Peripheral Blood Collection. Diagnostics (Basel) 2024; 14:971. [PMID: 38786269 PMCID: PMC11120318 DOI: 10.3390/diagnostics14100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Peripheral blood is the most practical tissue for human immune system gene expression profiling because it is easily accessible, whereas the site of primary infection in certain diseases may not be easily accessible. Due to the ex vivo instability of RNA transcripts, a key challenge in the gene expression analysis of blood samples is the rapid sample handling and stabilization of the mRNA by adding an RNA preservative (PAXgeneTM Blood RNA Tubes, TempusTM Blood RNA tubes, RNAlater Stabilization Reagent, RNAgard® Blood Tubes). BioMole (Turin, Italy) has developed a novel blood stabilizer, called RNApro, in which RNA is stabilized during phlebotomy and sample storage. In this study, RNApro performance intended as RNA yield, integrity, and stability was evaluated. Our results show that blood samples stored at -80 °C and re-extracted after 7 years show no differences in terms of quantity, quality, and amplificability. The samples in the RNAlater stabilization solution can be stored at room temperature for up to one week or at 4 °C for up to one month. Similar results can also be observed for PAXgene tubes, Tempus tubes, and RNAgard tubes. In agreement with these data, the RNApro stabilization solution preserves the RNA from degradation for up to 1 month at 4 °C and 1 week at room temperature. RNApro can be stored indifferently at -80, -20, 4 °C, or room temperature for up to 2 months after, and then could be stored at -80 °C for up to seven years. In summary, our study is the first to analyze the performance of an RNA stabilizer called RNApro. We can conclude that several studies have shown significant differences in gene expression analysis when the sample was preserved in different RNA stabilizers. Therefore, it is desirable to standardize the method of nucleic acid conservation when comparing data from transcriptomic analyses.
Collapse
Affiliation(s)
- Stefano Gambarino
- Department of Public Health and Pediatric Sciences, Immunopathology Laboratory, Medical School, University of Turin, Piazza Polonia, 94, 10126 Turin, Italy; (S.G.); (I.G.); (A.C.); (C.C.); (P.M.); (A.P.); (M.D.)
- BioMole srl, Via Quarello 15/A, Turin, 10135, Italy
| | - Ilaria Galliano
- Department of Public Health and Pediatric Sciences, Immunopathology Laboratory, Medical School, University of Turin, Piazza Polonia, 94, 10126 Turin, Italy; (S.G.); (I.G.); (A.C.); (C.C.); (P.M.); (A.P.); (M.D.)
| | - Anna Clemente
- Department of Public Health and Pediatric Sciences, Immunopathology Laboratory, Medical School, University of Turin, Piazza Polonia, 94, 10126 Turin, Italy; (S.G.); (I.G.); (A.C.); (C.C.); (P.M.); (A.P.); (M.D.)
- BioMole srl, Via Quarello 15/A, Turin, 10135, Italy
| | - Cristina Calvi
- Department of Public Health and Pediatric Sciences, Immunopathology Laboratory, Medical School, University of Turin, Piazza Polonia, 94, 10126 Turin, Italy; (S.G.); (I.G.); (A.C.); (C.C.); (P.M.); (A.P.); (M.D.)
| | - Paola Montanari
- Department of Public Health and Pediatric Sciences, Immunopathology Laboratory, Medical School, University of Turin, Piazza Polonia, 94, 10126 Turin, Italy; (S.G.); (I.G.); (A.C.); (C.C.); (P.M.); (A.P.); (M.D.)
| | - Anna Pau
- Department of Public Health and Pediatric Sciences, Immunopathology Laboratory, Medical School, University of Turin, Piazza Polonia, 94, 10126 Turin, Italy; (S.G.); (I.G.); (A.C.); (C.C.); (P.M.); (A.P.); (M.D.)
| | - Maddalena Dini
- Department of Public Health and Pediatric Sciences, Immunopathology Laboratory, Medical School, University of Turin, Piazza Polonia, 94, 10126 Turin, Italy; (S.G.); (I.G.); (A.C.); (C.C.); (P.M.); (A.P.); (M.D.)
- BioMole srl, Via Quarello 15/A, Turin, 10135, Italy
| | - Massimiliano Bergallo
- Department of Public Health and Pediatric Sciences, Immunopathology Laboratory, Medical School, University of Turin, Piazza Polonia, 94, 10126 Turin, Italy; (S.G.); (I.G.); (A.C.); (C.C.); (P.M.); (A.P.); (M.D.)
- BioMole srl, Via Quarello 15/A, Turin, 10135, Italy
| |
Collapse
|
7
|
Chen Q, Guo X, Wang H, Sun S, Jiang H, Zhang P, Shang E, Zhang R, Cao Z, Niu Q, Zhang C, Liu Y, Shi L, Yu Y, Hou W, Zheng Y. Plasma-Free Blood as a Potential Alternative to Whole Blood for Transcriptomic Analysis. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:109-124. [PMID: 38884056 PMCID: PMC11169349 DOI: 10.1007/s43657-023-00121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 07/13/2023] [Indexed: 06/18/2024]
Abstract
RNA sequencing (RNAseq) technology has become increasingly important in precision medicine and clinical diagnostics, and emerged as a powerful tool for identifying protein-coding genes, performing differential gene analysis, and inferring immune cell composition. Human peripheral blood samples are widely used for RNAseq, providing valuable insights into individual biomolecular information. Blood samples can be classified as whole blood (WB), plasma, serum, and remaining sediment samples, including plasma-free blood (PFB) and serum-free blood (SFB) samples that are generally considered less useful byproducts during the processes of plasma and serum separation, respectively. However, the feasibility of using PFB and SFB samples for transcriptome analysis remains unclear. In this study, we aimed to assess the suitability of employing PFB or SFB samples as an alternative RNA source in transcriptomic analysis. We performed a comparative analysis of WB, PFB, and SFB samples for different applications. Our results revealed that PFB samples exhibit greater similarity to WB samples than SFB samples in terms of protein-coding gene expression patterns, detection of differentially expressed genes, and immunological characterizations, suggesting that PFB can serve as a viable alternative to WB for transcriptomic analysis. Our study contributes to the optimization of blood sample utilization and the advancement of precision medicine research. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00121-1.
Collapse
Affiliation(s)
- Qingwang Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Xiaorou Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Haiyan Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Shanyue Sun
- Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021 China
| | - He Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Peipei Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Erfei Shang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Ruolan Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Zehui Cao
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Quanne Niu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Chao Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Yaqing Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
- The International Human Phenome Institutes, Shanghai, 200438 China
| | - Ying Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Wanwan Hou
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| |
Collapse
|
8
|
Tang R, Zhu L, Zhu P, Yin R, Zheng C. The Effect of Blood Clots on the Quality of RNA Extracted from PAXgene Blood RNA Tubes. Biopreserv Biobank 2024; 22:174-178. [PMID: 37540078 DOI: 10.1089/bio.2023.0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Background: PAXgene® Blood RNA tubes are routinely used in clinical research and molecular biology applications to preserve the stability of RNA in whole blood. However, in practice, blood clots are occasionally observed after blood collection and are often ignored. Currently, there are few studies on whether blood clots affect the quality of RNA extracted from these tubes. Materials and Methods: Fifteen pairs of non-clot and clot PAXgene Blood RNA tube samples (n = 30) were collected to form two matched groups from 15 patients. According to the maximum diameter (d) of the blood clot observed visually at the time of sample reception, the clot groups were divided into a small-clot group (0 cm < d < 0.5 cm) and a large-clot group (d ≥ 0.5 cm). RNA was extracted by the PAXgene Blood RNA Kit. To analyze the quality of RNA, its yield and purity were assessed by spectrophotometry, and integrity was measured by microfluidic electrophoresis. An A260/280 ratio between 1.8 and 2.2 indicated purified RNA, and RNA integrity number (RIN) values ≥7.0 were considered to represent qualified integrity. Results: The median yields of RNA from the non-clot and clot groups were 3.84 (2.80-6.38) μg and 4.87 (2.77-8.30) μg, respectively. The median A260/280 ratios were 2.08 (2.06-2.09) and 2.09 (2.07-2.11), whereas the median A260/230 ratios were 1.77 (1.31-1.91) and 1.67 (1.21-1.94) in the two groups. In addition, the median RINs were 8.20 (8.00-8.40) and 7.20 (6.60-7.70), respectively. There were no significant differences in RNA yields, A260/280, or A260/230 between the two groups. However, the RIN value of the clot group was significantly lower compared with the non-clot group (p < 0.05), with RIN ≥7.0 found in all non-clot samples and 60% of clot samples (p < 0.05). Furthermore, in the clot groups, the small-clot samples had higher RIN values than large-clot samples (8.25 [7.75-8.75] vs. 6.90 [6.60-7.30], p < 0.001). Conclusions: The formation of large blood clots in PAXgene Blood RNA tubes will reduce the integrity of extracted RNA.
Collapse
Affiliation(s)
- Rong Tang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ling Zhu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ping Zhu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ru Yin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
9
|
Kim J, Moon JW, Kim GR, Kim W, Hu HJ, Jo WJ, Baek SK, Sung GH, Park JH, Park JH. Safety tests and clinical research on buccal and nasal microneedle swabs for genomic analysis. Front Bioeng Biotechnol 2023; 11:1296832. [PMID: 38116201 PMCID: PMC10729317 DOI: 10.3389/fbioe.2023.1296832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023] Open
Abstract
Conventional swabs have been used as a non-invasive method to obtain samples for DNA analysis from the buccal and the nasal mucosa. However, swabs may not always collect pure enough genetic material. In this study, buccal and nasal microneedle swab is developed to improve the accuracy and reliability of genomic analysis. A cytotoxicity test, a skin sensitivity test, and a skin irritation test are conducted with microneedle swabs. Polymer microneedle swabs meet the safety requirements for clinical research and commercial use. When buccal and nasal microneedle swabs are used, the amount of genetic material obtained is greater than that from commercially available swabs, and DNA purity is also high. The comparatively short microneedle swab (250 μm long) cause almost no pain to all 25 participants. All participants also report that the microneedle swabs are very easy to use. When genotypes are compared at five SNP loci from blood of a participant and from that person's buccal or nasal microneedle swab, the buccal and nasal microneedle swabs show 100% concordance for all five SNP genotypes. Microneedle swabs can be effectively used for genomic analysis and prevention through genomic analysis, so the utilization of microneedle swabs is expected to be high.
Collapse
Affiliation(s)
- JeongHyeon Kim
- Department of Bionano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| | | | | | - Wonsub Kim
- Endomics Inc, Seongnam, Republic of Korea
| | - Hae-Jin Hu
- Endomics Inc, Seongnam, Republic of Korea
| | - Won-Jun Jo
- QuadMedicine R&D Centre, QuadMedicine Co. Ltd., Seongnam, Republic of Korea
| | - Seung-Ki Baek
- QuadMedicine R&D Centre, QuadMedicine Co. Ltd., Seongnam, Republic of Korea
| | - Gil-Hwan Sung
- QuadMedicine R&D Centre, QuadMedicine Co. Ltd., Seongnam, Republic of Korea
| | - Jung Ho Park
- Department of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung-Hwan Park
- Department of Bionano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
10
|
Wilfinger WW, Eghbalnia HR, Mackey K, Miller R, Chomczynski P. Whole blood RNA extraction efficiency contributes to variability in RNA sequencing data sets. PLoS One 2023; 18:e0291209. [PMID: 37972054 PMCID: PMC10653446 DOI: 10.1371/journal.pone.0291209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/23/2023] [Indexed: 11/19/2023] Open
Abstract
Numerous methodologies are used for blood RNA extraction, and large quantitative differences in recovered RNA content are reported. We evaluated three archived data sets to determine how extraction methodologies might influence mRNA and lncRNA sequencing results. The total quantity of RNA recovered /ml of blood affects RNA sequencing by impacting the recovery of weakly expressed mRNA, and lncRNA transcripts. Transcript expression (TPM counts) plotted in relation to transcript size (base pairs, bp) revealed a 30% loss of short to midsized transcripts in some data sets. Quantitative recovery of RNA is of considerable importance, and it should be viewed more judiciously. Transcripts common to the three data sets were subsequently normalized and transcript mean TPM counts and TPM count coefficient of variation (CV) were plotted in relation to increasing transcript size. Regression analysis of mean TPM counts versus transcript size revealed negative slopes in two of the three data sets suggesting a reduction of TPM transcript counts with increasing transcript size. In the third data set, the regression slope line of mRNA transcript TPM counts approximates zero and TPM counts increased in proportion to transcript size over a range of 200 to 30,000 bp. Similarly, transcript TPM count CV values also were uniformly distributed over the range of transcript sizes. In the other data sets, the regression CV slopes increased in relation to transcript size. The recovery of weakly expressed and /or short to midsized mRNA and lncRNA transcripts varies with different RNA extraction methodologies thereby altering the fundamental sequencing relationship between transcript size and TPM counts. Our analysis identifies differences in RNA sequencing results that are dependent upon the quantity of total RNA recovery from whole blood. We propose that incomplete RNA extraction directly impacts the recovery of mRNA and lncRNA transcripts from human blood and speculate these differences contribute to the "batch" effects commonly identified between sequencing results from different archived data sets.
Collapse
Affiliation(s)
| | - Hamid R. Eghbalnia
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States of America
| | - Karol Mackey
- Molecular Research Center, Inc. Cincinnati, OH, United States of America
| | - Robert Miller
- Robert Miller Enterprises, LLC, Cincinnati, OH, United States of America
| | - Piotr Chomczynski
- Molecular Research Center, Inc. Cincinnati, OH, United States of America
| |
Collapse
|
11
|
Čelešnik H, Potočnik U. Blood-Based mRNA Tests as Emerging Diagnostic Tools for Personalised Medicine in Breast Cancer. Cancers (Basel) 2023; 15:1087. [PMID: 36831426 PMCID: PMC9954278 DOI: 10.3390/cancers15041087] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Molecular diagnostic tests help clinicians understand the underlying biological mechanisms of their patients' breast cancer (BC) and facilitate clinical management. Several tissue-based mRNA tests are used routinely in clinical practice, particularly for assessing the BC recurrence risk, which can guide treatment decisions. However, blood-based mRNA assays have only recently started to emerge. This review explores the commercially available blood mRNA diagnostic assays for BC. These tests enable differentiation of BC from non-BC subjects (Syantra DX, BCtect), detection of small tumours <10 mm (early BC detection) (Syantra DX), detection of different cancers (including BC) from a single blood sample (multi-cancer blood test Aristotle), detection of BC in premenopausal and postmenopausal women and those with high breast density (Syantra DX), and improvement of diagnostic outcomes of DNA testing (variant interpretation) (+RNAinsight). The review also evaluates ongoing transcriptomic research on exciting possibilities for future assays, including blood transcriptome analyses aimed at differentiating lymph node positive and negative BC, distinguishing BC and benign breast disease, detecting ductal carcinoma in situ, and improving early detection further (expression changes can be detected in blood up to eight years before diagnosing BC using conventional approaches, while future metastatic and non-metastatic BC can be distinguished two years before BC diagnosis).
Collapse
Affiliation(s)
- Helena Čelešnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Uroš Potočnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| |
Collapse
|
12
|
Huseby CJ, Delvaux E, Brokaw DL, Coleman PD. Blood Transcript Biomarkers Selected by Machine Learning Algorithm Classify Neurodegenerative Diseases including Alzheimer's Disease. Biomolecules 2022; 12:1592. [PMID: 36358942 PMCID: PMC9687215 DOI: 10.3390/biom12111592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 10/15/2023] Open
Abstract
The clinical diagnosis of neurodegenerative diseases is notoriously inaccurate and current methods are often expensive, time-consuming, or invasive. Simple inexpensive and noninvasive methods of diagnosis could provide valuable support for clinicians when combined with cognitive assessment scores. Biological processes leading to neuropathology progress silently for years and are reflected in both the central nervous system and vascular peripheral system. A blood-based screen to distinguish and classify neurodegenerative diseases is especially interesting having low cost, minimal invasiveness, and accessibility to almost any world clinic. In this study, we set out to discover a small set of blood transcripts that can be used to distinguish healthy individuals from those with Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, Friedreich's ataxia, or frontotemporal dementia. Using existing public datasets, we developed a machine learning algorithm for application on transcripts present in blood and discovered small sets of transcripts that distinguish a number of neurodegenerative diseases with high sensitivity and specificity. We validated the usefulness of blood RNA transcriptomics for the classification of neurodegenerative diseases. Information about features selected for the classification can direct the development of possible treatment strategies.
Collapse
Affiliation(s)
- Carol J. Huseby
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85281, USA
| | - Elaine Delvaux
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85281, USA
| | - Danielle L. Brokaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul D. Coleman
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
13
|
Sarathkumara YD, Browne DJ, Kelly AM, Pattinson DJ, Rush CM, Warner J, Proietti C, Doolan DL. The Effect of Tropical Temperatures on the Quality of RNA Extracted from Stabilized Whole-Blood Samples. Int J Mol Sci 2022; 23:ijms231810609. [PMID: 36142559 PMCID: PMC9503649 DOI: 10.3390/ijms231810609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Whole-blood-derived transcriptional profiling is widely used in biomarker discovery, immunological research, and therapeutic development. Traditional molecular and high-throughput transcriptomic platforms, including molecular assays with quantitative PCR (qPCR) and RNA-sequencing (RNA-seq), are dependent upon high-quality and intact RNA. However, collecting high-quality RNA from field studies in remote tropical locations can be challenging due to resource restrictions and logistics of post-collection processing. The current study tested the relative performance of the two most widely used whole-blood RNA collection systems, PAXgene® and Tempus™, in optimal laboratory conditions as well as suboptimal conditions in tropical field sites, including the effects of extended storage times and high storage temperatures. We found that Tempus™ tubes maintained a slightly higher RNA quantity and integrity relative to PAXgene® tubes at suboptimal tropical conditions. Both PAXgene® and Tempus™ tubes gave similar RNA purity (A260/A280). Additionally, Tempus™ tubes preferentially maintained the stability of mRNA transcripts for two reference genes tested, Succinate dehydrogenase complex, subunit A (SDHA) and TATA-box-binding protein (TBP), even when RNA quality decreased with storage length and temperature. Both tube types preserved the rRNA transcript 18S ribosomal RNA (18S) equally. Our results suggest that Tempus™ blood RNA collection tubes are preferable to PAXgene® for whole-blood collection in suboptimal tropical conditions for RNA-based studies in resource-limited settings.
Collapse
Affiliation(s)
- Yomani D. Sarathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Daniel J. Browne
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Ashton M. Kelly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - David J. Pattinson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Catherine M. Rush
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, QLD 4878, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Jeffrey Warner
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, QLD 4878, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Carla Proietti
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Denise L. Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, QLD 4878, Australia
- Correspondence:
| |
Collapse
|
14
|
Kirksey MA, Lessard SG, Khan M, Birch GA, Oliver D, Singh P, Rotundo V, Sideris A, Gonzalez Della Valle A, Parks ML, Sculco PK, Otero M. Association of circulating gene expression signatures with stiffness following total knee arthroplasty for osteoarthritis: a pilot study. Sci Rep 2022; 12:12651. [PMID: 35879399 PMCID: PMC9314445 DOI: 10.1038/s41598-022-16868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
A subset of patients undergoing total knee arthroplasty (TKA) for knee osteoarthritis develop debilitating knee stiffness (reduced range of motion) for poorly understood reasons. Dysregulated inflammatory and immune responses to surgery correlate with reduced surgical outcomes, but the dysregulated gene signatures in patients with stiffness after TKA are poorly defined. As a consequence, we are limited in our ability to identify patients at risk of developing poor surgical outcomes and develop preventative approaches. In this pilot study we aimed to identify perioperative blood gene signatures in patients undergoing TKA for knee osteoarthritis and its association with early surgical outcomes, specifically knee range of motion. To do this, we integrated clinical outcomes collected at 6 weeks after surgery with transcriptomics analyses in blood samples collected immediately before surgery and at 24 h after surgery. We found that patients with stiffness at 6 weeks after surgery have a more variable and attenuated circulating gene expression response immediately after surgery. Our results suggest that patients with stiffness following TKA may have distinct gene expression signatures detectable in peripheral blood in the immediate postoperative period.
Collapse
Affiliation(s)
- Meghan A Kirksey
- Hospital for Special Surgery, New York, NY, 10021, USA.,Department of Anesthesiology, Critical Care, and Pain Management, Hospital for Special Surgery, New York, NY, 10021, USA.,Weill Cornell Medical College, New York, NY, 10021, USA
| | - Samantha G Lessard
- Hospital for Special Surgery, New York, NY, 10021, USA.,HSS Research Institute, Hospital for Special Surgery, New York, NY, 10021, USA.,Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Marjan Khan
- Hospital for Special Surgery, New York, NY, 10021, USA.,HSS Research Institute, Hospital for Special Surgery, New York, NY, 10021, USA.,Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, 10021, USA
| | - George A Birch
- Hospital for Special Surgery, New York, NY, 10021, USA.,Department of Anesthesiology, Critical Care, and Pain Management, Hospital for Special Surgery, New York, NY, 10021, USA
| | - David Oliver
- Hospital for Special Surgery, New York, NY, 10021, USA.,HSS Research Institute, Hospital for Special Surgery, New York, NY, 10021, USA.,The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Purva Singh
- Hospital for Special Surgery, New York, NY, 10021, USA.,HSS Research Institute, Hospital for Special Surgery, New York, NY, 10021, USA.,Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Valeria Rotundo
- Hospital for Special Surgery, New York, NY, 10021, USA.,Department of Anesthesiology, Critical Care, and Pain Management, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Alexandra Sideris
- Hospital for Special Surgery, New York, NY, 10021, USA.,Department of Anesthesiology, Critical Care, and Pain Management, Hospital for Special Surgery, New York, NY, 10021, USA
| | | | - Alejandro Gonzalez Della Valle
- Hospital for Special Surgery, New York, NY, 10021, USA.,Weill Cornell Medical College, New York, NY, 10021, USA.,The Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Michael L Parks
- Hospital for Special Surgery, New York, NY, 10021, USA.,Weill Cornell Medical College, New York, NY, 10021, USA.,The Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Peter K Sculco
- Hospital for Special Surgery, New York, NY, 10021, USA.,Weill Cornell Medical College, New York, NY, 10021, USA.,The Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Miguel Otero
- Hospital for Special Surgery, New York, NY, 10021, USA. .,Weill Cornell Medical College, New York, NY, 10021, USA. .,HSS Research Institute, Hospital for Special Surgery, New York, NY, 10021, USA. .,Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, 10021, USA. .,The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 10021, USA.
| |
Collapse
|
15
|
RNA Sequencing of Whole Blood Defines the Signature of High Intensity Exercise at Altitude in Elite Speed Skaters. Genes (Basel) 2022; 13:genes13040574. [PMID: 35456380 PMCID: PMC9027771 DOI: 10.3390/genes13040574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022] Open
Abstract
Although high altitude training has been increasingly popular among endurance athletes, the molecular and cellular bases of this adaptation remain poorly understood. We aimed to define the underlying physiological changes and screen for potential biomarkers of adaptation using transcriptional profiling of whole blood. Seven elite female speed skaters were profiled on the 18th day of high-altitude adaptation. Whole blood RNA-seq before and after an intense 1 h skating bout was used to measure gene expression changes associated with exercise. In order to identify the genes specifically regulated at high altitudes, we have leveraged the data from eight previously published microarray datasets studying blood expression changes after exercise at sea level. Using cell type-specific signatures, we were able to deconvolute changes of cell type abundance from individual gene expression changes. Among these were PHOSPHO1, with a known role in erythropoiesis, and MARC1 with a role in endogenic NO metabolism. We find that platelet and erythrocyte counts uniquely respond to altitude exercise, while changes in neutrophils represent a more generic marker of intense exercise. Publicly available data from both single cell atlases and exercise-related blood profiling dramatically increases the value of whole blood RNA-seq for the dynamic evaluation of physiological changes in an athlete’s body.
Collapse
|
16
|
Martire S, Valentino P, Marnetto F, Mirabile L, Capobianco M, Bertolotto A. The impact of pre-freezing storage time and temperature on gene expression of blood collected in EDTA tubes. Mol Biol Rep 2022; 49:4709-4718. [PMID: 35279776 PMCID: PMC9262796 DOI: 10.1007/s11033-022-07320-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/02/2022] [Indexed: 12/03/2022]
Abstract
Background Blood is a common source of RNA for gene expression studies. However, it is known to be vulnerable to pre-analytical variables. Although RNA stabilization systems have been shown to reduce such influence, traditional EDTA tubes are still widely used since they are less expensive and enable to study specific leukocyte populations. This study aimed to assess the influence of storage time and temperature between blood sampling and handling on RNA from peripheral blood mononuclear cells (PBMCs). Methods and results Nine blood samples were collected in EDTA tubes from 10 healthy donors. One tube from each donor was immediately processed for PBMC isolation, while the others were first incubated at either 4 degrees Celsius (°C) or room temperature for 2, 4, 6 and 24 h. RNA yield and quality and the expression level of fourt housekeeping (B2M, CASC3, GAPDH, HPRT1) and 8 target genes (CD14, CD19, CD20, IL10, MxA, TNF, TNFAIP3, NR4A2) were compared between samples. RNA yield, quality and integrity did not vary significantly with time and temperature. B2M was the most stable housekeeping gene, while the others were increasingly influenced by storing time, especially at 4 °C. Even when normalized to B2M, the expression level of some target genes, particularly TNFAIP3 and NR4A2, was highly affected by delays in blood processing at either temperature, already from 2 h. Conclusion Pre-analytical processing has a great impact on transcript expression from blood collected in EDTA tubes, especially on genes related to inflammation. Standardized procedure of blood handling are needed to obtain reliable results. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-022-07320-5.
Collapse
Affiliation(s)
- Serena Martire
- Clinical Neurobiology Unit, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy.
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10100, Turin, Italy.
| | - Paola Valentino
- Clinical Neurobiology Unit, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10100, Turin, Italy
| | - Fabiana Marnetto
- Clinical Neurobiology Unit, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10100, Turin, Italy
| | - Luca Mirabile
- Clinical Neurobiology Unit, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy
| | - Marco Capobianco
- Clinical Neurobiology Unit, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy
- SCDO Neurologia and CRESM, University Hospital AOU San Luigi Gonzaga, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Antonio Bertolotto
- Clinical Neurobiology Unit, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy
- Koelliker Hospital, 10100, Turin, Italy
| |
Collapse
|
17
|
Buonsenso D, Sodero G, Valentini P. Transcript host-RNA signatures to discriminate bacterial and viral infections in febrile children. Pediatr Res 2022; 91:454-463. [PMID: 34912024 DOI: 10.1038/s41390-021-01890-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022]
Abstract
Traditional laboratory markers, such as white blood cell count, C-reactive protein, and procalcitonin, failed to discriminate viral and bacterial infections in children. The lack of an accurate diagnostic test has a negative impact on child's care, limiting the ability of early diagnosis and appropriate management of children. This, on the one hand, may lead to delayed recognition of sepsis and severe bacterial infections, which still represent the leading causes of child morbidity and mortality. On the other hand, this may lead to overuse of empiric antibiotic therapies, particularly for specific subgroups of patients, such as infants younger than 90 days of life or neutropenic patients. This approach has an adverse effect on costs, antibiotic resistance, and pediatric microbiota. Transcript host-RNA signatures are a new tool used to differentiate viral from bacterial infections by analyzing the transcriptional biosignatures of RNA in host leukocytes. In this systematic review, we evaluate the efficacy and the possible application of this new diagnostic method in febrile children, along with challenges in its implementation. Our review support the growing evidence that the application of these new tools can improve the characterization of the spectrum of bacterial and viral infections and optimize the use of antibiotics in children. IMPACT: Transcript host RNA signatures may allow to better characterize the spectrum of viral, bacterial, and inflammatory illnesses in febrile children and can be used with traditional diagnostic methods to determine if and when to start antibiotic therapy. This is the first review on the use of transcript RNA signatures in febrile children to distinguish viral from bacterial infections. Our review identified a wide variability of target populations and gold standards used to define sepsis and SBIs, limiting the generalization of our findings.
Collapse
Affiliation(s)
- Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy. .,Global Health Research Institute, Istituto di Igiene, Università Cattolica del Sacro Cuore, 00168, Rome, Italy. .,Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168, Rome, Italy. .,Danilo Buonsenso, Largo A. Gemelli 8, 00168, Rome, Italy.
| | - Giorgio Sodero
- Istituto di Pediatria, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Piero Valentini
- Global Health Research Institute, Istituto di Igiene, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.,Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.,Istituto di Pediatria, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| |
Collapse
|
18
|
Keyloun JW, Campbell R, Carney BC, Yang R, Miller SA, Detwiler L, Gautam A, Moffatt LT, Hammamieh R, Jett M, Shupp JW. Early Transcriptomic Response to Burn Injury: Severe Burns Are Associated With Immune Pathway Shutdown. J Burn Care Res 2021; 43:306-314. [PMID: 34791339 PMCID: PMC9890902 DOI: 10.1093/jbcr/irab217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Burn injury induces a systemic hyperinflammatory response with detrimental side effects. Studies have described the biochemical changes induced by severe burns, but the transcriptome response is not well characterized. The goal of this work is to characterize the blood transcriptome after burn injury. Burn patients presenting to a regional center between 2012 and 2017 were prospectively enrolled. Blood was collected on admission and at predetermined time points (hours 2, 4, 8, 12, and 24). RNA was isolated and transcript levels were measured with a gene expression microarray. To identify differentially regulated genes (false-discovery rate ≤0.1) by burn injury severity, patients were grouped by TBSA above or below 20% and statistically enriched pathways were identified. Sixty-eight patients were analyzed, most patients were male with a median age of 41 (interquartile range, 30.5-58.5) years, and TBSA of 20% (11%-34%). Thirty-five patients had % TBSA injury ≥20%, and this group experienced greater mortality (26% vs 3%, P = .008). Comparative analysis of genes from patients with </≥20% TBSA revealed 1505, 613, 380, 63, 1357, and 954 differentially expressed genes at hours 0, 2, 4, 8, 12, and 24, respectively. Pathway analysis revealed an initial up-regulation in several immune/inflammatory pathways within the ≥20% TBSA groups followed by shutdown. Severe burn injury is associated with an early proinflammatory immune response followed by shutdown of these pathways. Examination of the immunoinflammatory response to burn injury through differential gene regulation and associated immune pathways by injury severity may identify mechanistic targets for future intervention.
Collapse
Affiliation(s)
| | | | - Bonnie C Carney
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA,Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia, USA,Department of Biochemistry, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Ruoting Yang
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Stacy-Ann Miller
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA,Oak Ridge Institute for Science and Education, Silver Spring, Maryland, USA
| | - Leanne Detwiler
- The Geneva Foundation, Silver Spring, Maryland, USA,Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Aarti Gautam
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Lauren T Moffatt
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA,Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia, USA,Department of Biochemistry, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Marti Jett
- Headquarters Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Jeffrey W Shupp
- Address correspondence to Jeffrey W. Shupp, MD, The Burn Center, 110 Irving Street, NW, Suite 3B-55, Washington, DC 20010, USA.
| | | |
Collapse
|
19
|
How long does the mRNA remains stable in untreated whole bovine blood? Mol Biol Rep 2021; 49:789-795. [PMID: 34655019 DOI: 10.1007/s11033-021-06808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND High quality and quantity of messenger RNA (mRNA) are required for accuracy of gene expression studies and other RNA-based downstream applications. Since RNA is considered a labile macromolecular prone to degradation, which may result in falsely altered gene expression patterns, several commercial stabilizing reagents have been developed aiming to keep RNA stable for long period. However, for studies involving large number of experimental samples, the high costs related to these specific reagents may constitute a barrier. METHODS AND RESULTS In this context the present study was designed aiming to evaluate the stability of mRNA in whole bovine blood collected in EDTA tubes during storage at common fridge (4 °C). Whole blood samples were collected from six Holstein calves and submitted to RNA extraction in each different interval: immediately after blood sampling (< 2 h), at 1-day post-sampling (dps), 2 dps, 3 dps, 7 dps and 14dps intervals. RNA integrity and purity were evaluated, and RT-qPCR assays were run using seven different genes (B2M, ACTB, PPIA, GAPDH, YWHAZ, CD4 and IFN-γ) aiming to evaluate the presence of altered gene transcription during storage. All extracted RNA samples presented high purity, while optimal integrity and unaltered gene expression were observed in whole experimental group up to 3 days of storage. CONCLUSION Bovine blood RNA remained stable in K3EDTA tubes for 3 days stored at common fridge and can be successfully and accurately used for gene expression studies.
Collapse
|
20
|
Baptista B, Riscado M, Queiroz J, Pichon C, Sousa F. Non-coding RNAs: Emerging from the discovery to therapeutic applications. Biochem Pharmacol 2021. [DOI: 10.1016/j.bcp.2021.114469 order by 22025--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
21
|
Koh EJ, Yu SY, Kim SH, Kim SJ, Lee EI, Hwang SY. Understanding Confounding Effects of Blood Handling Strategies on RNA Quality and Transcriptomic Alteration Using RNA Sequencing. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00020-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
22
|
Transcriptomic Analysis Reveals Host miRNAs Correlated with Immune Gene Dysregulation during Fatal Disease Progression in the Ebola Virus Cynomolgus Macaque Disease Model. Microorganisms 2021; 9:microorganisms9030665. [PMID: 33806942 PMCID: PMC8005181 DOI: 10.3390/microorganisms9030665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Ebola virus is a continuing threat to human populations, causing a virulent hemorrhagic fever disease characterized by dysregulation of both the innate and adaptive host immune responses. Severe cases are distinguished by an early, elevated pro-inflammatory response followed by a pronounced lymphopenia with B and T cells unable to mount an effective anti-viral response. The precise mechanisms underlying the dysregulation of the host immune system are poorly understood. In recent years, focus on host-derived miRNAs showed these molecules to play an important role in the host gene regulation arsenal. Here, we describe an investigation of RNA biomarkers in the fatal Ebola virus disease (EVD) cynomolgus macaque model. We monitored both host mRNA and miRNA responses in whole blood longitudinally over the disease course in these non-human primates (NHPs). Analysis of the interactions between these classes of RNAs revealed several miRNA markers significantly correlated with downregulation of genes; specifically, the analysis revealed those involved in dysregulated immune pathways associated with EVD. In particular, we noted strong interactions between the miRNAs hsa-miR-122-5p and hsa-miR-125b-5p with immunological genes regulating both B and T-cell activation. This promising set of biomarkers will be useful in future studies of severe EVD pathogenesis in both NHPs and humans and may serve as potential prognostic targets.
Collapse
|
23
|
Baptista B, Riscado M, Queiroz JA, Pichon C, Sousa F. Non-coding RNAs: Emerging from the discovery to therapeutic applications. Biochem Pharmacol 2021; 189:114469. [PMID: 33577888 DOI: 10.1016/j.bcp.2021.114469] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
The knowledge about non-coding RNAs (ncRNAs) is rapidly increasing with new data continuously emerging, regarding their diverse types, applications, and roles. Particular attention has been given to ncRNA with regulatory functions, which may have a critical role both in biological and pathological conditions. As a result of the diversity of ncRNAs and their ubiquitous involvement in several biologic processes, ncRNA started to be considered in the biomedical field, with immense potential to be exploited either as biomarkers or as therapeutic agents in certain pathologies. Indeed, ncRNA-based therapeutics have been proposed in many disorders and some even reached clinical trials. However, to prepare an RNA product suitable for pharmacological applications, certain criteria must be fulfilled, and it has to be guaranteed RNA purity, stability, and bioactivity. So, in this review, the different types of ncRNAs are identified and characterized, by describing their biogenesis, functions, and applications. A perspective on the main challenges and innovative approaches for the future and broad therapeutic application of RNA is also presented.
Collapse
Affiliation(s)
- B Baptista
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - M Riscado
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - J A Queiroz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - C Pichon
- Centre de Biophysique Moléculaire (CBM), UPR 4301 CNRS & University of Orléans Orléans, France
| | - F Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
24
|
Tesfamichael DH, Wood MW, Pritchard JC. Comparison of commercial manual extraction kits for RNA isolation from canine whole blood. J Vet Diagn Invest 2020; 32:737-741. [PMID: 32633638 DOI: 10.1177/1040638720938026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
High quantities of quality RNA are necessary for many veterinary laboratory tests. Several commercial kits are available for RNA isolation from human whole blood; their resultant RNA yield and purity have not been reported for canine whole blood, to our knowledge. We assessed the performance of 4 RNA extraction kits (RiboPure, TRIzol, RNeasy Protect animal blood, and QIAamp RNA blood mini). Whole blood from a healthy dog was stored in the manufacturer-recommended RNA stabilizing buffer as directed. RNA isolation, including DNase treatment, was performed using each kit's manufacturer's protocol. Resultant RNA yield and purity were evaluated using spectrophotometric absorbance, capillary electrophoresis and electropherogram analysis, and a reverse-transcription real-time PCR (RT-rtPCR) assay. The RNeasy Protect animal blood kit extracted the highest, and RiboPure the lowest, concentration of nucleic acid. RNA integrity numbers classified extracted RNA as good quality or better for all kits except RNeasy Protect. All kits had evidence of genomic DNA contamination as assessed by RT-rtPCR. Overall, QIAamp RNA blood mini kit and TRIzol optimized both RNA yield and purity from canine whole blood. These kits extracted high quantities of good quality RNA as evidenced by high RNA integrity numbers and minimal contamination with proteins and solvents.
Collapse
Affiliation(s)
| | - Michael W Wood
- University of Wisconsin, Madison School of Veterinary Medicine, Madison, WI
| | | |
Collapse
|
25
|
Gautam A, Donohue D, Hoke A, Miller SA, Srinivasan S, Sowe B, Detwiler L, Lynch J, Levangie M, Hammamieh R, Jett M. Investigating gene expression profiles of whole blood and peripheral blood mononuclear cells using multiple collection and processing methods. PLoS One 2019; 14:e0225137. [PMID: 31809517 PMCID: PMC6897427 DOI: 10.1371/journal.pone.0225137] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 10/29/2019] [Indexed: 01/07/2023] Open
Abstract
Gene expression profiling using blood samples is a valuable tool for biomarker discovery in clinical studies. Different whole blood RNA collection and processing methods are highly variable and might confound comparisons of results across studies. The main aim of the current study is to compare how blood storage, extraction methodologies, and the blood components themselves may influence gene expression profiling. Whole blood and peripheral blood mononuclear cell (PBMC) samples were collected in triplicate from five healthy donors. Whole blood was collected in RNAgard® and PAXgene® Blood RNA Tubes, as well as in collection tubes with anticoagulants such as dipotassium ethylenediaminetetraacetic acid (K2EDTA) and Acid Citrate Dextrose Solution A (ACD-A). PBMCs were separated using sodium citrate Cell Preparation Tubes (CPT™), FICOLL™, magnetic separation, and the LeukoLOCK™ methods. After blood collection, the LeukoLOCK™, K2EDTA and ACD-A blood tubes were shipped overnight using cold conditions and samples from the rest of the collection were immediately frozen with or without pre-processing. The RNA was isolated from whole blood and PBMCs using a total of 10 different experimental conditions employing several widely utilized RNA isolation methods. The RNA quality was assessed by RNA Integrity Number (RIN), which showed that all PBMC procedures had the highest RIN values when blood was stabilized in TRIzol® Reagent before RNA extraction. Initial data analysis showed that human blood stored and shipped at 4°C overnight performed equally well when checked for quality using RNA integrity number when compared to frozen stabilized blood. Comparisons within and across donor/method replicates showed signal-to-noise patterns which were not captured by RIN value alone. Pathway analysis using the top 1000 false discovery rate (FDR) corrected differentially expressed genes (DEGs) showed frozen vs. cold shipping conditions greatly impacted gene expression patterns in whole blood. However, the top 1000 FDR corrected DEGs from PBMCs preserved after frozen vs. cold shipping conditions (LeukoLOCK™ preserved in RNAlater®) revealed no significantly affected pathways. Our results provide novel insight into how RNA isolation, various storage, handling, and processing methodologies can influence RNA quality and apparent gene expression using blood samples. Careful consideration is necessary to avoid bias resulting from downstream processing. Better characterization of the effects of collection method idiosyncrasies will facilitate further research in understanding the effect of gene expression variability in human sample types.
Collapse
Affiliation(s)
- Aarti Gautam
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Duncan Donohue
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Allison Hoke
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- Oak Ridge Institute for Science and Education, Fort Detrick, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Stacy Ann Miller
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- Oak Ridge Institute for Science and Education, Fort Detrick, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Seshamalini Srinivasan
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Bintu Sowe
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- Oak Ridge Institute for Science and Education, Fort Detrick, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Leanne Detwiler
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Jesse Lynch
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- Oak Ridge Institute for Science and Education, Fort Detrick, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Michael Levangie
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Rasha Hammamieh
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Marti Jett
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| |
Collapse
|