1
|
Huang X, Dong Q, Zhou Q, Fang S, Xu Y, Long H, Chen J, Li X, Qin H, Mu D, Cai X. Genomics insights of candidiasis: mechanisms of pathogenicity and drug resistance. Front Microbiol 2025; 16:1531543. [PMID: 40083780 PMCID: PMC11903725 DOI: 10.3389/fmicb.2025.1531543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
Candidiasis, a prevalent class of human infections caused by fungi belonging to the Candida genus, is garnering increasing attention due to its pathogenicity and the emergence of drug resistance. The advancement of genomics technologies has offered powerful tools for investigating the pathogenic mechanisms and drug resistance characteristics of Candida. This comprehensive review provides an overview of the applications of genomics in candidiasis research, encompassing genome sequencing, comparative genomics, and functional genomics, along with the pathogenic features and core virulence factors of Candida. Moreover, this review highlights the role of genomic variations in the emergence of drug resistance, further elucidating the evolutionary and adaptive mechanisms of Candida. In conclusion, the review underscores the current state of research and prospective avenues for exploration of candidiasis, providing a theoretical basis for clinical treatments and public health strategies.
Collapse
Affiliation(s)
- Xin Huang
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qin Dong
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Qi Zhou
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Shitao Fang
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Yiheng Xu
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Hongjie Long
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Jingyi Chen
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Xiao Li
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Huaguang Qin
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Dan Mu
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Xunchao Cai
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Tone K, Nagano Y, Sakamoto K, Komori A, Tamura T, Alshahni MM, Kobayashi T, Masaki T, Araya J, Makimura K. First Identification of Domestic Clade I Candida auris in Japanese Otitis Externa Patients Without Travel History. Med Mycol J 2025; 66:21-25. [PMID: 40024790 DOI: 10.3314/mmj.24-00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
BACKGROUND Candida auris is an emerging fungus causing nosocomial infections and outbreaks, with many strains exhibiting multidrug resistance. This study analyzed the C. auris clinical isolates at The Jikei University School of Medicine Kashiwa Hospital from December 2019 to March 2021. METHODS Clinical data were reviewed retrospectively for patients from whom C. auris was isolated from clinical specimens. Clade analysis and drug susceptibility testing were conducted. RESULTS Three strains of C. auris were isolated, all from otorrhea in patients with otitis externa. Case A was a 69-year-old female with aural pain, Case B was an 82-year-old female with left ear deafness, and Case C was a 76-year-old male with left otorrhea and hearing loss; all cases were immunocompetent. Strains from Clade I (South Asian clade) were found in Cases A and C, and a strain from Clade II (East Asian clade) was isolated from Case B. None had a travel history overseas or contact with foreigners. Drug susceptibility testing showed that one C. auris strain of Clade Ⅰ had a high minimal inhibitory concentration for fluconazole. No severe infection was observed, and all cases improved with local treatment, including ketoconazole ointment for Case A. CONCLUSION The presence of Clade I C. auris strains in Japan without travel history raises concerns about domestic or in-hospital transmission. Accurate identification and rigorous infection control are essential to manage the spread of C. auris. Ongoing surveillance, research, and international cooperation are needed.
Collapse
Affiliation(s)
- Kazuya Tone
- Department of Respiratory Medicine, The Jikei University School of Medicine Kashiwa Hospital
| | - Yuko Nagano
- Clinical Central Laboratory, The Jikei University School of Medicine Kashiwa Hospital
| | - Kazumi Sakamoto
- Clinical Central Laboratory, The Jikei University School Katsushika Medical Center
| | - Aya Komori
- Teikyo University Institute of Medical Mycology
| | | | | | - Toshiki Kobayashi
- Department of Otorhinolaryngology / Head and Neck Surgery, The Jikei University School of Medicine Kashiwa Hospital
| | - Takahiro Masaki
- Clinical Central Laboratory, The Jikei University School of Medicine Kashiwa Hospital
| | - Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine
| | | |
Collapse
|
3
|
Xue J, Yue H, Lu W, Li Y, Huang G, Fu YV. Application of Raman spectroscopy and machine learning for Candida auris identification and characterization. Appl Environ Microbiol 2024; 90:e0102524. [PMID: 39470219 PMCID: PMC11577752 DOI: 10.1128/aem.01025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Candida auris, an emerging fungal pathogen characterized by multidrug resistance and high-mortality nosocomial infections, poses a serious global health threat. However, the precise and rapid identification and characterization of C. auris remain a challenge. Here, we employed Raman spectroscopy combined with machine learning to identify C. auris isolates and its closely related species as well as to predict antifungal resistance and key virulence factors at the single-cell level. The average accuracy of identification among all Candida species was 93.33%, with an accuracy of 98% for the clinically simulated samples. The drug susceptibility of C. auris to fluconazole and amphotericin B was 99% and 94%, respectively. Furthermore, the phenotypic prediction of C. auris yielded an accuracy of 100% for aggregating cells and 97% for filamentous cells. This proof-of-concept methodology not only precisely identifies C. auris at the clade-specific level but also rapidly predicts the antifungal resistance and biological characteristics, promising a valuable medical diagnostic tool to combat this multidrug-resistant pathogen in the future. IMPORTANCE Currently, combating Candida auris infections and transmission is challenging due to the lack of efficient identification and characterization methods for this species. To address these challenges, our study presents a novel approach that utilizes Raman spectroscopy and artificial intelligence to achieve precise identification and characterization of C. auris at the singe-cell level. It can accurately identify a single cell from the four C. auris clades. Additionally, we developed machine learning models designed to detect antifungal resistance in C. auris cells and differentiate between two distinct phenotypes based on the single-cell Raman spectrum. We also constructed prediction models for detecting aggregating and filamentous cells in C. auris, both of which are closely linked to its virulence. These results underscore the merits of Raman spectroscopy in the identification and characterization of C. auris, promising improved outcomes in the battle against C. auris infections and transmission.
Collapse
Affiliation(s)
- Junjing Xue
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huizhen Yue
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing, China
| | - Weilai Lu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanying Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guanghua Huang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Vincent Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Mahar NS, Kohli S, Biswas B, Xess I, Thakur A, Gupta I. Complete genome assembly of Candida auris representative strains of three geographical clades. Microbiol Resour Announc 2024; 13:e0088223. [PMID: 39230279 PMCID: PMC11465752 DOI: 10.1128/mra.00882-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/10/2024] [Indexed: 09/05/2024] Open
Abstract
The complete genome assembly of Candida auris strains B11103, B11221, and B11244 is reported in this manuscript. These strains represent the three geographical clades, namely, South Asian (Clade I), South African (Clade III), and South American (Clade IV).
Collapse
Affiliation(s)
- Nirmal Singh Mahar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Surbhi Kohli
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | | | | | - Anil Thakur
- Regional Center for Biotechnology, Faridabad, Haryana, India
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
5
|
Yue H, Xu X, Peng B, Wang X, Zhang S, Tian J, Wang S, Song M, Liu Q. Antifungal Activity of the Dichloromethane Extract of CaoHuangGuiXiang Formula Against Candida auris by in vitro and in vivo Evaluation. Infect Drug Resist 2024; 17:3547-3559. [PMID: 39161467 PMCID: PMC11330856 DOI: 10.2147/idr.s467418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
Purpose CaoHuangGuiXiang (CHGX) formula is a traditional Chinese medicine for the treatment of Candida-related infection. However, its antifungal mechanisms against the emerging fungal pathogen Candida auris remain unclear. This study aimed to evaluate the antifungal activity of the dichloromethane extract of CHGX (CHGX-DME) and clarified its antifungal mechanims against C. auris. Methods The major components of CHGX-DME were identified by ultra-performance liquid chromatography tandem mass spectrometry. Then, the minimal inhibitory concentration (MIC) assay and the time-kill kinetic assay were performed to investigate the in vitro antifungal activity of CHGX-DME against C. auris, including 8 isolates of 4 discrete clades and 2 special phenotypes (filamentous and aggregative). Furthermore, the effect of CHGX-DME on biofilm development was examined. In addition, the in vivo toxicity and efficacy of CHGX-DME were evaluated in a Galleria mellonella infection model. Results First, 20 major compounds in CHGX-DME were detected and characterized. The MIC50% and MIC90% of CHGX-DME against C. auris isolates ranged from 50-200 mg/L and 100-400 mg/L, respectively. At 400 mg/L, CHGX-DME was able to efficiently kill more than 70% and 90% of C. auris cells after 3 hours and 6 hours of treatment, respectively. This notable antifungal activity exhibited a dosage- and time-dependent manner. Moreover, CHGX-DME not only played a critical role in inhibiting the proliferation of filamentous and aggregative cells, but also showed restricting effect on biofilm development in C. auris. Importantly, it significantly improved the survival rate and reduced the fungal burden in G. mellonella infection models, suggesting a remarkable treatment effect against C. auris infection. Conclusion CHGX-DME exhibited potent antifungal activity against C. auris and significantly ameliorated this fungal infection in the G. mellonella model, confirming that it would be a promising antifungal drug for the troublesome and emerging fungal pathogen C. auris.
Collapse
Affiliation(s)
- Huizhen Yue
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Chinese Medicine, Beijing, People’s Republic of China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, People’s Republic of China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Chinese Medicine, Beijing, People’s Republic of China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, People’s Republic of China
| | - Bing Peng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Chinese Medicine, Beijing, People’s Republic of China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, People’s Republic of China
| | - Xuanyu Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Shengnan Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Jinhao Tian
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shuo Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Maifen Song
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Chinese Medicine, Beijing, People’s Republic of China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Wu WG, Luk KS, Hung MF, Tsang WY, Lee KP, Lam BHS, Cheng KL, Cheung WS, Tang HL, To WK. Antifungal efficacy of natural antiseptic products against Candida auris. Med Mycol 2024; 62:myae060. [PMID: 38936838 DOI: 10.1093/mmy/myae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Candida auris is an emerging fungal pathogen responsible for healthcare-associated infections and outbreaks with high mortality around the world. It readily colonizes the skin, nares, respiratory and urinary tract of hospitalized patients, and such colonization may lead to invasive Candida infection in susceptible patients. However, there is no recommended decolonization protocol for C. auris by international health authorities. The aim of this study is to evaluate the susceptibility of C. auris to commonly used synthetic and natural antiseptic products using an in vitro, broth microdilution assay. Synthetic antiseptics including chlorhexidine, povidone-iodine, and nystatin were shown to be fungicidal against C. auris. Among the natural antiseptics tested, tea tree oil and manuka oil were both fungicidal against C. auris at concentrations less than or equal to 1.25% (v/v). Manuka honey inhibited C. auris at 25% (v/v) concentrations. Among the commercial products tested, manuka body wash and mouthwash were fungicidal against C. auris at concentrations less than or equal to 0.39% (w/v) and 6.25% (v/v) of products as supplied for use, respectively, while tea tree body wash and MedihoneyTM wound gel demonstrated fungistatic properties. In conclusion, this study demonstrated good in vitro antifungal efficacy of tea tree oil, manuka oil, manuka honey, and commercially available antiseptic products containing these active ingredients. Future studies are warranted to evaluate the effectiveness of these antiseptic products in clinical settings.
Collapse
Affiliation(s)
- Wing-Gi Wu
- Department of Pathology, Princess Margaret Hospital, Hong Kong, Special Administrative Region, China
| | - Kristine Shik Luk
- Department of Pathology, Princess Margaret Hospital, Hong Kong, Special Administrative Region, China
- Infection Control Team, Princess Margaret Hospital, Hong Kong, Special Administrative Region, China
- Infection Control Team, Caritas Medical Centre, Hong Kong, Special Administrative Region, China
- Infection Control Team, Yan Chai Hospital, Hong Kong, Special Administrative Region, China
| | - Mei-Fan Hung
- Department of Pathology, Princess Margaret Hospital, Hong Kong, Special Administrative Region, China
| | - Wing-Yi Tsang
- Department of Pathology, Princess Margaret Hospital, Hong Kong, Special Administrative Region, China
| | - Kin-Ping Lee
- Department of Pathology, Princess Margaret Hospital, Hong Kong, Special Administrative Region, China
- Infection Control Team, Caritas Medical Centre, Hong Kong, Special Administrative Region, China
| | - Bosco Hoi-Shiu Lam
- Department of Pathology, Princess Margaret Hospital, Hong Kong, Special Administrative Region, China
| | - Ka-Lam Cheng
- Infection Control Team, Caritas Medical Centre, Hong Kong, Special Administrative Region, China
| | - Wing-Sze Cheung
- Infection Control Team, Princess Margaret Hospital, Hong Kong, Special Administrative Region, China
| | - Hau-Ling Tang
- Infection Control Team, Yan Chai Hospital, Hong Kong, Special Administrative Region, China
| | - Wing-Kin To
- Department of Pathology, Princess Margaret Hospital, Hong Kong, Special Administrative Region, China
- Infection Control Team, Princess Margaret Hospital, Hong Kong, Special Administrative Region, China
| |
Collapse
|
7
|
Ionescu S, Luchian I, Damian C, Goriuc A, Porumb-Andrese E, Popa CG, Cobzaru RG, Ripa C, Ursu RG. Candida auris Updates: Outbreak Evaluation through Molecular Assays and Antifungal Stewardship-A Narrative Review. Curr Issues Mol Biol 2024; 46:6069-6084. [PMID: 38921033 PMCID: PMC11202268 DOI: 10.3390/cimb46060362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Candida auris was reported by the WHO as second to Cryptococcus neoformans, in the list of nineteen fungal priority pathogens, along with two species with a new nomenclature, Nakaseomyces glabrata (Candida glabrata) and Pichia kudriavzevii (Candida krusei). This novel classification was based on antifungal resistance, the number of deaths, evidence-based treatment, access to diagnostics, annual incidence, and complications and sequelae. We assessed which molecular assays have been used to diagnose Candida auris outbreaks in the last five years. Using "Candida auris; outbreak; molecular detection" as keywords, our search in PubMed revealed 32 results, from which we selected 23 original papers published in 2019-2024. The analyzed studies revealed that the detection methods were very different: from the VITEK® 2 System to MALDI TOF (Matrix-Assisted Laser Desorption Ionization-Time of Flight), NGS (Next-Generation Sequencing), WGS (Whole Genome Sequencing), and commercially available real-time PCR (Polymerase Chain Reaction) assays. Moreover, we identified studies that detected antifungal resistance genes (e.g., FKS for echinocandins and ERG11 for azoles). The analyzed outbreaks were from all continents, which confirms the capability of this yeast to spread between humans and to contaminate the environment. It is important that real-time PCR assays were developed for accurate and affordable detection by all laboratories, including the detection of antifungal resistance genes. This will allow the fast and efficient implementation of stewardship programs in hospitals.
Collapse
Affiliation(s)
- Silvia Ionescu
- Department of Preventive Medicine and Interdisciplinarity (IX), Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (R.G.U.)
| | - Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Costin Damian
- Department of Preventive Medicine and Interdisciplinarity (IX), Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (R.G.U.)
| | - Ancuta Goriuc
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Porumb-Andrese
- Department of Medical Specialties (III)—Discipline of Dermatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cosmin Gabriel Popa
- Department of Anatomy, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Roxana Gabriela Cobzaru
- Department of Preventive Medicine and Interdisciplinarity (IX), Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (R.G.U.)
| | - Carmen Ripa
- Department of Preventive Medicine and Interdisciplinarity (IX), Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (R.G.U.)
| | - Ramona Gabriela Ursu
- Department of Preventive Medicine and Interdisciplinarity (IX), Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (R.G.U.)
- Microbiology Department, Gynecology and Obstetrics Hospital-Cuza Voda, 700038 Iasi, Romania
| |
Collapse
|
8
|
Hui ST, Gifford H, Rhodes J. Emerging Antifungal Resistance in Fungal Pathogens. CURRENT CLINICAL MICROBIOLOGY REPORTS 2024; 11:43-50. [PMID: 38725545 PMCID: PMC11076205 DOI: 10.1007/s40588-024-00219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 05/12/2024]
Abstract
Purpose of Review Over recent decades, the number of outbreaks caused by fungi has increased for humans, plants (including important crop species) and animals. Yet this problem is compounded by emerging antifungal drug resistance in pathogenic species. Resistance develops over time when fungi are exposed to drugs either in the patient or in the environment. Recent Findings Novel resistant variants of fungal pathogens that were previously susceptible are evolving (such as Aspergillus fumigatus) as well as newly emerging fungal species that are displaying antifungal resistance profiles (e.g. Candida auris and Trichophyton indotineae). Summary This review highlights the important topic of emerging antifungal resistance in fungal pathogens and how it evolved, as well as how this relates to a growing public health burden.
Collapse
Affiliation(s)
- Sui Ting Hui
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Hugh Gifford
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Johanna Rhodes
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
- Department of Medical Microbiology, Radboudumc, the Netherlands
| |
Collapse
|
9
|
Schikora-Tamarit MÀ, Gabaldón T. Recent gene selection and drug resistance underscore clinical adaptation across Candida species. Nat Microbiol 2024; 9:284-307. [PMID: 38177305 PMCID: PMC10769879 DOI: 10.1038/s41564-023-01547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024]
Abstract
Understanding how microbial pathogens adapt to treatments, humans and clinical environments is key to infer mechanisms of virulence, transmission and drug resistance. This may help improve therapies and diagnostics for infections with a poor prognosis, such as those caused by fungal pathogens, including Candida. Here we analysed genomic variants across approximately 2,000 isolates from six Candida species (C. glabrata, C. auris, C. albicans, C. tropicalis, C. parapsilosis and C. orthopsilosis) and identified genes under recent selection, suggesting a highly complex clinical adaptation. These involve species-specific and convergently affected adaptive mechanisms, such as adhesion. Using convergence-based genome-wide association studies we identified known drivers of drug resistance alongside potentially novel players. Finally, our analyses reveal an important role of structural variants and suggest an unexpected involvement of (para)sexual recombination in the spread of resistance. Our results provide insights on how opportunistic pathogens adapt to human-related environments and unearth candidate genes that deserve future attention.
Collapse
Affiliation(s)
- Miquel Àngel Schikora-Tamarit
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain.
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- Centro Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain.
| |
Collapse
|
10
|
Kurakado S, Matsumoto Y, Sugita T. Comparing the virulence of four major clades of Candida auris strains using a silkworm infection model: Clade IV isolates had higher virulence than the other clades. Med Mycol 2023; 61:myad108. [PMID: 37898558 DOI: 10.1093/mmy/myad108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 10/30/2023] Open
Abstract
Candida auris is an emerging fungal pathogen that is feared to spread of infection because of its propensity for multidrug resistance and high mortality rate. This pathogenic yeast is classified into four major clades by phylogenetic analyses, which are referred to the South Asia clade (clade I), East Asia clade (clade II), South Africa clade (clade III), and South America clade (clade IV), based on the location of the initial isolate. In this study, we evaluated the virulence of C. auris strains belonging to four major clades and the therapeutic effects of micafungin in a silkworm infection model. The highest mortality rate at 21 h after C. auris inoculation was observed for strains from clade IV (80% or more). In contrast, it was 20% or less in those from other clades. Antifungal susceptibility tests indicated resistance to fluconazole and sensitivity to echinocandins in the blood-derived strains. Micafungin prolonged the survival of blood-derived C. auris infected silkworms. These results suggest that the silkworm infection model is useful for evaluating the virulence of C. auris and determining its therapeutic effects.
Collapse
Affiliation(s)
- Sanae Kurakado
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
11
|
Caliman Sato M, Izu Nakamura Pietro EC, Marques da Costa Alves L, Kramer A, da Silva Santos PS. Candida auris: a novel emerging nosocomial pathogen - properties, epidemiological situation and infection control. GMS HYGIENE AND INFECTION CONTROL 2023; 18:Doc18. [PMID: 37693850 PMCID: PMC10486814 DOI: 10.3205/dgkh000444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Immunosuppression and critical illnesses in combination with ecological imbalance open the door for novel opportunistic fungal infections, as in case of Candida (C). auris. C. auris has emerged globally as a multidrug-resistant yeast, causing infections and outbreaks in health care facilities. This narrative review discusses the properties of the yeast, the development of the epidemiological situation, the nosocomial spread and causes for nosocomial outbreaks triggered by C. auris in the hospital environment, and summarizes international recommendations for infection control, supplemented by suggestions on diagnostic, screening and antibiotic stewardship.
Collapse
Affiliation(s)
- Marcelo Caliman Sato
- Center for Lasers and Applications, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), São Paulo, Brazil
| | | | | | - Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
12
|
Kiyohara M, Miyazaki T, Okamoto M, Hirayama T, Makimura K, Chibana H, Nakada N, Ito Y, Sumiyoshi M, Ashizawa N, Takeda K, Iwanaga N, Takazono T, Izumikawa K, Yanagihara K, Kohno S, Mukae H. Evaluation of a Novel FKS1 R1354H Mutation Associated with Caspofungin Resistance in Candida auris Using the CRISPR-Cas9 System. J Fungi (Basel) 2023; 9:jof9050529. [PMID: 37233240 DOI: 10.3390/jof9050529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Outbreaks of invasive infections, with high mortality rates, caused by multidrug-resistant Candida auris have been reported worldwide. Although hotspot mutations in FKS1 are an established cause of echinocandin resistance, the actual contribution of these mutations to echinocandin resistance remains unknown. Here, we sequenced the FKS1 gene of a caspofungin-resistant clinical isolate (clade I) and identified a novel resistance mutation (G4061A inducing R1354H). We applied the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system to generate a recovered strain (H1354R) in which only this single nucleotide mutation was reverted to its wild-type sequence. We also generated mutant strains with only the R1354H mutation introduced into C. auris wild-type strains (clade I and II) and analyzed their antifungal susceptibility. Compared to their parental strains, the R1354H mutants exhibited a 4- to 16-fold increase in caspofungin minimum inhibitory concentration (MIC) while the H1354R reverted strain exhibited a 4-fold decrease in caspofungin MIC. In a mouse model of disseminated candidiasis, the in vivo therapeutic effect of caspofungin was more closely related to the FKS1 R1354H mutation and the virulence of the strain than its in vitro MIC. The CRISPR-Cas9 system could thus aid in elucidating the mechanism underlying drug resistance in C. auris.
Collapse
Affiliation(s)
- Maiko Kiyohara
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Taiga Miyazaki
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
- Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Michiyo Okamoto
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Tatsuro Hirayama
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Koichi Makimura
- Teikyo University Institute of Medical Mycology, Tokyo 192-0395, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Nana Nakada
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Yuya Ito
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Makoto Sumiyoshi
- Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Nobuyuki Ashizawa
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Kazuaki Takeda
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Naoki Iwanaga
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Takahiro Takazono
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Shigeru Kohno
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| |
Collapse
|
13
|
Rabaan AA, Eljaaly K, Alfouzan WA, Mutair AA, Alhumaid S, Alfaraj AH, Aldawood Y, Alsaleh AA, Albayat H, Azmi RA, AlKaabi N, Alzahrani SJ, AlBahrani S, Sulaiman T, Alshukairi AN, Abuzaid AA, Garout M, Ahmad R, Muhammad J. Psychogenetic, genetic and epigenetic mechanisms in Candida auris: Role in drug resistance. J Infect Public Health 2023; 16:257-263. [PMID: 36608452 DOI: 10.1016/j.jiph.2022.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/28/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, we are facing the challenge of drug resistance emergence in fungi. The availability of limited antifungals and development of multi-drug resistance in fungal pathogens has become a serious concern in the past years in the health sector. Although several cellular, molecular, and genetic mechanisms have been proposed to explain the drug resistance mechanism in fungi, but a complete understanding of the molecular and genetic mechanisms is still lacking. Besides the genetic mechanism, epigenetic mechanisms are pivotal in the fungal lifecycle and disease biology. However, very little is understood about the role of epigenetic mechanisms in the emergence of multi-drug resistance in fungi, especially in Candida auris (C. auris). The current narrative review summaries the clinical characteristics, genomic organization, and molecular/genetic/epigenetic mechanisms underlying the emergence of drug resistance in C. auris. A very few studies have attempted to evaluate the role of epigenetic mechanisms in C. auris. Furthermore, advanced genetic tools such as the CRISP-Cas9 system can be utilized to elucidate the epigenetic mechanisms and their role in the emergence of multi-drug resistance in C. auris.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan.
| | - Khalid Eljaaly
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Pharmacy Practice and Science Department, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Wadha A Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia; College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia; School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia; Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Amal H Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Yahya Aldawood
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Abdulmonem A Alsaleh
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh 7790, Saudi Arabia
| | - Reyouf Al Azmi
- Infection Prevention and Control, Eastern Health Cluster, Dammam 32253, Saudi Arabia
| | - Nawal AlKaabi
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, 51900, United Arab Emirates; College of Medicine and Health Science, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Samira J Alzahrani
- Molecular Diagnostic Laboratory, King Fahd Military Medical Complex, Dhahran 31932, Saudi Arabia
| | - Salma AlBahrani
- Infectious Disease Unit, Specialty Internal Medicine, King Fahd Military Medical Complex, Dhahran 31932, Saudi Arabia
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abeer N Alshukairi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Abdulmonem A Abuzaid
- Medical Microbiology Department, Security Forces Hospital Programme, Dammam 32314, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Rafiq Ahmad
- Department of Microbiology, The University of Haripur, Haripur 22610, Pakistan
| | - Javed Muhammad
- Department of Microbiology, The University of Haripur, Haripur 22610, Pakistan.
| |
Collapse
|
14
|
Functional Expression of Recombinant Candida auris Proteins in Saccharomyces cerevisiae Enables Azole Susceptibility Evaluation and Drug Discovery. J Fungi (Basel) 2023; 9:jof9020168. [PMID: 36836283 PMCID: PMC9960696 DOI: 10.3390/jof9020168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Candida auris infections are difficult to treat due to acquired drug resistance against one or multiple antifungal drug classes. The most prominent resistance mechanisms in C. auris are overexpression and point mutations in Erg11, and the overexpression of efflux pump genes CDR1 and MDR1. We report the establishment of a novel platform for molecular analysis and drug screening based on acquired azole-resistance mechanisms found in C. auris. Constitutive functional overexpression of wild-type C. auris Erg11, Erg11 with amino acid substitutions Y132F or K143R and the recombinant efflux pumps Cdr1 and Mdr1 has been achieved in Saccharomyces cerevisiae. Phenotypes were evaluated for standard azoles and the tetrazole VT-1161. Overexpression of CauErg11 Y132F, CauErg11 K143R, and CauMdr1 conferred resistance exclusively to the short-tailed azoles Fluconazole and Voriconazole. Strains overexpressing the Cdr1 protein were pan-azole resistant. While CauErg11 Y132F increased VT-1161 resistance, K143R had no impact. Type II binding spectra showed tight azole binding to the affinity-purified recombinant CauErg11 protein. The Nile Red assay confirmed the efflux functions of CauMdr1 and CauCdr1, which were specifically inhibited by MCC1189 and Beauvericin, respectively. CauCdr1 exhibited ATPase activity that was inhibited by Oligomycin. The S. cerevisiae overexpression platform enables evaluation of the interaction of existing and novel azole drugs with their primary target CauErg11 and their susceptibility to drug efflux.
Collapse
|
15
|
da Fonseca AM, Soares NB, Colares RP, Macedo de Oliveira M, Santos Oliveira L, Marinho GS, Raya Paula de Lima M, da Rocha MN, Dos Santos HS, Marinho ES. Naphthoquinones biflorin and bis-biflorin ( Capraria biflora) as possible inhibitors of the fungus Candida auris polymerase: molecular docking, molecular dynamics, MM/GBSA calculations and in silico drug-likeness study. J Biomol Struct Dyn 2023; 41:11564-11577. [PMID: 36597918 DOI: 10.1080/07391102.2022.2163702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
A new worldwide concern has emerged with the recent emergence of infections caused by Candida auris. This reflects its comparative ease of transmission, substantial mortality, and the increasing level of resistance seen in the three major classes of antifungal drugs. Efforts to create a better design for structure-based drugs that described numerous modifications and the search for secondary metabolic structures derived from plant species are likely to reduce the virulence of several fungal pathogens. In this context, the present work aimed to evaluate in silico two naphthoquinones isolated from the roots of Capraria biflora, biflorin, and its dimmer, bis-biflorin, as potential inhibitors of Candida auris polymerase. Based on the simulation performed with the two naphthoquinones, biflorin and bis-biflorin, it can be stated that bis-biflorin showed the best interactions with Candida auris polymerase. Still, biflorin also demonstrated favorable coupling energy. Predictive pharmacokinetic assays suggest that biflorin has high oral bioavailability and more excellent metabolic stability compared to the bis-biflorin analogue. constituting a promising pharmacological tool.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aluísio Marques da Fonseca
- Mestrado Acadêmico em Sociobiodiversidades e Tecnologias Sustentáveis - MASTS, Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, CE, Brazil
| | - Neidelenio Baltazar Soares
- Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, CE, Brazil
| | - Regilany Paulo Colares
- Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, CE, Brazil
| | | | | | - Gabrielle Silva Marinho
- Grupo de Química Teórica e Eletroquímica - GQTE, Universidade Estadual de Ceará, Limoiro do Norte, CE, Brazil
| | - Mira Raya Paula de Lima
- Instituto Federal de Educação Ciência e Tecnologia do Ceará - Campus Juazeiro do Norte, Juazeiro do Norte, CE, Brazil
| | - Matheus Nunes da Rocha
- Grupo de Química Teórica e Eletroquímica - GQTE, Universidade Estadual de Ceará, Limoiro do Norte, CE, Brazil
| | | | - Emmanuel Silva Marinho
- Grupo de Química Teórica e Eletroquímica - GQTE, Universidade Estadual de Ceará, Limoiro do Norte, CE, Brazil
| |
Collapse
|
16
|
Sharma M, Chakrabarti A. Candidiasis and Other Emerging Yeasts. CURRENT FUNGAL INFECTION REPORTS 2023; 17:15-24. [PMID: 36741271 PMCID: PMC9886541 DOI: 10.1007/s12281-023-00455-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/01/2023]
Abstract
Purpose of Review The review presents a comprehensive and updated information on the contemporary status of invasive candidiasis (IC), other emerging yeast infections, and the challenges they present in terms of at-risk population, specific virulence attributes, and antifungal susceptibility profile. Recent Findings With the advancement in medical field, there has been parallel expansion of vulnerable populations over the past two decades. This had led to the emergence of a variety of rare yeasts in healthcare settings, both Candida and non-Candida yeast causing sporadic cases and outbreaks. The advancements in diagnostic modalities have enabled accurate identification of rare Candida species and non-Candida yeast (NCY) of clinical importance. Their distribution and susceptibility profile vary across different geographical regions, thus necessitating surveillance of local epidemiology of these infections to improve patient outcomes. Summary The challenges in management of IC have been complicated with emergence of newer species and resistance traits. C. tropicalis has already overtaken C. albicans in many Asian ICUs, while C. auris is rising rapidly worldwide. Recent genomic research has reclassified several yeasts into newer genera, and an updated version of MALDI-TOF MS or ITS sequencing is necessary for accurate identification. Having a knowledge of the differences in predisposing factors, epidemiology and susceptibility profile of already established pathogenic yeasts, as well as new emerging yeasts, are imperative for better patient management.
Collapse
Affiliation(s)
- Megha Sharma
- Department of Microbiology, All India Institute of Medical Sciences, Bilaspur, India
| | | |
Collapse
|
17
|
Directed Evolution Detects Supernumerary Centric Chromosomes Conferring Resistance to Azoles in Candida auris. mBio 2022; 13:e0305222. [PMID: 36445083 PMCID: PMC9765433 DOI: 10.1128/mbio.03052-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Candida auris exhibits resistance to multiple antifungal drug classes and sterilization agents, posing threats to the immunocompromised worldwide. Among the four major geographical clades, the East Asian clade 2 isolates of C. auris are mostly drug susceptible. In this study, we experimentally evolved one such drug-susceptible isolate for multiple generations in the presence of the antifungal compound fluconazole and analyzed changes in the karyotype, DNA sequence, and gene expression profiles in three evolved drug-resistant isolates. Next-generation sequencing and electrophoretic karyotyping confirm the presence of segmental aneuploidy as supernumerary chromosomes originating from centromere-inclusive chromosomal duplication events in two such cases. A 638-kb region and a 675-kb region, both of which originated from chromosome 5 and contained its centromere region, are instances of supernumerary chromosome formation identified in two evolved fluconazole-resistant isolates. Loss of the supernumerary chromosomes from the drug-resistant isolates results in a complete reversal of fluconazole susceptibility. Transcriptome analysis of the third isolate identified overexpression of drug efflux pumps as a possible non-aneuploidy-driven mechanism of drug resistance. Together, this study reveals how both aneuploidy-driven and aneuploidy-independent mechanisms may operate in parallel in an evolving population of C. auris in the presence of an antifungal drug, in spite of starting from the same strain grown under similar conditions, to attain various levels of fluconazole resistance. IMPORTANCE Fungal pathogens develop drug resistance through multiple pathways by acquiring gene mutations, increasing the copy number of genes, or altering gene expression. In this study, we attempt to understand the mechanisms of drug resistance in the recently emerged superbug, C. auris. One approach to studying this aspect is identifying various mechanisms operating in drug-resistant clinical isolates. An alternative approach is to evolve a drug-susceptible isolate in the presence of an antifungal compound and trace the changes that result in drug resistance. Here, we evolve a drug-susceptible isolate of C. auris in the laboratory in the presence of a widely used antifungal compound, fluconazole. In addition to the already known changes like overexpression of drug efflux pumps, this study identifies a novel mechanism of azole resistance by the emergence of additional chromosomes through segmental duplication of chromosomal regions, including centromeres. The centric supernumerary chromosome helps stable amplification of a set of genes with an extra copy to confer fluconazole resistance.
Collapse
|
18
|
Sasoni N, Maidana M, Latorre-Rapela MG, Morales-Lopez S, Berrio I, Gamarra S, Garcia-Effron G. Candida auris and some Candida parapsilosis strains exhibit similar characteristics on CHROMagarTMCandida Plus. Med Mycol 2022; 60:myac062. [PMID: 36208938 DOI: 10.1093/mmy/myac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Candida auris is considered a public health problem due to its resistance and its tendency to cause nosocomial outbreaks. CHROMagarTMCandida Plus has recently been marketed as capable of presumptively identifying C. auris. The objective of this work was to analyze the ability of this new chromogenic medium to differentiate C. auris from other members of the C. haemulonii complex and from other yeasts commonly isolated in clinical practice. A collection of 220 strains including species of the C. haemulonii (n = 83) and C. parapsilosis (n = 80) complexes was studied. The strains were identified by molecular methods and cultured as individual or as mixed aqueous inoculum on CHROMagarTMCandida Plus plates. Colony morphotypes were evaluated at 5 time points. CHROMagarTMCandida Plus was a helpful tool for presumptive identification for C. auris. Better reading results were obtained after 48 hours of incubation at 35°C. It is able to easily differentiate C. auris from other closely related species of the C. haemulonii complex and other yeasts. This chromogenic medium would be also useful as screening and surveillance tool for C. auris colonization. However, we demonstrated that it would be a possible misidentification of C. parapsilosis as C. auris (44.3% showed similar morphotypes). To reduce false positives when it is used in a context of a C. auris outbreak, we propose to supplement the chromogenic medium with 8 μg/ml fluconazole. This modified medium was tested and it clearly differentiate C. parapsilosis from C. auris.
Collapse
Affiliation(s)
- Natalia Sasoni
- Laboratorio de Micología y Diagnóstico Molecular - Cátedra de Parasitología y Micología - Facultad de Bioquímica - Universidad Nacional del Litoral - Ciudad Universitaria - Santa Fe (CP 3000) - Argentina
| | - Melani Maidana
- Laboratorio de Micología y Diagnóstico Molecular - Cátedra de Parasitología y Micología - Facultad de Bioquímica - Universidad Nacional del Litoral - Ciudad Universitaria - Santa Fe (CP 3000) - Argentina
| | - María Gabriela Latorre-Rapela
- Laboratorio de Micología y Diagnóstico Molecular - Cátedra de Parasitología y Micología - Facultad de Bioquímica - Universidad Nacional del Litoral - Ciudad Universitaria - Santa Fe (CP 3000) - Argentina
| | - Soraya Morales-Lopez
- Grupo CINBIOS, Programa de Microbiología - Universidad Popular del Cesar - Valledupar (200002), Colombia
| | - Indira Berrio
- Hospital general de Medellin 'Luz Castro de Gutiérrez' ESE - Medellín (050015) - Colombia
| | - Soledad Gamarra
- Laboratorio de Micología y Diagnóstico Molecular - Cátedra de Parasitología y Micología - Facultad de Bioquímica - Universidad Nacional del Litoral - Ciudad Universitaria - Santa Fe (CP 3000) - Argentina
| | - Guillermo Garcia-Effron
- Laboratorio de Micología y Diagnóstico Molecular - Cátedra de Parasitología y Micología - Facultad de Bioquímica - Universidad Nacional del Litoral - Ciudad Universitaria - Santa Fe (CP 3000) - Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET). Santa Fe (CP 3000). Argentina
| |
Collapse
|
19
|
Raman Metabolomics of Candida auris Clades: Profiling and Barcode Identification. Int J Mol Sci 2022; 23:ijms231911736. [PMID: 36233043 PMCID: PMC9569935 DOI: 10.3390/ijms231911736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
This study targets on-site/real-time taxonomic identification and metabolic profiling of seven different Candida auris clades/subclades by means of Raman spectroscopy and imaging. Representative Raman spectra from different Candida auris samples were systematically deconvoluted by means of a customized machine-learning algorithm linked to a Raman database in order to decode structural differences at the molecular scale. Raman analyses of metabolites revealed clear differences in cell walls and membrane structure among clades/subclades. Such differences are key in maintaining the integrity and physical strength of the cell walls in the dynamic response to external stress and drugs. It was found that Candida cells use the glucan structure of the extracellular matrix, the degree of α-chitin crystallinity, and the concentration of hydrogen bonds between its antiparallel chains to tailor cell walls’ flexibility. Besides being an effective ploy in survivorship by providing stiff shields in the α–1,3–glucan polymorph, the α–1,3–glycosidic linkages are also water-insoluble, thus forming a rigid and hydrophobic scaffold surrounded by a matrix of pliable and hydrated β–glucans. Raman analysis revealed a variety of strategies by different clades to balance stiffness, hydrophobicity, and impermeability in their cell walls. The selected strategies lead to differences in resistance toward specific environmental stresses of cationic/osmotic, oxidative, and nitrosative origins. A statistical validation based on principal component analysis was found only partially capable of distinguishing among Raman spectra of clades and subclades. Raman barcoding based on an algorithm converting spectrally deconvoluted Raman sub-bands into barcodes allowed for circumventing any speciation deficiency. Empowered by barcoding bioinformatics, Raman analyses, which are fast and require no sample preparation, allow on-site speciation and real-time selection of appropriate treatments.
Collapse
|
20
|
Spruijtenburg B, Badali H, Abastabar M, Mirhendi H, Khodavaisy S, Sharifisooraki J, Armaki MT, de Groot T, Meis JF. Confirmation of fifth Candida auris clade by whole genome sequencing. Emerg Microbes Infect 2022; 11:2405-2411. [PMID: 36154919 PMCID: PMC9586689 DOI: 10.1080/22221751.2022.2125349] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Candida auris has emerged globally as a multidrug-resistant pathogen causing outbreaks in health care facilities. Whole genome sequencing (WGS) analysis has identified four major clades, while earlier WGS data from a single Iranian isolate suggested the existence of a potential fifth clade. Here, we confirm the existence of this fifth clade by providing WGS data of another four Iranian isolates. These clade V isolates differed less than 100 single-nucleotide polymorphisms (SNPs) between each other, while they were separated from the other clades by more than 200,000 SNPs. Two of these isolates were resistant to fluconazole and were found to harbour mutations in the TAC1b and ERG11 genes.
Collapse
Affiliation(s)
- Bram Spruijtenburg
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands .,Centre of Expertise in Mycology Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Mirhendi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Joobin Sharifisooraki
- Health Reproductive Research Center, Sari Branch, Islamic Azad University, Sari, Mazandaran, Iran
| | - Mojtaba Taghizadeh Armaki
- Department of Medical Mycology and Parasitology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Theun de Groot
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands .,Centre of Expertise in Mycology Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands .,Centre of Expertise in Mycology Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands .,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Escandón P. Novel Environmental Niches for Candida auris: Isolation from a Coastal Habitat in Colombia. J Fungi (Basel) 2022; 8:jof8070748. [PMID: 35887503 PMCID: PMC9320720 DOI: 10.3390/jof8070748] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Climate change has been proposed as a set of factors that affect the frequency, distribution, and morbimortality of many infectious diseases, in which mycosis has also been impacted. Most fungi have the ability to cause disease in mammalian hosts as a result of their competitive fitness advantages that allow adaptation to diverse ecological niches. Candida auris has burst in the infectious disease scenario, and it has been hypothesized that a combination of stress adaptation and biotic predation has driven this fungus in the evolution of thermotolerance and halotolerance mechanisms to adapt to different environmental niches, which have resulted in the capacity to cross the thermal infection barrier in humans. Consequently, the isolation of C. auris from estuaries in Colombia adds to the evidence that suggests that this fungus existed in the environment previously to being recognized as a human pathogen, and promotes the need for further investigations to identify additional ecological niches.
Collapse
Affiliation(s)
- Patricia Escandón
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá 111321, Colombia
| |
Collapse
|
22
|
Tsai YT, Lu PL, Tang HJ, Huang CH, Hung WC, Tseng YT, Lee KM, Lin SY. The First Invasive Candida auris Infection in Taiwan. Emerg Microbes Infect 2022; 11:1867-1875. [PMID: 35811508 PMCID: PMC9336481 DOI: 10.1080/22221751.2022.2100280] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Candida auris, a multidrug resistant pathogenic yeast, has spread worldwide and caused several outbreaks in healthcare settings. Here, we report the first case of C. auris candidemia in Taiwan in a patient with a two-month history of hospitalization in Vietnam. We performed further investigation on the isolate from the present case as well as the previously reported C. auris isolate identified from a wound in 2018 in Taiwan, which was the first case reported in Taiwan. Both C. auris isolates were found to be susceptible to fluconazole, amphotericin B, and echinocandins. Additionally, mutations in ERG11 or FKS1 were not detected in either isolate. Microsatellite genotyping revealed that both isolates belonged to the South Asian clade. In recent years, C. auris has emerged as a global concern, and differences in clades and susceptibility patterns mandate further awareness and systematic surveillance.
Collapse
Affiliation(s)
- Yu-Te Tsai
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Liang Lu
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Jen Tang
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chung-Hao Huang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-Chun Hung
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yi-Ting Tseng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kun-Mu Lee
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shang-Yi Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
23
|
Schikora-Tamarit MÀ, Gabaldón T. Using genomics to understand the mechanisms of virulence and drug resistance in fungal pathogens. Biochem Soc Trans 2022; 50:1259-1268. [PMID: 35713390 PMCID: PMC9246328 DOI: 10.1042/bst20211123] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023]
Abstract
Fungal pathogens pose an increasingly worrying threat to human health, food security and ecosystem diversity. To tackle fungal infections and improve current diagnostic and therapeutic tools it is necessary to understand virulence and antifungal drug resistance mechanisms in diverse species. Recent advances in genomics approaches have provided a suitable framework to understand these phenotypes, which ultimately depend on genetically encoded determinants. In this work, we review how the study of genome sequences has been key to ascertain the bases of virulence and drug resistance traits. We focus on the contribution of comparative genomics, population genomics and directed evolution studies. In addition, we discuss how different types of genomic mutations (small or structural variants) contribute to intraspecific differences in virulence or drug resistance. Finally, we review current challenges in the field and anticipate future directions to solve them. In summary, this work provides a short overview of how genomics can be used to understand virulence and drug resistance in fungal pathogens.
Collapse
Affiliation(s)
- Miquel Àngel Schikora-Tamarit
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain
| |
Collapse
|
24
|
ClaID: a Rapid Method of Clade-Level Identification of the Multidrug Resistant Human Fungal Pathogen Candida auris. Microbiol Spectr 2022; 10:e0063422. [PMID: 35343775 PMCID: PMC9045239 DOI: 10.1128/spectrum.00634-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Candida auris, the multidrug-resistant human fungal pathogen, emerged as four major distinct geographical clades (clade 1–clade 4) in the past decade. Though isolates of the same species, C. auris clinical strains exhibit clade-specific properties associated with virulence and drug resistance. In this study, we report the identification of unique DNA sequence junctions by mapping clade-specific regions through comparative analysis of whole-genome sequences of strains belonging to different clades. These unique DNA sequence stretches are used to identify C. auris isolates at the clade level in subsequent in silico and experimental analyses. We develop a colony PCR-based clade-identification system (ClaID), which is rapid and specific. In summary, we demonstrate a proof-of-concept for using unique DNA sequence junctions conserved in a clade-specific manner for the rapid identification of each of the four major clades of C. auris. IMPORTANCEC. auris was first isolated in Japan in 2009 as an antifungal drug-susceptible pathogen causing localized infections. Within a decade, it simultaneously evolved in different parts of the world as distinct clades exhibiting resistance to antifungal drugs at varying levels. Recent studies hinted the mixing of isolates belonging to different geographical clades in a single location, suggesting that the area of isolation alone may not indicate the clade status of an isolate. In this study, we compared the genomes of representative strains of the four major clades to identify clade-specific sequences, which were then used to design clade-specific primers. We propose the utilization of whole genome sequence data to extract clade-specific sequences for clade-typing. The colony PCR-based method employed can rapidly distinguish between the four major clades of C. auris, with scope for expanding the panel by adding more primer pairs.
Collapse
|
25
|
Population genomic analyses reveal evidence for limited recombination in the superbug Candida auris in nature. Comput Struct Biotechnol J 2022; 20:3030-3040. [PMID: 35782746 PMCID: PMC9218166 DOI: 10.1016/j.csbj.2022.06.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 11/22/2022] Open
Abstract
Candida auris is a recently emerged, multidrug-resistant pathogenic yeast capable of causing a diversity of human infections worldwide. Genetic analyses based on whole-genome sequences have clustered strains in this species into five divergent clades, with each clade containing limited genetic variation and one of two mating types, MTLa or MTLα. The patterns of genetic variations suggest simultaneous emergence and clonal expansion of multiple clades of this pathogen across the world. At present, it is unclear whether recombination has played any role during the evolution of C. auris. In this study, we analyzed patterns of associations among single nucleotide polymorphisms in both the nuclear and the mitochondrial genomes of 1,285 strains to investigate potential signatures of recombination in natural C. auris populations. Overall, we found that polymorphisms in the nuclear and mitochondrial genomes clustered the strains similarly into the five clades, consistent with a lack of evidence for recombination among the clades after their divergence. However, variable percentages of SNP pairs showed evidence of phylogenetic incompatibility and linkage equilibrium among samples in both the nuclear and the mitochondrial genomes, with the percentages higher in the total population than those within individual clades. Our results are consistent with limited but greater frequency of recombination before the divergence of the clades than afterwards. SNPs at loci related to antifungal resistance showed frequencies of recombination similar to or lower than those observed for SNPs in other parts of the genome. Together, though very limited, evidence for the observed recombination for both before and after the divergence of the clades suggests the possibility for continuous genetic exchange in natural populations of this important yeast pathogen.
Collapse
|
26
|
Frías-De-León MG, García-Salazar E, Reyes-Montes MDR, Duarte-Escalante E, Acosta-Altamirano G. Opportunistic Yeast Infections and Climate Change: The Emergence of Candida auris. Fungal Biol 2022. [DOI: 10.1007/978-3-030-89664-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Ennis CL, Hernday AD, Nobile CJ. A Markerless CRISPR-Mediated System for Genome Editing in Candida auris Reveals a Conserved Role for Cas5 in the Caspofungin Response. Microbiol Spectr 2021; 9:e0182021. [PMID: 34730409 PMCID: PMC8567271 DOI: 10.1128/spectrum.01820-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 12/26/2022] Open
Abstract
Candida auris is a multidrug-resistant human fungal pathogen that has recently emerged worldwide. It can cause life-threatening disseminated infections in humans, with mortality rates upwards of 50%. The molecular mechanisms underlying its multidrug resistance and pathogenic properties are largely unknown. Few methods exist for genome editing in C. auris, all of which rely on selectable markers that limit the number of modifications that can be made. Here, we present a markerless CRISPR/Cas9-mediated genome editing system in C. auris. Using this system, we successfully deleted genes of interest and subsequently reconstituted them at their native loci in isolates across all five C. auris clades. This system also enabled us to introduce precision genome edits to create translational fusions and single point mutations. Using Cas5 as a test case for this system, we discovered a conserved role for Cas5 in the caspofungin response between Candida albicans and C. auris. Overall, the development of a system for precise and facile genome editing in C. auris that can allow edits to be made in a high-throughput manner is a major step forward in improving our understanding of this important human fungal pathogen. IMPORTANCE Candida auris is a recently emerged multidrug-resistant fungal pathogen capable of causing life-threatening systemic infections in humans. Few tools are available for genome editing in C. auris. Here, we present a markerless genome editing system for C. auris that relies on CRISPR/Cas9 technology and works to modify the genomes of all known C. auris clades. Using this system, we discovered a conserved role for Cas5 in the caspofungin response between C. albicans and C. auris. Overall, the development of a system for facile genome editing in C. auris is a major step forward in improving our understanding of this important human fungal pathogen.
Collapse
Affiliation(s)
- Craig L. Ennis
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, USA
- Health Sciences Research Institute, University of California, Merced, California, USA
| | - Aaron D. Hernday
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Health Sciences Research Institute, University of California, Merced, California, USA
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Health Sciences Research Institute, University of California, Merced, California, USA
| |
Collapse
|
28
|
Abstract
Pathogenic fungi have several mechanisms of resistance to antifungal drugs, driven by the genetic plasticity and versatility of their homeostatic responses to stressful environmental cues. We critically review the molecular mechanisms of resistance and cellular adaptations of pathogenic fungi in response to antifungals and discuss the factors contributing to such resistance. We offer suggestions for the translational and clinical research agenda of this rapidly evolving and medically important field. A better understanding of antifungal resistance should assist in developing better detection tools and inform optimal strategies for preventing and treating refractory mycoses in the future.
Collapse
Affiliation(s)
- Ronen Ben-Ami
- Infectious Diseases Department, Sackler School of Medicine, Tel Aviv University, Tel Aviv Sourasky Medical Center, 6 Weizmann, Tel Aviv 64239, Israel
| | - Dimitrios P Kontoyiannis
- Infectious Diseases, University of Texas M D Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030, USA.
| |
Collapse
|
29
|
Muñoz JF, Welsh RM, Shea T, Batra D, Gade L, Howard D, Rowe LA, Meis JF, Litvintseva AP, Cuomo CA. Clade-specific chromosomal rearrangements and loss of subtelomeric adhesins in Candida auris. Genetics 2021; 218:iyab029. [PMID: 33769478 PMCID: PMC8128392 DOI: 10.1093/genetics/iyab029] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Candida auris is an emerging fungal pathogen of rising concern due to global spread, the ability to cause healthcare-associated outbreaks, and antifungal resistance. Genomic analyses revealed that early contemporaneously detected cases of C. auris were geographically stratified into four major clades. While Clades I, III, and IV are responsible for ongoing outbreaks of invasive and multidrug-resistant infections, Clade II, also termed the East Asian clade, consists primarily of cases of ear infection, is often susceptible to all antifungal drugs, and has not been associated with outbreaks. Here, we generate chromosome-level assemblies of twelve isolates representing the phylogenetic breadth of these four clades and the only isolate described to date from Clade V. This Clade V genome is highly syntenic with those of Clades I, III, and IV, although the sequence is highly divergent from the other clades. Clade II genomes appear highly rearranged, with translocations occurring near GC-poor regions, and large subtelomeric deletions in most chromosomes, resulting in a substantially different karyotype. Rearrangements and deletion lengths vary across Clade II isolates, including two from a single patient, supporting ongoing genome instability. Deleted subtelomeric regions are enriched in Hyr/Iff-like cell-surface proteins, novel candidate cell wall proteins, and an ALS-like adhesin. Cell wall proteins from these families and other drug-related genes show clade-specific signatures of selection in Clades I, III, and IV. Subtelomeric dynamics and the conservation of cell surface proteins in the clades responsible for global outbreaks causing invasive infections suggest an explanation for the different phenotypes observed between clades.
Collapse
Affiliation(s)
- José F Muñoz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rory M Welsh
- Mycotic Diseases Branch, U.S. Department of Health and Human Services, Atlanta, GA, USA
| | - Terrance Shea
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dhwani Batra
- Division of Scientific Resources, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA
| | - Lalitha Gade
- Mycotic Diseases Branch, U.S. Department of Health and Human Services, Atlanta, GA, USA
| | - Dakota Howard
- Division of Scientific Resources, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA
| | - Lori A Rowe
- Division of Scientific Resources, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | | | | |
Collapse
|
30
|
Narayanan A, Vadnala RN, Ganguly P, Selvakumar P, Rudramurthy SM, Prasad R, Chakrabarti A, Siddharthan R, Sanyal K. Functional and Comparative Analysis of Centromeres Reveals Clade-Specific Genome Rearrangements in Candida auris and a Chromosome Number Change in Related Species. mBio 2021; 12:e00905-21. [PMID: 33975937 PMCID: PMC8262905 DOI: 10.1128/mbio.00905-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/22/2022] Open
Abstract
The thermotolerant multidrug-resistant ascomycete Candida auris rapidly emerged since 2009 causing systemic infections worldwide and simultaneously evolved in different geographical zones. The molecular events that orchestrated this sudden emergence of the killer fungus remain mostly elusive. Here, we identify centromeres in C. auris and related species, using a combined approach of chromatin immunoprecipitation and comparative genomic analyses. We find that C. auris and multiple other species in the Clavispora/Candida clade shared a conserved small regional GC-poor centromere landscape lacking pericentromeres or repeats. Further, a centromere inactivation event led to karyotypic alterations in this species complex. Interspecies genome analysis identified several structural chromosomal changes around centromeres. In addition, centromeres are found to be rapidly evolving loci among the different geographical clades of the same species of C. auris Finally, we reveal an evolutionary trajectory of the unique karyotype associated with clade 2 that consists of the drug-susceptible isolates of C. aurisIMPORTANCECandida auris, the killer fungus, emerged as different geographical clades, exhibiting multidrug resistance and high karyotype plasticity. Chromosomal rearrangements are known to play key roles in the emergence of new species, virulence, and drug resistance in pathogenic fungi. Centromeres, the genomic loci where microtubules attach to separate the sister chromatids during cell division, are known to be hot spots of breaks and downstream rearrangements. We identified the centromeres in C. auris and related species to study their involvement in the evolution and karyotype diversity reported in C. auris We report conserved centromere features in 10 related species and trace the events that occurred at the centromeres during evolution. We reveal a centromere inactivation-mediated chromosome number change in these closely related species. We also observe that one of the geographical clades, the East Asian clade, evolved along a unique trajectory, compared to the other clades and related species.
Collapse
Affiliation(s)
- Aswathy Narayanan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Rakesh Netha Vadnala
- Computational Biology, The Institute of Mathematical Sciences/HBNI, Chennai, India
| | - Promit Ganguly
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Pavitra Selvakumar
- Computational Biology, The Institute of Mathematical Sciences/HBNI, Chennai, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajendra Prasad
- Amity Institute of Biotechnology, Amity University Haryana, Haryana, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rahul Siddharthan
- Computational Biology, The Institute of Mathematical Sciences/HBNI, Chennai, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- Osaka University, Suita, Japan
| |
Collapse
|
31
|
Chakrabarti A, Sood P. On the emergence, spread and resistance of Candida auris: host, pathogen and environmental tipping points. J Med Microbiol 2021; 70:001318. [PMID: 33599604 PMCID: PMC8346726 DOI: 10.1099/jmm.0.001318] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/28/2020] [Indexed: 01/12/2023] Open
Abstract
Over a decade ago, a multidrug-resistant nosocomial fungus Candida auris emerged worldwide and has since become a significant challenge for clinicians and microbiologists across the globe. A resilient pathogen, C. auris survives harsh disinfectants, desiccation and high-saline environments. It readily colonizes the inanimate environment, susceptible patients and causes invasive infections that exact a high toll. Prone to misidentification by conventional microbiology techniques, C. auris rapidly acquires multiple genetic determinants that confer multidrug resistance. Whole-genome sequencing has identified four distinct clades of C. auris, and possibly a fifth one, in circulation. Even as our understanding of this formidable pathogen grows, the nearly simultaneous emergence of its distinct clades in different parts of the world, followed by their rapid global spread, remains largely unexplained. We contend that certain host-pathogen-environmental factors have been evolving along adverse trajectories for the last few decades, especially in regions where C. auris originally appeared, until these factors possibly reached a tipping point to compel the evolution, emergence and spread of C. auris. Comparative genomics has helped identify several resistance mechanisms in C. auris that are analogous to those seen in other Candida species, but they fail to fully explain how high-level resistance rapidly develops in this yeast. A better understanding of these unresolved aspects is essential not only for the effective management of C. auris patients, hospital outbreaks and its global spread but also for forecasting and tackling novel resistant pathogens that might emerge in the future. In this review, we discuss the emergence, spread and resistance of C. auris, and propose future investigations to tackle this resilient pathogen.
Collapse
Affiliation(s)
- Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prashant Sood
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
32
|
Affiliation(s)
- Zoe K. Ross
- Institute of Medical Sciences (IMS), University of Aberdeen, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Alexander Lorenz
- Institute of Medical Sciences (IMS), University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Abe M, Katano H, Nagi M, Higashi Y, Sato Y, Kikuchi K, Hasegawa H, Miyazaki Y. Potency of gastrointestinal colonization and virulence of Candida auris in a murine endogenous candidiasis. PLoS One 2020; 15:e0243223. [PMID: 33264362 PMCID: PMC7710084 DOI: 10.1371/journal.pone.0243223] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Candida auris infections have recently emerged worldwide, and this species is highly capable of colonization and is associated with high levels of mortality. However, strain-dependent differences in colonization capabilities and virulence have not yet been reported. OBJECTIVES In the present study, we aimed to clarify the differences between clinically isolated invasive and non-invasive strains of C. auris. METHODS We evaluated colonization, dissemination, and survival rates in wild C57BL/6J mice inoculated with invasive or non-invasive strains of C. auris under cortisone acetate immunosuppression, comparing with those of Candida albicans and Candida glabrata infections. We also evaluated the potency of biofilm formation. RESULTS Stool fungal burdens were significantly higher in mice inoculated with the invasive strains than in those infected with the non-invasive strain. Along with intestinal colonization, liver and kidney fungal burdens were also significantly higher in mice inoculated with the invasive strains. In addition, histopathological findings revealed greater dissemination and colonization of the invasive strains. Regarding biofilm-forming capability, the invasive strain of C. auris exhibited a significantly higher capacity of producing biofilms. Moreover, inoculation with the invasive strains resulted in significantly greater loss of body weight than that noted following infection with the non-invasive strain. CONCLUSIONS Invasive strains showed higher colonization capability and rates of dissemination from gastrointestinal tracts under cortisone acetate immunosuppression than non-invasive strains, although the mortality rates caused by C. auris were lower than those caused by C. albicans.
Collapse
Affiliation(s)
- Masahiro Abe
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Minoru Nagi
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshitsugu Higashi
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken Kikuchi
- Department of Infectious Diseases, Tokyo Women's Medical University, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan.,Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
34
|
Misas E, Chow NA, Gómez OM, Muñoz JF, McEwen JG, Litvintseva AP, Clay OK. Mitochondrial Genome Sequences of the Emerging Fungal Pathogen Candida auris. Front Microbiol 2020; 11:560332. [PMID: 33193142 PMCID: PMC7652928 DOI: 10.3389/fmicb.2020.560332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/30/2020] [Indexed: 11/25/2022] Open
Abstract
Candida auris is an emerging fungal pathogen capable of causing invasive infections in humans. Since its first appearance around 1996, it has been isolated in countries spanning five continents. C. auris is a yeast that has the potential to cause outbreaks in hospitals, can survive in adverse conditions, including dry surfaces and high temperatures, and has been frequently misidentified by traditional methods. Furthermore, strains have been identified that are resistant to two and even all three of the main classes of antifungals currently in use. Several nuclear genome assemblies of C. auris have been published representing different clades and continents, yet until recently, the mitochondrial genomes (mtDNA chromosomes) of this species and the closely related species of C. haemulonii, C. duobushaemulonii, and C. pseudohaemulonii had not been analyzed in depth. We used reads from PacBio and Illumina sequencing to obtain a de novo reference assembly of the mitochondrial genome of the C. auris clade I isolate B8441 from Pakistan. This assembly has a total size of 28.2 kb and contains 13 core protein-coding genes, 25 tRNAs and the 12S and 16S ribosomal subunits. We then performed a comparative analysis by aligning Illumina reads of 129 other isolates from South Asia, Japan, South Africa, and South America with the B8441 reference. The clades of the phylogenetic tree we obtained from the aligned mtDNA sequences were consistent with those derived from the nuclear genome. The mitochondrial genome revealed a generally low genetic variation within clades, although the South Asian clade displayed two sub-branches including strains from both Pakistan and India. In particular, the 86 isolates from Colombia and Venezuela had mtDNA sequences that were all identical at the base level, i.e., a single conserved haplotype or mitochondrial background that exhibited characteristic differences from the Pakistan reference isolate B8441, such as a unique 25-nt insert that may affect function.
Collapse
Affiliation(s)
- Elizabeth Misas
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Wisconsin One Health Consortium, Universidad Nacional de Colombia, Medellín, Colombia
| | - Nancy A. Chow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Oscar M. Gómez
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- School of Microbiology, Universidad de Antioquia, Medellín, Colombia
- Genoma CES, Universidad CES, Medellín, Colombia
| | - José F. Muñoz
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Juan G. McEwen
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | | | - Oliver K. Clay
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Translational Microbiology and Emerging Diseases, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
35
|
What do we know about the biology of the emerging fungal pathogen of humans Candida auris? Microbiol Res 2020; 242:126621. [PMID: 33096325 DOI: 10.1016/j.micres.2020.126621] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/25/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
Candida auris is a worrisome fungal pathogen of humans which emerged merely about a decade ago. Ever since then the scientific community worked hard to understand clinically relevant traits, such as virulence factors, antifungal resistance mechanisms, and its ability to adhere to human skin and medical devices. Whole-genome sequencing of clinical isolates and epidemiological studies outlining the path of nosocomial outbreaks have been the focus of research into this pathogenic and multidrug-resistant yeast since its first description in 2009. More recently, work was started by several laboratories to explore the biology of C. auris. Here, we review the insights of studies characterizing the mechanisms underpinning antifungal drug resistance, biofilm formation, morphogenetic switching, cell aggregation, virulence, and pathogenicity of C. auris. We conclude that, although some progress has been made, there is still a long journey ahead of us, before we fully understand this novel pathogen. Critically important is the development of molecular tools for C. auris to make this fungus genetically tractable and traceable. This will allow an in-depth molecular dissection of the life cycle of C. auris, of its characteristics while interacting with the human host, and the mechanisms it employs to avoid being killed by antifungals and the immune system.
Collapse
|
36
|
Arastehfar A, Lass-Flörl C, Garcia-Rubio R, Daneshnia F, Ilkit M, Boekhout T, Gabaldon T, Perlin DS. The Quiet and Underappreciated Rise of Drug-Resistant Invasive Fungal Pathogens. J Fungi (Basel) 2020; 6:E138. [PMID: 32824785 PMCID: PMC7557958 DOI: 10.3390/jof6030138] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/22/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Human fungal pathogens are attributable to a significant economic burden and mortality worldwide. Antifungal treatments, although limited in number, play a pivotal role in decreasing mortality and morbidities posed by invasive fungal infections (IFIs). However, the recent emergence of multidrug-resistant Candida auris and Candida glabrata and acquiring invasive infections due to azole-resistant C. parapsilosis, C. tropicalis, and Aspergillus spp. in azole-naïve patients pose a serious health threat considering the limited number of systemic antifungals available to treat IFIs. Although advancing for major fungal pathogens, the understanding of fungal attributes contributing to antifungal resistance is just emerging for several clinically important MDR fungal pathogens. Further complicating the matter are the distinct differences in antifungal resistance mechanisms among various fungal species in which one or more mechanisms may contribute to the resistance phenotype. In this review, we attempt to summarize the burden of antifungal resistance for selected non-albicansCandida and clinically important Aspergillus species together with their phylogenetic placement on the tree of life. Moreover, we highlight the different molecular mechanisms between antifungal tolerance and resistance, and comprehensively discuss the molecular mechanisms of antifungal resistance in a species level.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Rocio Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Farnaz Daneshnia
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (F.D.); (T.B.)
| | - Macit Ilkit
- Division of Mycology, University of Çukurova, 01330 Adana, Turkey;
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (F.D.); (T.B.)
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - Toni Gabaldon
- Life Sciences Programme, Barcelona, Supercomputing Center (BSC-CNS), Jordi Girona, 08034 Barcelona, Spain;
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), 08024 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| |
Collapse
|
37
|
Biswas C, Wang Q, van Hal SJ, Eyre DW, Hudson B, Halliday CL, Mazsewska K, Kizny Gordon A, Lee A, Irinyi L, Heath CH, Chakrabarti A, Govender NP, Meyer W, Sintchenko V, Chen SCA. Genetic Heterogeneity of Australian Candida auris Isolates: Insights From a Nonoutbreak Setting Using Whole-Genome Sequencing. Open Forum Infect Dis 2020; 7:ofaa158. [PMID: 32500091 PMCID: PMC7255648 DOI: 10.1093/ofid/ofaa158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/29/2020] [Indexed: 11/13/2022] Open
Abstract
Whole-genome sequencing clustered Australian Candida auris isolates from sporadic cases within clade III. Case isolates were genomically distinct; however, unexpectedly, those from 1 case comprised 2 groups separated by >60 single nucleotide polymorphisms (SNPs) with no isolate being identical, in contrast to outbreaks where isolates from any 1 individual have differed by <3 SNPs. Multidrug resistance was absent. High within-host genetic heterogeneity should be considered when investigating C. auris infections.
Collapse
Affiliation(s)
- Chayanika Biswas
- Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, The University of Sydney, Sydney, Australia.,Center for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Sydney, Australia
| | - Qinning Wang
- Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, The University of Sydney, Sydney, Australia.,Center for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Sydney, Australia
| | - Sebastiaan J van Hal
- Deparment of Infectious Diseases and Microbiology, New South Wales Health Pathology, The Royal Prince Alfred Hospital, Sydney, Australia
| | - David W Eyre
- Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Bernard Hudson
- Department of Microbiology, Royal North Shore Hospital, New South Wales Health Pathology, Sydney, Australia
| | - Catriona L Halliday
- Center for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Sydney, Australia.,Marie Bashir Institute for Emerging Infections and Biosecurity, The University of Sydney, Sydney, Australia
| | - Krystyna Mazsewska
- Marie Bashir Institute for Emerging Infections and Biosecurity, The University of Sydney, Sydney, Australia.,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Westmead Clinical School and the Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Alice Kizny Gordon
- Department of Microbiology, Royal North Shore Hospital, New South Wales Health Pathology, Sydney, Australia
| | - Andie Lee
- Deparment of Infectious Diseases and Microbiology, New South Wales Health Pathology, The Royal Prince Alfred Hospital, Sydney, Australia
| | - Laszlo Irinyi
- Marie Bashir Institute for Emerging Infections and Biosecurity, The University of Sydney, Sydney, Australia.,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Westmead Clinical School and the Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Christopher H Heath
- Department of Microbiology, Fiona Stanley Hospital Network, PathWest Laboratory Medicine, and the Department of Infectious Diseases, Fiona Stanley Hospital, Perth, Australia
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nelesh P Govender
- National Institute for Communicable Diseases, Division of the National Health Laboratory Service and Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Wieland Meyer
- Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, The University of Sydney, Sydney, Australia.,Department of Microbiology, Royal North Shore Hospital, New South Wales Health Pathology, Sydney, Australia.,Marie Bashir Institute for Emerging Infections and Biosecurity, The University of Sydney, Sydney, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, The University of Sydney, Sydney, Australia.,Center for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Sydney, Australia.,Department of Microbiology, Royal North Shore Hospital, New South Wales Health Pathology, Sydney, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, The University of Sydney, Sydney, Australia.,Center for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Sydney, Australia.,Department of Microbiology, Royal North Shore Hospital, New South Wales Health Pathology, Sydney, Australia.,Marie Bashir Institute for Emerging Infections and Biosecurity, The University of Sydney, Sydney, Australia
| |
Collapse
|