1
|
Vizcaino-Castro A, Chen S, Hoogeboom BN, Boerma A, Daemen T, Oyarce C. Effect of repurposed metabolic drugs on human macrophage polarization and antitumoral activity. Clin Immunol 2025; 272:110440. [PMID: 39889896 DOI: 10.1016/j.clim.2025.110440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
AIM This study aimed to investigate whether the polarization of monocyte-derived macrophages towards an anti-inflammatory phenotype could be hindered by modulating cellular metabolism. Several metabolic drugs were selected: Perhexiline (PerHx) and Nitazoxanide (NTZ) targeting fatty acid oxidation, CB839 (Telaglenastat) targeting glutaminolysis and Metformin (Metf) targeting the mitochondrial electron transport chain. RESULTS Our findings demonstrate that the presence of PerHx, NTZ, and CB839 during IL-4-mediated macrophages polarization impaired the acquisition of full anti-inflammatory phenotype, as evidenced by reduced expression of CD163 and CD209 and decreased secretion of CCL17 chemokine. Besides, CB839 induced tumoricidal activity in macrophages, comparable to that observed in macrophages activated by LPS and IFNγ. CONCLUSION This study reveals that targeting glutamine metabolism with CB839 effectively blocks the IL-4-induced anti-inflammatory phenotype in macrophages and enhances their tumor-killing capability. Our results provide a compelling rationale for repurposing metabolic drugs to create a pro-inflammatory tumor microenvironment, thereby potentially enhancing the efficacy of current immunotherapies.
Collapse
Affiliation(s)
- Ana Vizcaino-Castro
- Laboratory of Tumor Virology and Cancer Immunotherapy; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Shipeng Chen
- Laboratory of Tumor Virology and Cancer Immunotherapy; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Baukje Nynke Hoogeboom
- Laboratory of Tumor Virology and Cancer Immunotherapy; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Annemarie Boerma
- Laboratory of Tumor Virology and Cancer Immunotherapy; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Toos Daemen
- Laboratory of Tumor Virology and Cancer Immunotherapy; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Cesar Oyarce
- Laboratory of Tumor Virology and Cancer Immunotherapy; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
2
|
Lemaitre L, Adeniji N, Suresh A, Reguram R, Zhang J, Park J, Reddy A, Trevino AE, Mayer AT, Deutzmann A, Hansen AS, Tong L, Arjunan V, Kambham N, Visser BC, Dua MM, Bonham CA, Kothary N, D'Angio HB, Preska R, Rosen Y, Zou J, Charu V, Felsher DW, Dhanasekaran R. Spatial analysis reveals targetable macrophage-mediated mechanisms of immune evasion in hepatocellular carcinoma minimal residual disease. NATURE CANCER 2024; 5:1534-1556. [PMID: 39304772 DOI: 10.1038/s43018-024-00828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Hepatocellular carcinoma (HCC) frequently recurs from minimal residual disease (MRD), which persists after therapy. Here, we identified mechanisms of persistence of residual tumor cells using post-chemoembolization human HCC (n = 108 patients, 1.07 million cells) and a transgenic mouse model of MRD. Through single-cell high-plex cytometric imaging, we identified a spatial neighborhood within which PD-L1 + M2-like macrophages interact with stem-like tumor cells, correlating with CD8+ T cell exhaustion and poor survival. Further, through spatial transcriptomics of residual HCC, we showed that macrophage-derived TGFβ1 mediates the persistence of stem-like tumor cells. Last, we demonstrate that combined blockade of Pdl1 and Tgfβ excluded immunosuppressive macrophages, recruited activated CD8+ T cells and eliminated residual stem-like tumor cells in two mouse models: a transgenic model of MRD and a syngeneic orthotopic model of doxorubicin-resistant HCC. Thus, our spatial analyses reveal that PD-L1+ macrophages sustain MRD by activating the TGFβ pathway in stem-like cancer cells and targeting this interaction may prevent HCC recurrence from MRD.
Collapse
Affiliation(s)
- Lea Lemaitre
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Nia Adeniji
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Akanksha Suresh
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Reshma Reguram
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Josephine Zhang
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Jangho Park
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Amit Reddy
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | | | | | - Anja Deutzmann
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA, USA
| | - Aida S Hansen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ling Tong
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA, USA
| | - Vinodhini Arjunan
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Neeraja Kambham
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Monica M Dua
- Department of Surgery, Stanford University, Stanford, CA, USA
| | - C Andrew Bonham
- Department of Surgery, Stanford University, Stanford, CA, USA
| | - Nishita Kothary
- Department of Radiology, Stanford University, Stanford, CA, USA
| | | | | | - Yanay Rosen
- Department of Biomedical Data Science and Computer Science, Stanford University, Stanford, CA, USA
| | - James Zou
- Department of Biomedical Data Science and Computer Science, Stanford University, Stanford, CA, USA
| | - Vivek Charu
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA, USA.
| | | |
Collapse
|
3
|
Gryziak M, Kraj L, Stec R. The role of tumor-associated macrophages in hepatocellular carcinoma-from bench to bedside: A review. J Gastroenterol Hepatol 2024; 39:1489-1499. [PMID: 38651642 DOI: 10.1111/jgh.16564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Hepatocellular carcinoma is one of the most common cancers worldwide. Despite progress in treatment, recurrence after radical treatment is common, and the prognosis remains poor for patients with advanced disease. Therefore, there is a need to identify prognostic and predictive factors for the response to therapy or more intensive surveillance or treatment. Because the tumor microenvironment plays a crucial role in the development of cancer and metastasis, it is a crucial need to understand processes that are involved in carcinogenesis. Within the microenvironment, several immune cells with different roles are present. One of the most important of these is tumor-associated macrophages. These cells may exert either antitumor or protumor roles. Several studies have suggested that tumor-associated macrophages can be used as prognostic markers. Furthermore, they may be involved in resistance to immunotherapy or systemic treatment. As they play an important role in cancer development, tumor-associated macrophages are also a good target for therapy. In this review, we briefly summarize recent progress on knowledge regarding the basic molecular characteristics, impact on prognosis and potential clinical implications of tumor-associated macrophages in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Maciej Gryziak
- Department of Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Kraj
- Department of Oncology, Medical University of Warsaw, Warsaw, Poland
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, Jastrzebiec, Poland
| | - Rafał Stec
- Department of Oncology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Li D, Zhang T, Guo Y, Bi C, Liu M, Wang G. Biological impact and therapeutic implication of tumor-associated macrophages in hepatocellular carcinoma. Cell Death Dis 2024; 15:498. [PMID: 38997297 PMCID: PMC11245522 DOI: 10.1038/s41419-024-06888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
The tumor microenvironment is a complex space comprised of normal, cancer and immune cells. The macrophages are considered as the most abundant immune cells in tumor microenvironment and their function in tumorigenesis is interesting. Macrophages can be present as M1 and M2 polarization that show anti-cancer and oncogenic activities, respectively. Tumor-associated macrophages (TAMs) mainly have M2 polarization and they increase tumorigenesis due to secretion of factors, cytokines and affecting molecular pathways. Hepatocellular carcinoma (HCC) is among predominant tumors of liver that in spite of understanding its pathogenesis, the role of tumor microenvironment in its progression still requires more attention. The presence of TAMs in HCC causes an increase in growth and invasion of HCC cells and one of the reasons is induction of glycolysis that such metabolic reprogramming makes HCC distinct from normal cells and promotes its malignancy. Since M2 polarization of TAMs stimulates tumorigenesis in HCC, molecular networks regulating M2 to M1 conversion have been highlighted and moreover, drugs and compounds with the ability of targeting TAMs and suppressing their M2 phenotypes or at least their tumorigenesis activity have been utilized. TAMs increase aggressive behavior and biological functions of HCC cells that can result in development of therapy resistance. Macrophages can provide cell-cell communication in HCC by secreting exosomes having various types of biomolecules that transfer among cells and change their activity. Finally, non-coding RNA transcripts can mainly affect polarization of TAMs in HCC.
Collapse
Affiliation(s)
- Deming Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Ting Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, PR China
| | - Ye Guo
- Department of Intervention, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Cong Bi
- Department of Radiology, The First Hospital of China Medical University, Shenyang, 110001, PR China.
| | - Ming Liu
- Department of Oral Radiology, School of Stomatology, China Medical University, Shenyang, Liaoning, 110002, PR China.
| | - Gang Wang
- Department of Intervention, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China.
| |
Collapse
|
5
|
Vizcaino Castro A, Daemen T, Oyarce C. Strategies to reprogram anti-inflammatory macrophages towards pro-inflammatory macrophages to support cancer immunotherapies. Immunol Lett 2024; 267:106864. [PMID: 38705481 DOI: 10.1016/j.imlet.2024.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Tumor-associated myeloid cells, including macrophages and myeloid-derived suppressor cells, can be highly prevalent in solid tumors and play a significant role in the development of the tumor. Therefore, myeloid cells are being considered potential targets for cancer immunotherapies. In this review, we focused on strategies aimed at targeting tumor-associated macrophages (TAMs). Most strategies were studied preclinically but we also included a limited number of clinical studies based on these strategies. We describe possible underlying mechanisms and discuss future challenges and prospects.
Collapse
Affiliation(s)
- Ana Vizcaino Castro
- Laboratory of Tumor Virology and Cancer Immunotherapy, Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Toos Daemen
- Laboratory of Tumor Virology and Cancer Immunotherapy, Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Cesar Oyarce
- Laboratory of Tumor Virology and Cancer Immunotherapy, Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Jin D, Qian L, Chen J, Yu Z, Dong J. Prognostic impact of CD68+ tumor-associated macrophages in hepatocellular carcinoma: A meta-analysis. Medicine (Baltimore) 2024; 103:e37834. [PMID: 38640338 PMCID: PMC11029977 DOI: 10.1097/md.0000000000037834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Evidence from clinical research suggests that the tumor-associated macrophages (TAMs) were associated with prognosis in hepatocellular carcinoma (HCC). The aim of the present meta-analysis was to conduct a qualitative analysis to explore the prognostic value of CD68 + TAMs in HCC. METHODS This study conducted a systematic search in Pubmed, Embase, the Cochrane Library and China National Knowledge Internet from inception of the databases to November 2023. The hazard ratio (HR) and 95% confidence interval (CI) were calculated employing fixed-effect or random-effect models depending on the heterogeneity of the included trials. The Newcastle-Ottawa Scale was used to evaluate the risk of prejudice. RESULTS We analyzed 4362 HCC patients. The present research indicated that the expression levels Of CD68 + TAMs were significantly associated with overall survival (OS) (HR = 1.55, 95% CI: 1.30-1.84) and disease-free survival (DFS) (HR = 1.44, 95% CI: 1.17-1.78). Subgroup analysis based on cutoff values showed that the "Median" subgroup showed a pooled HR of 1.66 with a 95% CI ranging from 1.32 to 2.08, which was slightly higher than the "Others" subgroup that exhibited a pooled HR of 1.40 and a 95% CI of 1.07 to 1.84. The "PT" subgroup had the highest pooled HR of 1.68 (95% CI: 1.19-2.37), indicating a worse OS compared to the "IT" (pooled HR: 1.50, 95% CI: 1.13-2.01) and "Mix" (pooled HR: 1.52, 95% CI: 1.03-2.26) subgroups. Moreover, in the sample size-based analysis, studies with more than 100 samples (>100) exhibited a higher pooled HR of 1.57 (95% CI: 1.28 to 1.93) compared to studies with fewer than 100 samples (<100), which had a pooled HR of 1.45 (95% CI: 1.00-2.10). CONCLUSIONS The analysis suggests that CD68 + TAMs were significantly associated with unfavorable OS and DFS in HCC patients, and may be served as a promising prognostic biomarker in HCC. However, more large-scale trials are needed to study the clinical value of TAMs in HCC.
Collapse
Affiliation(s)
- Danwen Jin
- Pathological Diagnosis Center, Zhoushan Hospital, Zhoushan City, Zhejiang Province, China
| | - Liyong Qian
- Pathological Diagnosis Center, Zhoushan Hospital, Zhoushan City, Zhejiang Province, China
| | - Jiayao Chen
- Department of Laboratory, Zhoushan Hospital, Zhoushan City, Zhejiang Province, China
| | - Ze Yu
- Laboratory of Cell Biology and Molecular Biology, Zhoushan Hospital, Zhoushan City, Zhejiang Province, China
| | - Jinliang Dong
- Department of Hepatobiliary Surgery, Zhoushan Hospital, Zhoushan City, Zhejiang Province, China
| |
Collapse
|
7
|
Shahbaz F, Muccee F, Shahab A, Safi SZ, Alomar SY, Qadeer A. Isolation and in vitro assessment of chicken gut microbes for probiotic potential. Front Microbiol 2024; 15:1278439. [PMID: 38348194 PMCID: PMC10860760 DOI: 10.3389/fmicb.2024.1278439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Poultry production occupies an important place in the economy of any country. High broiler production in recent years has badly affected its profitability due to bad feed quality, excessive use of chemotherapeutic agents, emergence of diverse pathogens, and the deficiencies in management practices during rearing cycle. Microbiological improvement of the meat quality using potential probiotics can be beneficial for broiler farming. Present study was initiated to isolate chicken gastrointestinal tract (GIT) bacteria with probiotic potential. To isolate probiotics from chicken gut, alimentary canal of chickens of known sizes and ages was suspended in ringers soln. Under shaking conditions for overnight followed by serial dilutions of ringers soln. Bacterial isolates were analyzed via growth curve analysis, biochemical testing using RapID™ NF Plus Panel kit, molecular characterization, antimicrobial activity assay, antibiotic sensitivity assay, GIT adherence assay, bile salt and gastric acid resistant assay, and cholesterol assimilation assay. Four bacteria isolated in present study were identified as Limosilactobacillus antri strain PUPro1, Lactobacillus delbrueckii strain PUPro2, Lacticaseibacillus casei strain PUPro3, and Ligilactobacillus salivarius strain PUPro4. L. delbrueckii strain PUPro2 grew extremely fast. All isolates exhibited exceptional resistance to increasing concentrations of NaCl and bile salts with value of p >0.5. L. delbrueckii strain PUPro2 adhered to chicken ileum epithelial cells and demonstrated the highest viable counts of 320 colony forming units (CFUs). Antagonistic action was found in all isolates against P. aeruginosa, B. subtilis, B. proteus, and S. aureus, with value of p >0.5. Antibiotic susceptibility testing showed sensitivity to all the antibiotics used. Cholesterol assimilation was detected in all bacteria, with values ranging from 216.12 to 192.2 mg/dL. All isolates exhibited γ-hemolysis. In future, these bacteria might be tested for their impact on broilers meat quality and growth and can be recommended for their use as supplements for broilers diet with positive impact on poultry production.
Collapse
Affiliation(s)
- Fatima Shahbaz
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Fatima Muccee
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Aansa Shahab
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Sher Zaman Safi
- Faculty of Medicine, MAHSA University, Kuala Lumpur, Malaysia
| | - Suliman Yousef Alomar
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
8
|
Tan S, Wang Z, Li N, Guo X, Zhang Y, Ma H, Peng X, Zhao Y, Li C, Gao L, Li T, Liang X, Ma C. Transcription factor Zhx2 is a checkpoint that programs macrophage polarization and antitumor response. Cell Death Differ 2023; 30:2104-2119. [PMID: 37582865 PMCID: PMC10482862 DOI: 10.1038/s41418-023-01202-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
Macrophages are usually educated to tumor-associated macrophages (TAMs) in cancer with pro-tumor functions by tumor microenvironment (TME) and TAM reprogramming has been proposed as a potential tumor immunotherapy strategy. We recently demonstrated the critical role of Zinc-fingers and homeoboxes 2 (Zhx2) in macrophages' metabolic programming. However, whether Zhx2 is responsible for macrophage polarization and TAMs reprogramming is largely unknown. Here, we show that Zhx2 controls macrophage polarization under the inflammatory stimulus and TME. Myeloid-specific deletion of Zhx2 suppresses LPS-induced proinflammatory polarization but promotes IL-4 and TME-induced anti-inflammatory and pro-tumoral phenotypes in murine liver tumor models. Factors in TME, especially lactate, markedly decrease the expression of Zhx2 in TAMs, leading to the switch of TAMs to pro-tumor phenotype and consequent cancer progression. Notably, reduced ZHX2 expression in TAM correlates with poor survival of HCC patients. Mechanistic studies reveal that Zhx2 associates with NF-κB p65 and binds to the Irf1 promoter, leading to transcriptional activation of Irf1 in macrophages. Zhx2 functions in maintaining macrophage polarization by regulating Irf1 transcription, which may be a potential target for macrophage-based cancer immunotherapy.
Collapse
Affiliation(s)
- Siyu Tan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Zehua Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
- Department of Clinical Laboratory, Qilu Hospital, Shandong University (Qingdao), Qingdao, China
| | - Na Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Xiaowei Guo
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Yankun Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Hongxin Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, China
| | - Xueqi Peng
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Ying Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, Shandong, China.
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
9
|
Wang MD, Xiang H, Hong TY, Mierxiati A, Yan FH, Zhang L, Wang C. Integrated analysis of intratumoral biomarker and tumor-associated macrophage to improve the prognosis prediction in cancer patients. BMC Cancer 2023; 23:593. [PMID: 37370037 DOI: 10.1186/s12885-023-11027-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The lack of effective and accurate predictive indicators remains a major bottleneck for the improvement of the prognosis of patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Hepatitis B virus X (HBx) has been widely suggested as a critical pathogenic protein for HBV-driven liver carcinogenesis, while tumor-associated macrophage (TAM) infiltration is also closely related to the tumorigenesis and progression of HCC. However, few studies have determined whether combining HBx expression with TAM populations could increase the accuracy of prognostic prediction for HBV-related HCC. METHODS The study cohort enrolling 251 patients with HBV-related HCC was randomly split into a training and a validation group (ratio 1:1). The expression levels of HBx and TAM marker CD68 in HCC samples were detected by immunohistochemistry. Kaplan-Meier curves, Cox regression and Harrell's concordance index (C-index) analysis were conducted to evaluate the prognostic significance of these indicators alone or in combination. RESULTS The expression level of HBx was strongly correlated with CD68+ TAM infiltration in HCC tissues. Elevated HBx or CD68 expression indicated poorer overall survival (OS) and progression-free survival (PFS) after hepatectomy, and both of them were independent risk factors for postoperative survival. Meanwhile, patients with both high HBx and CD68 levels had worst clinical outcomes. Moreover, integrating HBx and CD68 expression with clinical indicators (tumor size and micro-vascular invasion) showed the best prognostic potential with highest C-index value for survival predictivity, and this proposed model also performed better than several conventional classifications of HCC. CONCLUSION Combining the expression of intratumoral HBx, CD68+ TAM population and clinical variables could enable better prognostication for HBV-related HCC after hepatectomy, thus providing novel insights into developing more effective clinical prediction model based on both molecular phenotypes and tumor-immune microenvironment.
Collapse
Affiliation(s)
- Ming-Da Wang
- Shanghai Health Commission Key Lab of Artificial Intelligence-Based Management of Inflammation and Chronic Diseases, Gongli Hospital, Navy Medical University, 219 Miaopu Road, Shanghai, 200135, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, 200433, China
| | - Hao Xiang
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi), Guizhou, 563000, China
| | - Tian-Yu Hong
- Shanghai Health Commission Key Lab of Artificial Intelligence-Based Management of Inflammation and Chronic Diseases, Gongli Hospital, Navy Medical University, 219 Miaopu Road, Shanghai, 200135, China
| | - Abudurexiti Mierxiati
- Shanghai Health Commission Key Lab of Artificial Intelligence-Based Management of Inflammation and Chronic Diseases, Gongli Hospital, Navy Medical University, 219 Miaopu Road, Shanghai, 200135, China
| | - Fei-Hu Yan
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Navy Medical University, Shanghai, 200433, China.
| | - Ling Zhang
- Department of Obstetrics and Gynecology, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Sichuan, 610000, China.
| | - Chao Wang
- Shanghai Health Commission Key Lab of Artificial Intelligence-Based Management of Inflammation and Chronic Diseases, Gongli Hospital, Navy Medical University, 219 Miaopu Road, Shanghai, 200135, China.
- Department of Urinary Surgery, Gongli Hospital, Navy Medical University, Shanghai, 200135, China.
| |
Collapse
|
10
|
Chohan MH, Perry M, Laurance-Young P, Salih VM, Foey AD. Prognostic Role of CD68 + and CD163 + Tumour-Associated Macrophages and PD-L1 Expression in Oral Squamous Cell Carcinoma: A Meta-Analysis. Br J Biomed Sci 2023; 80:11065. [PMID: 37397243 PMCID: PMC10310926 DOI: 10.3389/bjbs.2023.11065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/10/2023] [Indexed: 07/04/2023]
Abstract
Background: Oral squamous cell carcinoma (OSCC) is a common malignant cancer in humans. An abundance of tumour associated macrophages (TAMs) create an immunosuppressive tumour microenvironment (TME). TAM markers (CD163 and CD68) are seen to serve as prognostic factors in OSCC. PD-L1 has seen to widely modulate the TME but its prognostic significance remains controversial. The aim of this meta-analysis is to evaluate the prognostic role of CD163+, CD68+ TAMs and PD-L1 in OSCC patients. Methods: Searches in PubMed, Scopus and Web of Science were performed; 12 studies were included in this meta-analysis. Quality assessment of included studies was performed according to REMARK guidelines. Risk of bias across studies was investigated according to the rate of heterogeneity. Meta-analysis was performed to investigate the association of all three biomarkers with overall survival (OS). Results: High expression of CD163+ TAMs were associated with poor overall survival (HR = 2.64; 95% Cl: [1.65, 4.23]; p < 0.0001). Additionally, high stromal expression of CD163+ TAMs correlated with poor overall survival (HR = 3.56; 95% Cl: [2.33, 5.44]; p < 0.00001). Conversely, high CD68 and PD-L1 expression was not associated with overall survival (HR = 1.26; 95% Cl: [0.76, 2.07]; p = 0.37) (HR = 0.64; 95% Cl: [0.35, 1.18]; p = 0.15). Conclusion: In conclusion, our findings indicate CD163+ can provide prognostic utility in OSCC. However, our data suggests CD68+ TAMs were not associated with any prognostic relevance in OSCC patients, whereas PD-L1 expression may prove to be a differential prognostic marker dependent on tumour location and stage of progression.
Collapse
Affiliation(s)
- Mohammed Haseeb Chohan
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
- School of Dentistry, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Matthew Perry
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
- School of Dentistry, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Paul Laurance-Young
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Vehid M. Salih
- School of Dentistry, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Andrew D. Foey
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
11
|
Retraction: Clinicopathologic and prognostic significance of tumor-associated macrophages in patients with hepatocellular carcinoma: A meta-analysis. PLoS One 2023; 18:e0282201. [PMID: 36800367 PMCID: PMC9937464 DOI: 10.1371/journal.pone.0282201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
12
|
Kohlhepp MS, Liu H, Tacke F, Guillot A. The contradictory roles of macrophages in non-alcoholic fatty liver disease and primary liver cancer-Challenges and opportunities. Front Mol Biosci 2023; 10:1129831. [PMID: 36845555 PMCID: PMC9950415 DOI: 10.3389/fmolb.2023.1129831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Chronic liver diseases from varying etiologies generally lead to liver fibrosis and cirrhosis. Among them, non-alcoholic fatty liver disease (NAFLD) affects roughly one-quarter of the world population, thus representing a major and increasing public health burden. Chronic hepatocyte injury, inflammation (non-alcoholic steatohepatitis, NASH) and liver fibrosis are recognized soils for primary liver cancer, particularly hepatocellular carcinoma (HCC), being the third most common cause for cancer-related deaths worldwide. Despite recent advances in liver disease understanding, therapeutic options on pre-malignant and malignant stages remain limited. Thus, there is an urgent need to identify targetable liver disease-driving mechanisms for the development of novel therapeutics. Monocytes and macrophages comprise a central, yet versatile component of the inflammatory response, fueling chronic liver disease initiation and progression. Recent proteomic and transcriptomic studies performed at singular cell levels revealed a previously overlooked diversity of macrophage subpopulations and functions. Indeed, liver macrophages that encompass liver resident macrophages (also named Kupffer cells) and monocyte-derived macrophages, can acquire a variety of phenotypes depending on microenvironmental cues, and thus exert manifold and sometimes contradictory functions. Those functions range from modulating and exacerbating tissue inflammation to promoting and exaggerating tissue repair mechanisms (i.e., parenchymal regeneration, cancer cell proliferation, angiogenesis, fibrosis). Due to these central functions, liver macrophages represent an attractive target for the treatment of liver diseases. In this review, we discuss the multifaceted and contrary roles of macrophages in chronic liver diseases, with a particular focus on NAFLD/NASH and HCC. Moreover, we discuss potential therapeutic approaches targeting liver macrophages.
Collapse
|
13
|
Zheng Y, Huang N, Kuang S, Zhang J, Zhao H, Wu J, Liu M, Wang L. The clinicopathological significance and relapse predictive role of tumor microenvironment of intrahepatic cholangiocarcinoma after radical surgery. Cancer 2023; 129:393-404. [PMID: 36433731 PMCID: PMC10099237 DOI: 10.1002/cncr.34552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND This study attempts to detect the expression of FoxP3, CD68, CD8α, and PD-L1 in the tumor microenvironment (TME) of intrahepatic cholangiocarcinoma (ICC), and analyze the relationship between the corresponding cells and clinicopathological characteristics as well as prognosis of ICC. METHODS RNA sequencing (RNA-seq) provided the general landscape of the TME in ICC. A total of 99 ICC patients and the corresponding specimens were used for multiplex immunofluorescence and relapse-free survival (RFS) was analyzed. Flow cytometry further validated the effect of regulatory T (Treg) cells on ICC relapse. RESULTS RNA-seq data showed that the infiltration of Treg cells, CD8+ T cells, and macrophages were likely associated with ICC relapse. The survival analysis based on multiplex immunofluorescence showed that the high FoxP3(+) Treg cells ratio and low CD68(+) macrophages ratio in mesenchyme were associated with higher RFS rate, respectively. Low FoxP3(+) Τreg cells ratio was associated with more perineural invasion, and high CD68(+) macrophages ratio was correlated with more lymph node metastasis. Cox regression analysis revealed that FoxP3(+) Treg cells ratio was an independent predictive factor for ICC relapse. Flow cytometry showed that TregIII was the predominant Treg cell subtype in both tumor tissue and peripheral blood of ICC patients, and high TregIII abundance in peripheral blood was significantly associated with longer RFS of ICC patients. CONCLUSION High FoxP3(+) Treg cells ratio in the mesenchyme of ICC tumor tissue predicted longer RFS and was an independent favorable prognostic factor for ICC patients. Among all Treg cell subtypes, TregIII in peripheral blood was correlated with the RFS of ICC patients.
Collapse
Affiliation(s)
- Yiling Zheng
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Endoscopy Center, Peking University First Hospital, Beijing, China
| | - Ning Huang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuwen Kuang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianxiong Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Tomiyama T, Itoh S, Iseda N, Toshida K, Kosai-Fujimoto Y, Tomino T, Kurihara T, Nagao Y, Morita K, Harada N, Liu YC, Ozaki D, Kohashi K, Oda Y, Mori M, Yoshizumi T. Clinical Significance of Signal Regulatory Protein Alpha (SIRPα) Expression in Hepatocellular Carcinoma. Ann Surg Oncol 2023; 30:3378-3389. [PMID: 36641515 DOI: 10.1245/s10434-022-13058-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Signal regulatory protein alpha (SIRPα), expressed in the macrophage membrane, inhibits phagocytosis of tumor cells via CD47/SIRPα interaction, which acts as an immune checkpoint factor in cancers. This study aimed to clarify the clinical significance of SIRPα expression in hepatocellular carcinoma (HCC). METHODS This study analyzed SIRPα expression using RNA sequencing data of 372 HCC tissues from The Cancer Genome Atlas (TCGA) and immunohistochemical staining of our 189 HCC patient cohort. The correlation between SIRPα expression and clinicopathologic factors, patient survival, and intratumor infiltration of immune cells was investigated. RESULTS Overall survival (OS) was significantly poorer with high SIRPα expression than with low expression in both TCGA and our cohort. High SIRPα expression correlated with lower recurrence-free survival (RFS) in our cohort. High SIRPα expression was associated with higher rates of microvascular invasion and lower serum albumin levels and correlated with greater intratumor infiltration of CD68-positive macrophages and myeloid-derived suppressor cells (MDSCs). Multivariate analysis showed that SIRPα expression and high infiltration of CD8-positive T cells and MDSCs were predictive factors for both RFS and OS. Patients with high SIRPα expression and infiltration of CD8-positive T cells and MDSCs had significantly lower RFS and OS rates. In spatial transcriptomics sequencing, SIRPα expression was significantly correlated with CD163 expression. CONCLUSIONS High SIRPα expression in HCC indicates poor prognosis, possibly by inhibiting macrophage phagocytosis of tumor cells, promoting MDSC infiltration and inducing antitumor immunity. Treatment alternatives using SIRPα blockage should be considered in HCC as inhibiting macrophage antitumor immunity and MDSCs.
Collapse
Affiliation(s)
- Takahiro Tomiyama
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Itoh
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Norifumi Iseda
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuya Toshida
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukiko Kosai-Fujimoto
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Tomino
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Kurihara
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Nagao
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazutoyo Morita
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noboru Harada
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yu-Chen Liu
- Single-Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Daisuke Ozaki
- Single-Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Mori
- School of Medicine, Tokai University, Kanagawa, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
15
|
Ju MH, Jang EJ, Kang SH, Roh YH, Jeong JS, Han SH. Six-Transmembrane Epithelial Antigen of Prostate 4: An Indicator of Prognosis and Tumor Immunity in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:643-658. [PMID: 37101765 PMCID: PMC10124562 DOI: 10.2147/jhc.s394973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/14/2023] [Indexed: 04/28/2023] Open
Abstract
Purpose The six-transmembrane epithelial antigen of prostate 4 (STEAP4) has been linked to tumor progression via its involvement in inflammatory responses, oxidative stress, and metabolism. However, STEAP4 has rarely been studied in hepatocellular carcinoma (HCC). We explored STEAP4 expression associated with tumor prognosis to understand its role in tumor biology in HCC. Patients and Methods STEAP4 mRNA and protein expressions were primarily analyzed using bioinformatics tools based on The Cancer Genome Atlas database to understand the expression pattern, molecular mechanism, prognostic impact, and association with immune cell infiltration. We further investigated the association between STEAP4 protein expression and clinicopathological parameters and their predictive value in HCC patients using immunohistochemical staining of tissue microarrays. Results The expression of STEAP4 mRNA and protein in HCC tissues was significantly lower than in normal liver tissues. Reduced expression of STEAP4 was linked to advanced HCC stages, poor recurrence-free survival (RFS), and overall survival. Furthermore, reduced STEAP4 expression was a significant predictor of worse RFS in univariate and multivariate analyses in the immunohistochemical cohort. GO, KEGG, and GSEA analyses revealed that STEAP4 is related to numerous biological processes and pathways, including drug metabolism, DNA replication, RNA metabolism, and immune response. In terms of the immune system, the decreased level of STEAP4 was correlated with the immunosuppressive microenvironment. Conclusion Our data indicated that reduced STEAP4 expression was significantly associated with tumor aggressiveness and poor prognosis, possibly because of its link to various biological processes and induction of HCC immune evasion. Therefore, STEAP4 expression may serve as a potential prognostic biomarker for cancer progression and immunity, as well as a therapeutic target in HCC.
Collapse
Affiliation(s)
- Mi Ha Ju
- Department of Pathology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Eun Jeong Jang
- Department of Surgery, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Sung Hwa Kang
- Department of Surgery, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Young Hoon Roh
- Department of Surgery, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Jin Sook Jeong
- Department of Pathology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Song-Hee Han
- Department of Pathology, Dong-A University College of Medicine, Busan, Republic of Korea
- Correspondence: Song-Hee Han, Department of Pathology, Dong-A University College of Medicine, 26, Daesingongwon-ro, Seo-gu, Busan, 49201, Republic of Korea, Tel +82-51-240-2863, Fax +82-51-240-7396, Email
| |
Collapse
|
16
|
Pham L, Kyritsi K, Zhou T, Ceci L, Baiocchi L, Kennedy L, Chakraborty S, Glaser S, Francis H, Alpini G, Sato K. The Functional Roles of Immune Cells in Primary Liver Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:826-836. [PMID: 35337836 PMCID: PMC9194651 DOI: 10.1016/j.ajpath.2022.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/05/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
Primary liver cancer includes hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Incidence of liver cancer has been increasing in recent years, and the 5-year survival is <20%. HCC and CCA are often accompanied with a dense stroma coupled with infiltrated immune cells, which is referred to as the tumor microenvironment. Populations of specific immune cells, such as high density of CD163+ macrophages and low density of CD8+ T cells, are associated with prognosis and survival rates in both HCC and CCA. Immune cells in the tumor microenvironment can be a therapeutic target for liver cancer treatments. Previous studies have introduced immunotherapy using immune checkpoint inhibitors, pulsed dendritic cells, or transduced T cells, to enhance cytotoxicity of immune cells and inhibit tumor growth. This review summarizes current understanding of the roles of immune cells in primary liver cancer covering HCC and CCA.
Collapse
Affiliation(s)
- Linh Pham
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Science and Mathematics, Texas A&M University-Central Texas, Killeen, Texas
| | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Leonardo Baiocchi
- Hepatology Unit, Department of Medicine, University of Tor Vergata, Rome, Italy
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
17
|
Jiang Y, Lin L, Lv H, Zhang H, Jiang L, Ma F, Wang Q, Ma X, Yu S. Immune cell infiltration and immunotherapy in hepatocellular carcinoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:7178-7200. [PMID: 35730302 DOI: 10.3934/mbe.2022339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hepatocellular carcinoma is a highly malignant tumor and patients yield limited benefits from the existing treatments. The application of immune checkpoint inhibitors is promising but the results described in the literature are not favorable. It is therefore urgent to systematically analyze the immune microenvironment of HCC and screen the population best suited for the application of immune checkpoint inhibitors to provide a basis for clinical treatment. In this study, we collected The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC)-related data sets to evaluate the immune microenvironment and immune cell infiltration (ICI) in HCC. Three independent ICI subtypes showing significant differences in survival were identified. Further, TCGA-LIHC immunophenoscore (IPS) was used to identify the differentially expressed genes between high- and low-IPS in HCC, so as to identify the immune gene subtypes in HCC tumors. The ICI score model for HCC was constructed, whereby we divided HCC samples into high- and low-score groups based on the median ICI score. The differences between these groups in genomic mutation load and immunotherapy benefit in HCC were examined in detail to provide theoretical support for accurate immunotherapy strategy in HCC. Finally, four genes were screened, which could accurately predict the subtype based on the tumor immune infiltration score. The findings may provide a basis and simplify the process for screening clinical drugs suitable for relevant subgroups.
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| | - Lijuan Lin
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| | - Huiming Lv
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| | - He Zhang
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| | - Lili Jiang
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| | - Fenfen Ma
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| | - Qiuyue Wang
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| | - Xue Ma
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| | - Shengjin Yu
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| |
Collapse
|
18
|
Hu S, Zhang J, Guo G, Zhang L, Dai J, Gao Y. Comprehensive analysis of GSEC/miR-101-3p/SNX16/PAPOLG axis in hepatocellular carcinoma. PLoS One 2022; 17:e0267117. [PMID: 35482720 PMCID: PMC9049542 DOI: 10.1371/journal.pone.0267117] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 04/03/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies. A growing number of studies have shown that competitive endogenous RNA (ceRNA) regulatory networks might play important roles during HCC process. The present study aimed to identify a regulatory axis of the ceRNA network associated with the development of HCC. The roles of SNX16 and PAPOLG in HCC were comprehensively analyzed using bioinformatics tools. Subsequently, the “mRNA-miRNA-lncRNA” model was then used to predict the upstream miRNAs and lncRNAs of SNX16 and PAPOLG using the miRNet database, and the miRNAs with low expression and good prognosis in HCC and the lncRNAs with high expression and poor prognosis in HCC were screened by differential expression and survival analysis. Finally, the risk-prognosis models of ceRNA network axes were constructed by univariate and multifactorial Cox proportional risk analysis, and the immune correlations of ceRNA network axes were analyzed using the TIMER and GEPIA database. In this study, the relevant ceRNA network axis GSEC/miR-101-3p/SNX16/PAPOLG with HCC prognosis was constructed, in which GSEC, SNX16, and PAPOLG were highly expressed in HCC with poor prognosis, while miR-101-3p was lowly expressed in HCC with good prognosis. The risk-prognosis model predicted AUC of 0.691, 0.623, and 0.626 for patient survival at 1, 3, and 5 years, respectively. Immuno-infiltration analysis suggested that the GSEC/miR-101-3p/SNX16/PAPOLG axis might affect macrophage polarization. The GSEC/miR-101-3p/SNX16/PAPOLG axis of the ceRNA network axis might be an important factor associated with HCC prognosis and immune infiltration.
Collapse
Affiliation(s)
- Shangshang Hu
- Research Center of Clinical Laboratory Science, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China
| | - Jinyan Zhang
- School of Life Science, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Guoqing Guo
- School of Life Science, Bengbu Medical College, Bengbu, China
| | - Li Zhang
- School of Life Science, Bengbu Medical College, Bengbu, China
| | - Jing Dai
- School of Life Science, Bengbu Medical College, Bengbu, China
| | - Yu Gao
- School of Life Science, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
- * E-mail:
| |
Collapse
|
19
|
Duong L, Pixley FJ, Nelson DJ, Jackaman C. Aging Leads to Increased Monocytes and Macrophages With Altered CSF-1 Receptor Expression and Earlier Tumor-Associated Macrophage Expansion in Murine Mesothelioma. FRONTIERS IN AGING 2022; 3:848925. [PMID: 35821822 PMCID: PMC9261395 DOI: 10.3389/fragi.2022.848925] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/12/2022] [Indexed: 11/15/2022]
Abstract
Increased cancer incidence occurs with the emergence of immunosenescence, highlighting the indispensability of the immune system in preventing cancer and its dysregulation with aging. Tumor-associated macrophages (TAMs) are often present in high numbers and are associated with poor clinical outcomes in solid cancers, including mesothelioma. Monocytes and macrophages from the bone marrow and spleen can respond to tumor-derived factors, such as CSF-1, and initiation of the CSF-1R signaling cascade results in their proliferation, differentiation, and migration to the tumor. Age-related changes occur in monocytes and macrophages in terms of numbers and function, which in turn can impact tumor initiation and progression. Whether this is due to changes in CSF-1R expression with aging is currently unknown and was investigated in this study. We examined monocytes and macrophages in the bone marrow and spleen during healthy aging in young (3–4 months) and elderly (20–24 months) female C57BL/6J mice. Additionally, changes to these tissues and in TAMs were examined during AE17 mesothelioma tumor growth. Healthy aging resulted in an expansion of Ly6Chigh monocytes and macrophages in the bone marrow and spleen. CSF-1R expression levels were reduced in elderly splenic macrophages only, suggesting differences in CSF-1R signaling between both cell type and tissue site. In tumor-bearing mice, Ly6Chigh monocytes increased with tumor growth in the spleen in the elderly and increased intracellular CSF-1R expression occurred in bone marrow Ly6Chigh monocytes in elderly mice bearing large tumors. Age-related changes to bone marrow and splenic Ly6Chigh monocytes were reflected in the tumor, where we observed increased Ly6Chigh TAMs earlier and expansion of Ly6Clow TAMs later during AE17 tumor growth in the elderly compared to young mice. F4/80high TAMs increased with tumor growth in both young and elderly mice and were the largest subset of TAMs in the tumor. Together, this suggests there may be a faster transition of Ly6Chigh towards F4/80high TAMs with aging. Amongst TAM subsets, expression of CSF-1R was lowest in F4/80high TAMs, however Ly6Clow TAMs had higher intracellular CSF-1R expression. This suggests downstream CSF-1R signaling may vary between macrophage subsets, which can have implications towards CSF-1R blockade therapies targeting macrophages in cancer.
Collapse
Affiliation(s)
- Lelinh Duong
- Curtin Medical School, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Fiona J. Pixley
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Delia J. Nelson
- Curtin Medical School, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Connie Jackaman
- Curtin Medical School, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- *Correspondence: Connie Jackaman,
| |
Collapse
|
20
|
Xu W, Cheng Y, Guo Y, Yao W, Qian H. Targeting tumor associated macrophages in hepatocellular carcinoma. Biochem Pharmacol 2022; 199:114990. [PMID: 35288152 DOI: 10.1016/j.bcp.2022.114990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
|
21
|
Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. J Exp Clin Cancer Res 2022; 41:68. [PMID: 35183252 PMCID: PMC8857848 DOI: 10.1186/s13046-022-02272-x] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/22/2022] [Indexed: 12/21/2022] Open
Abstract
AbstractCancer immunotherapy has emerged as a novel cancer treatment, although recent immunotherapy trials have produced suboptimal outcomes, with durable responses seen only in a small number of patients. The tumor microenvironment (TME) has been shown to be responsible for tumor immune escape and therapy failure. The vital component of the TME is tumor-associated macrophages (TAMs), which are usually associated with poor prognosis and drug resistance, including immunotherapies, and have emerged as promising targets for cancer immunotherapy. Recently, nanoparticles, because of their unique physicochemical characteristics, have emerged as crucial translational moieties in tackling tumor-promoting TAMs that amplify immune responses and sensitize tumors to immunotherapies in a safe and effective manner. In this review, we mainly described the current potential nanomaterial-based therapeutic strategies that target TAMs, including restricting TAMs survival, inhibiting TAMs recruitment to tumors and functionally repolarizing tumor-supportive TAMs to antitumor type. The current understanding of the origin and polarization of TAMs, their crucial role in cancer progression and prognostic significance was also discussed in this review. We also highlighted the recent evolution of chimeric antigen receptor (CAR)-macrophage cell therapy.
Collapse
|
22
|
Liu J, Kuang S, Zheng Y, Liu M, Wang L. Prognostic and predictive significance of the tumor microenvironment in hepatocellular carcinoma. Cancer Biomark 2021; 32:99-110. [PMID: 34092607 DOI: 10.3233/cbm-203003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Identification of molecular markers that reflect the characteristics of the tumor microenvironment (TME) may be beneficial to predict the prognosis of post-operative hepatocellular carcinoma (HCC) patients. OBJECTIVE AND METHODS A total of 100 tissue samples from HCC patients were separately stained by immunohistochemistry to examine the expression levels of CD56, CD8α, CD68, FoxP3, CD31 and pan-Keratin. The prognostic values were analyzed by Cox regression and the Kaplan-Meier method. RESULTS Univariate and multivariate logistic analysis showed that FoxP3 was the independent factor associated with microvascular invasion (MVI), tumor size and envelop invasion; CD68 was associated with envelope invasion and AFP. Kaplan-Meier survival curves revealed that CD68 and FoxP3 expression were significantly associated with relapse free survival (RFS) of HCC patients (P< 0.05). The ROC curve indicated that the combination of tumor number, MVI present and CD68 expression yielded a ROC curve area of 82.3% (86.36% specificity, 68.75% sensitivity) to evaluate the prognosis of HCC patients, which was higher than the classifier established by the combination of tumor number and MVI (78.8% probability, 63.64% specificity and 85.42% sensitivity). CONCLUSIONS Our study indicated that CD68 and FoxP3 are associated with prognosis of HCC patients, and CD68 can be considered as a potential prognostic and predictive biomarker.
Collapse
Affiliation(s)
- Jibing Liu
- Department of Interventional Surgical Oncology, Cancer Hospital of Shandong Province, Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Department of Interventional Surgical Oncology, Cancer Hospital of Shandong Province, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shuwen Kuang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Interventional Surgical Oncology, Cancer Hospital of Shandong Province, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yiling Zheng
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Montella L, Sarno F, Ambrosino A, Facchini S, D’Antò M, Laterza MM, Fasano M, Quarata E, Ranucci RAN, Altucci L, Berretta M, Facchini G. The Role of Immunotherapy in a Tolerogenic Environment: Current and Future Perspectives for Hepatocellular Carcinoma. Cells 2021; 10:1909. [PMID: 34440678 PMCID: PMC8393830 DOI: 10.3390/cells10081909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
In contrast to several tumors whose prognoses are radically affected by novel immunotherapeutic approaches and/or targeted therapies, the outcomes of advanced hepatocellular carcinoma (HCC) remain poor. The underlying cirrhosis that is frequently associated with it complicates medical treatment and often determines survival. The landscape of HCC treatment had included sorafenib as the only drug available for ten years, until 2018, when lenvatinib was approved for treatment. The second-line systemic treatments available for hepatocellular carcinoma include regorafenib, cabozantinib, ramucirumab, and, more recently, immune checkpoint inhibitors. However, the median survival remains below 15 months. The results obtained in clinics should be interpreted whilst considering the peculiar role of the liver as an immune organ. A healthy liver microenvironment ordinarily experiences stimulation by gut-derived antigens. This setup elucidates the response to chronic inflammation and the altered balance between tolerance and immune response in HCC development. This paper provides an overview of the mechanisms involved in HCC pathogenesis, with a special focus on the immune implications, along with current and future clinical perspectives.
Collapse
Affiliation(s)
- Liliana Montella
- ASL NA2 NORD, Oncology Operative Unit, “Santa Maria delle Grazie” Hospital, 80078 Pozzuoli, Italy; (M.M.L.); (E.Q.)
| | - Federica Sarno
- Precision Medicine Department, “Luigi Vanvitelli” University of Campania, 80138 Naples, Italy; (F.S.); (L.A.)
| | - Annamaria Ambrosino
- ASL NA2 NORD, Internal Medicine Operative Unit, “Santa Maria delle Grazie” Hospital, 80078 Pozzuoli, Italy; (A.A.); (M.D.); (R.A.N.R.)
| | - Sergio Facchini
- Department of Precision Medicine, Division of Medical Oncology, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (S.F.); (M.F.)
| | - Maria D’Antò
- ASL NA2 NORD, Internal Medicine Operative Unit, “Santa Maria delle Grazie” Hospital, 80078 Pozzuoli, Italy; (A.A.); (M.D.); (R.A.N.R.)
| | - Maria Maddalena Laterza
- ASL NA2 NORD, Oncology Operative Unit, “Santa Maria delle Grazie” Hospital, 80078 Pozzuoli, Italy; (M.M.L.); (E.Q.)
| | - Morena Fasano
- Department of Precision Medicine, Division of Medical Oncology, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (S.F.); (M.F.)
| | - Ermelinda Quarata
- ASL NA2 NORD, Oncology Operative Unit, “Santa Maria delle Grazie” Hospital, 80078 Pozzuoli, Italy; (M.M.L.); (E.Q.)
| | - Raffaele Angelo Nicola Ranucci
- ASL NA2 NORD, Internal Medicine Operative Unit, “Santa Maria delle Grazie” Hospital, 80078 Pozzuoli, Italy; (A.A.); (M.D.); (R.A.N.R.)
| | - Lucia Altucci
- Precision Medicine Department, “Luigi Vanvitelli” University of Campania, 80138 Naples, Italy; (F.S.); (L.A.)
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
| | - Gaetano Facchini
- ASL NA2 NORD, Oncology Operative Unit, “Santa Maria delle Grazie” Hospital, 80078 Pozzuoli, Italy; (M.M.L.); (E.Q.)
| |
Collapse
|
24
|
Schobert IT, Savic LJ. Current Trends in Non-Invasive Imaging of Interactions in the Liver Tumor Microenvironment Mediated by Tumor Metabolism. Cancers (Basel) 2021; 13:3645. [PMID: 34359547 PMCID: PMC8344973 DOI: 10.3390/cancers13153645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
With the increasing understanding of resistance mechanisms mediated by the metabolic reprogramming in cancer cells, there is a growing clinical interest in imaging technologies that allow for the non-invasive characterization of tumor metabolism and the interactions of cancer cells with the tumor microenvironment (TME) mediated through tumor metabolism. Specifically, tumor glycolysis and subsequent tissue acidosis in the realms of the Warburg effect may promote an immunosuppressive TME, causing a substantial barrier to the clinical efficacy of numerous immuno-oncologic treatments. Thus, imaging the varying individual compositions of the TME may provide a more accurate characterization of the individual tumor. This approach can help to identify the most suitable therapy for each individual patient and design new targeted treatment strategies that disable resistance mechanisms in liver cancer. This review article focuses on non-invasive positron-emission tomography (PET)- and MR-based imaging techniques that aim to visualize the crosstalk between tumor cells and their microenvironment in liver cancer mediated by tumor metabolism.
Collapse
Affiliation(s)
- Isabel Theresa Schobert
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany;
| | - Lynn Jeanette Savic
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany;
- Berlin Institute of Health, 10178 Berlin, Germany
| |
Collapse
|
25
|
Meng L, Ma R, Yan R, Yuan D, Li Y, Shi L, Li K. Profiles of immune infiltration in the tumor microenvironment of hepatocellular carcinoma. J Gastrointest Oncol 2021; 12:1152-1163. [PMID: 34295564 DOI: 10.21037/jgo-21-291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022] Open
Abstract
Background Thus far, few studies have systematically analyzed the profiles of immune cells infiltrated in the tumor microenvironment (TME) of hepatocellular carcinoma (HCC). Therefore, the purpose of our study was to comprehensively analyze the 22 tumor-infiltrating immune cells (TIICs) and the immune subtypes of HCC, as well as the factors associated with the prognosis of HCC patients. Methods In this study, we evaluated the abundance of 22 tumor-infiltrating immunocytes of 371 HCC patients from The Cancer Genome Atlas (TCGA) database by using the CIBERSORT algorithm, and defined immune subtypes of HCC according to unsupervised cluster analysis. The immune score of HCC patients was calculated by the prognostic regression model, while the survival analysis was evaluated by the Kaplan-Meier method. In addition, the consistency index of TIICs and principal component analysis (PCA) of immunomodulator genes were estimated. Results The results of this study showed that three distinct immune subtypes of HCC were stratified, and the C1 subtype and C3 subtype were correlated with a good prognosis. The cellular composition of three immune subtypes was different. Moreover, immunomodulator gene and programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) expression in the C1 subtype was significantly higher (P<0.05). Conclusions This suggested that the low immune score of HCC patients is associated with better clinical outcomes. In addition, the interaction network of cluster of differentiation CD8+ T cells was mainly concentrated in the C1 subtype. Taken together, this study showed that tumor-infiltrating immune cells can perhaps be an important determinant of clinical outcomes of patients with HCC and may provide biomarkers to reflect the immunotherapy response. Notably, the C1 subtype of HCC may be used as an important predictive factor for immunotherapy response.
Collapse
Affiliation(s)
- Lei Meng
- National Engineering Research Center for Miniaturized Detection Systems, The College of Life Sciences, Northwest University, Xi'an, China.,Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rulan Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rong Yan
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dawei Yuan
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yijun Li
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lei Shi
- Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kang Li
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
26
|
Park DJ, Sung PS, Lee GW, Cho SW, Kim SM, Kang BY, Hur WH, Yang H, Lee SK, Lee SH, Jung ES, Seo CH, Ahn J, Choi HJ, You YK, Jang JW, Bae SH, Choi JY, Yoon SK. Preferential Expression of Programmed Death Ligand 1 Protein in Tumor-Associated Macrophages and Its Potential Role in Immunotherapy for Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:4710. [PMID: 33946835 PMCID: PMC8124544 DOI: 10.3390/ijms22094710] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023] Open
Abstract
A predictive biomarker of immune checkpoint inhibitor (ICI)-based treatments in hepatocellular carcinoma (HCC) has not been clearly demonstrated. In this study, we focused on the infiltration and programmed death ligand 1 (PD-L1) expression of tumor-associated macrophages (TAMs) in the tumor microenvironment of HCC. Immunohistochemistry demonstrated that PD-L1 was preferentially expressed on CD68+ macrophages in the tumor microenvironment of HCC, suggestive of its expression in TAMs rather than in T cells or tumor cells (P < 0.05). A co-culture experiment using activated T cells and M2 macrophages confirmed a significant increase in T cell functionality after the pretreatment of M2 macrophages with anti-PD-L1. Syngeneic mouse model experiments demonstrated that TAMs expressed PD-L1 and tumors treated with anti-PD-L1 showed smaller diameters than those treated with IgG. In these mice, anti-PD-L1 treatment increased activation markers in intratumoral CD8+ T cells and reduced the size of the TAM population. Regarding nivolumab-treated patients, three of eight patients responded to the anti-PD-1 treatment. The percentage of Ki-67-positive CD4+ and CD8+ T cells was higher in responders than non-responders after nivolumab. Overall, PD-L1 expression on TAMs may be targeted by immune-based HCC treatment, and ICI treatment results in the reinvigoration of exhausted CD8+ T cells in HCC.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/biosynthesis
- B7-H1 Antigen/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Coculture Techniques
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Immunotherapy/methods
- Ki-67 Antigen/biosynthesis
- Ki-67 Antigen/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Liver Neoplasms, Experimental/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Mice
- Mice, Inbred C57BL
- Molecular Targeted Therapy/methods
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Nivolumab/pharmacology
- Nivolumab/therapeutic use
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Tumor Cells, Cultured
- Tumor Microenvironment/immunology
- Tumor-Associated Macrophages/drug effects
- Tumor-Associated Macrophages/metabolism
Collapse
Affiliation(s)
- Dong-Jun Park
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (D.-J.P.); (P.-S.S.); (G.-W.L.); (S.-W.C.); (S.-M.K.); (B.-Y.K.); (W.-H.H.); (H.Y.); (S.-K.L.); (J.-W.J.); (S.-H.B.); (J.-Y.C.)
| | - Pil-Soo Sung
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (D.-J.P.); (P.-S.S.); (G.-W.L.); (S.-W.C.); (S.-M.K.); (B.-Y.K.); (W.-H.H.); (H.Y.); (S.-K.L.); (J.-W.J.); (S.-H.B.); (J.-Y.C.)
- Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
| | - Gil-Won Lee
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (D.-J.P.); (P.-S.S.); (G.-W.L.); (S.-W.C.); (S.-M.K.); (B.-Y.K.); (W.-H.H.); (H.Y.); (S.-K.L.); (J.-W.J.); (S.-H.B.); (J.-Y.C.)
| | - Sung-Woo Cho
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (D.-J.P.); (P.-S.S.); (G.-W.L.); (S.-W.C.); (S.-M.K.); (B.-Y.K.); (W.-H.H.); (H.Y.); (S.-K.L.); (J.-W.J.); (S.-H.B.); (J.-Y.C.)
| | - Sung-Min Kim
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (D.-J.P.); (P.-S.S.); (G.-W.L.); (S.-W.C.); (S.-M.K.); (B.-Y.K.); (W.-H.H.); (H.Y.); (S.-K.L.); (J.-W.J.); (S.-H.B.); (J.-Y.C.)
| | - Byung-Yoon Kang
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (D.-J.P.); (P.-S.S.); (G.-W.L.); (S.-W.C.); (S.-M.K.); (B.-Y.K.); (W.-H.H.); (H.Y.); (S.-K.L.); (J.-W.J.); (S.-H.B.); (J.-Y.C.)
| | - Won-Hee Hur
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (D.-J.P.); (P.-S.S.); (G.-W.L.); (S.-W.C.); (S.-M.K.); (B.-Y.K.); (W.-H.H.); (H.Y.); (S.-K.L.); (J.-W.J.); (S.-H.B.); (J.-Y.C.)
| | - Hyun Yang
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (D.-J.P.); (P.-S.S.); (G.-W.L.); (S.-W.C.); (S.-M.K.); (B.-Y.K.); (W.-H.H.); (H.Y.); (S.-K.L.); (J.-W.J.); (S.-H.B.); (J.-Y.C.)
- Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul 03383, Korea
| | - Soon-Kyu Lee
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (D.-J.P.); (P.-S.S.); (G.-W.L.); (S.-W.C.); (S.-M.K.); (B.-Y.K.); (W.-H.H.); (H.Y.); (S.-K.L.); (J.-W.J.); (S.-H.B.); (J.-Y.C.)
- Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
| | - Sung-Hak Lee
- Department of Clinical Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Eun-Sun Jung
- Department of Hospital Pathology, College of Medicine, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul 03383, Korea;
| | - Chang-Ho Seo
- Department of Surgery, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea; (C.-H.S.); (J.A.); (H.-J.C.); (Y.-K.Y.)
| | - Joseph Ahn
- Department of Surgery, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea; (C.-H.S.); (J.A.); (H.-J.C.); (Y.-K.Y.)
| | - Ho-Joong Choi
- Department of Surgery, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea; (C.-H.S.); (J.A.); (H.-J.C.); (Y.-K.Y.)
| | - Young-Kyoung You
- Department of Surgery, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea; (C.-H.S.); (J.A.); (H.-J.C.); (Y.-K.Y.)
| | - Jeong-Won Jang
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (D.-J.P.); (P.-S.S.); (G.-W.L.); (S.-W.C.); (S.-M.K.); (B.-Y.K.); (W.-H.H.); (H.Y.); (S.-K.L.); (J.-W.J.); (S.-H.B.); (J.-Y.C.)
- Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
| | - Si-Hyun Bae
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (D.-J.P.); (P.-S.S.); (G.-W.L.); (S.-W.C.); (S.-M.K.); (B.-Y.K.); (W.-H.H.); (H.Y.); (S.-K.L.); (J.-W.J.); (S.-H.B.); (J.-Y.C.)
- Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul 03383, Korea
| | - Jong-Young Choi
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (D.-J.P.); (P.-S.S.); (G.-W.L.); (S.-W.C.); (S.-M.K.); (B.-Y.K.); (W.-H.H.); (H.Y.); (S.-K.L.); (J.-W.J.); (S.-H.B.); (J.-Y.C.)
- Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
| | - Seung-Kew Yoon
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (D.-J.P.); (P.-S.S.); (G.-W.L.); (S.-W.C.); (S.-M.K.); (B.-Y.K.); (W.-H.H.); (H.Y.); (S.-K.L.); (J.-W.J.); (S.-H.B.); (J.-Y.C.)
- Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
27
|
Barbosa AM, Gomes-Gonçalves A, Castro AG, Torrado E. Immune System Efficiency in Cancer and the Microbiota Influence. Pathobiology 2021; 88:170-186. [PMID: 33588418 DOI: 10.1159/000512326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/06/2020] [Indexed: 11/19/2022] Open
Abstract
The immune system plays a critical role in preventing cancer development and progression. However, the complex network of cells and soluble factor that form the tumor microenvironment (TME) can dictate the differentiation of tumor-infiltrating leukocytes and shift the antitumor immune response into promoting tumor growth. With the advent of cancer immunotherapy, there has been a reinvigorated interest in defining how the TME shapes the antitumor immune response. This interest brought to light the microbiome as a novel player in shaping cancer immunosurveillance. Indeed, accumulating evidence now suggests that the microbiome may confer susceptibility or resistance to certain cancers and may influence response to therapeutics, particularly immune checkpoint inhibitors. As we move forward into the age of precision medicine, it is vital that we define the factors that influence the interplay between the triad immune system-microbiota-cancer. This knowledge will contribute to improve the therapeutic response to current approaches and will unravel novel targets for immunotherapy.
Collapse
Affiliation(s)
- Ana Margarida Barbosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra Gomes-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António G Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal, .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal,
| |
Collapse
|
28
|
Wu C, Lin J, Weng Y, Zeng DN, Xu J, Luo S, Xu L, Liu M, Hua Q, Liu CQ, Li JQ, Liao J, Sun C, Zhou J, Chen MS, Liu C, Guo Z, Zhuang SM, Huang JH, Zheng L. Myeloid signature reveals immune contexture and predicts the prognosis of hepatocellular carcinoma. J Clin Invest 2021; 130:4679-4693. [PMID: 32497024 DOI: 10.1172/jci135048] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUNDDespite an increasing appreciation of the roles that myeloid cells play in tumor progression and therapy, challenges remain in interpreting the tumor-associated myeloid response balance and its translational value. We aimed to construct a simple and reliable myeloid signature for hepatocellular carcinoma (HCC).METHODSUsing in situ immunohistochemistry, we assessed the distribution of major myeloid subtypes in both peri- and intratumoral regions of HCC. A 2-feature-based, myeloid-specific prognostic signature, named the myeloid response score (MRS), was constructed using an L1-penalized Cox regression model based on data from a training subset (n = 244), a test subset (n = 244), and an independent internal (n = 341) and 2 external (n = 94; n = 254) cohorts.RESULTSThe MRS and the MRS-based nomograms displayed remarkable discriminatory power, accuracy, and clinical usefulness for predicting recurrence and patient survival, superior to current staging algorithms. Moreover, an increase in MRS was associated with a shift in the myeloid response balance from antitumor to protumor activities, accompanied by enhanced CD8+ T cell exhaustion patterns. Additionally, we provide evidence that the MRS was associated with the efficacy of sorafenib treatment for recurrent HCC.CONCLUSIONWe identified and validated a simple myeloid signature for HCC that showed remarkable prognostic potential and may serve as a basis for the stratification of HCC immune subtypes.FUNDINGThis work was supported by the National Science and Technology Major Project of China, the National Natural Science Foundation of China, the Science and Information Technology of Guangzhou, the Fundamental Research Funds for the Central Universities, the Guangdong Basic and Applied Basic Research Foundation, and the China Postdoctoral Science Foundation.
Collapse
Affiliation(s)
- Chong Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, and
| | - Jie Lin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences
| | - Yulan Weng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences
| | - Dan-Ni Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences
| | - Jing Xu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, and
| | - Shufeng Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences
| | - Li Xu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, and
| | - Mingyu Liu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, and
| | - Qiaomin Hua
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences
| | - Chao-Qun Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jin-Qing Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, and
| | - Jing Liao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences
| | - Cheng Sun
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, and.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Fudan University, Shanghai, China
| | - Min-Shan Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, and
| | - Chao Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhenhong Guo
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Shi-Mei Zhuang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences
| | - Jin-Hua Huang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, and
| | - Limin Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, and
| |
Collapse
|
29
|
Sansone V, Le Grazie M, Roselli J, Polvani S, Galli A, Tovoli F, Tarocchi M. Telomerase reactivation is associated with hepatobiliary and pancreatic cancers. Hepatobiliary Pancreat Dis Int 2020; 19:420-428. [PMID: 32386990 DOI: 10.1016/j.hbpd.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Human telomerase reverse transcriptase (hTERT) and its components play a significant role in cancer progression, but recent data demonstrated that telomeres and telomerase alterations could be found in other diseases; increasing evidence suggests a key role of this enzyme in the fields of hepatobiliary and pancreatic diseases. DATA SOURCES We performed a PubMed search with the following keywords: telomerase, hepatocellular carcinoma, cholangiocarcinoma, pancreatic adenocarcinoma by December 2019. We reviewed the relevant publications that analyzed the correlation between telomerase activity and hepatobiliary and pancreatic diseases. RESULTS Telomerase reactivation plays a significant role in the development and progression of hepatobiliary and pancreatic tumors and could be used as a diagnostic biomarker for hepatobiliary and pancreatic cancers, as a predictor for prognosis and a promising therapeutic target. CONCLUSIONS Our review summarized the evidence about the critical role of hTERT in cancerous and precancerous lesions of the alteration and its activity in hepatobiliary and pancreatic diseases.
Collapse
Affiliation(s)
- Vito Sansone
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Marco Le Grazie
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Firenze, Italy
| | - Jenny Roselli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Firenze, Italy
| | - Simone Polvani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Firenze, Italy
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Firenze, Italy
| | - Francesco Tovoli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Mirko Tarocchi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Firenze, Italy
| |
Collapse
|
30
|
Chen YL. Prognostic significance of tumor-associated macrophages in patients with nasopharyngeal carcinoma: A meta-analysis. Medicine (Baltimore) 2020; 99:e21999. [PMID: 32991403 PMCID: PMC7523791 DOI: 10.1097/md.0000000000021999] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To explore the prognostic value of diverse subsets of tumor-associated macrophages (TAMs) in prognosis in patients with nasopharyngeal carcinoma (NPC) using meta-analysis. METHODS Relevant studies were searched in the database of PubMed, Web of Science, Embase, Cochrane Library, Scopus, China National Knowledge Infrastructure (CNKI), and Wanfang till November 2019. The relationship between TAMs and survival outcomes was estimated by pooling hazard ratios (HRs) and 95% confidence intervals (CIs); and the correlation of TAMs and clinicopathological factors was evaluated by using odds ratios (ORs) and 95%CIs. RESULTS Six studies with 1549 patients were included in this meta-analysis. The high expression of CD68+ TAMs was associated with favorable disease-free survival (DFS) (HR = 0.66, 95%CI = 0.50-0.88, P = .005), whereas the density of M2-like TAMs (CD163+, CD68+CCL18+, and CD206+) was correlated to poor overall survival (OS) (HR = 1.77, 95%CI = 1.22-2.56, P = .003) and DFS (HR = 1.96, 95%CI = 1.00-3.85, P = .050) in patients with NPC. CONCLUSIONS CD68+ TAM density is associated with superior DFS, while CD163+ M2-like TAMs predicted poor prognosis in patients with NPC.
Collapse
|
31
|
Sung PS, Cho SW, Lee J, Yang H, Jang JW, Bae SH, Choi JY, Yoon SK. Infiltration of T Cells and Programmed Cell Death Ligand 1-expressing Macrophages as a Potential Predictor of Lenvatinib Response in Hepatocellular Carcinoma. JOURNAL OF LIVER CANCER 2020; 20:128-134. [PMID: 37384325 PMCID: PMC10035673 DOI: 10.17998/jlc.20.2.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 06/30/2023]
Abstract
BACKGROUND/AIMS Lenvatinib was recently proven to be non-inferior to sorafenib in treating unresectable hepatocellular carcinoma (HCC) in a phase-3 randomized controlled trial. In this study, we investigated whether the response to lenvatinib was affected by tumor immunogenicity. METHODS Between May 2019 and April 2020, nine patients with intermediate-to-advanced HCC, who were treated with lenvatinib after liver biopsy, were enrolled. Immunohistochemical staining and multi-color flow cytometry were performed on specimens obtained from liver biopsy. RESULTS Among the nine patients enrolled, four showed objective responses (complete responses+partial responses). Immunohistochemical staining for CD3, CD68, and programmed cell death ligand 1 (PD-L1) demonstrated that patients with objective responses showed marked infiltration of T cells and PD-L1-expressing macrophages in intra-tumoral and peri-tumoral tissues compared to those without objective responses. A significant difference in the numbers of infiltrated T cells, both in the intra-tumoral (P<0.01) and peri-tumoral regions (P<0.05), were identified between responders and non-responders. Regarding the number of infiltrated macrophages, no significant difference was found between the responders and non-responders, although the number of PD-L1-expressing tumor-associated macrophages was significantly higher in responders than that in non-responders (P<0.05). CONCLUSIONS Tumor immunogenicity, as indicated by T cell and PD-L1-positive macrophage infiltration, affects lenvatinib response in unresectable HCC.
Collapse
Affiliation(s)
- Pil Soo Sung
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Woo Cho
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jaejun Lee
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Yang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|