1
|
Qin Y, Godoy-Parejo C, Skowronska M, Verma A, Dejosez M, Zwaka TP. Generation of human pluripotent stem cell lines (WAe009-A) with THAP11 F80L cobalamin disorder-associated mutation. Stem Cell Res 2024; 79:103483. [PMID: 38943762 DOI: 10.1016/j.scr.2024.103483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
Recent studies reported that the mutation in the THAP11 gene (THAP11F80L) could be responsible for the inborn vitamin deficiency known as cobalamin disorder, by affecting the expression of the enzyme MMACHC, key in the cobalamin metabolism. However, the specifics of the molecular mechanism are largely unknown. In here we generated genetically modified human pluripotent stem cell lines with THAP11F80L mutation, providing a new research tool for futher exploring the molecular mechanism. The established hPSC lines remain pluripotent, showing expression of OCT3/4, differentiation capacity to the three germ layers and displaying normal karyotype.
Collapse
Affiliation(s)
- Yiren Qin
- Huffington Center for Cell-based Research in Parkinson's Disease, Black Family Stem Cell Institute, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Godoy-Parejo
- Huffington Center for Cell-based Research in Parkinson's Disease, Black Family Stem Cell Institute, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Marta Skowronska
- Huffington Center for Cell-based Research in Parkinson's Disease, Black Family Stem Cell Institute, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Angela Verma
- Huffington Center for Cell-based Research in Parkinson's Disease, Black Family Stem Cell Institute, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marion Dejosez
- Huffington Center for Cell-based Research in Parkinson's Disease, Black Family Stem Cell Institute, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas P Zwaka
- Huffington Center for Cell-based Research in Parkinson's Disease, Black Family Stem Cell Institute, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
2
|
Zhong X, Moresco JJ, SoRelle JA, Song R, Jiang Y, Nguyen MT, Wang J, Bu CH, Moresco EMY, Beutler B, Choi JH. Disruption of the ZFP574-THAP12 complex suppresses B cell malignancies in mice. Proc Natl Acad Sci U S A 2024; 121:e2409232121. [PMID: 39047044 PMCID: PMC11295075 DOI: 10.1073/pnas.2409232121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Despite the availability of life-extending treatments for B cell leukemias and lymphomas, many of these cancers remain incurable. Thus, the development of new molecular targets and therapeutics is needed to expand treatment options. To identify new molecular targets, we used a forward genetic screen in mice to identify genes required for development or survival of lymphocytes. Here, we describe Zfp574, an essential gene encoding a zinc finger protein necessary for normal and malignant lymphocyte survival. We show that ZFP574 interacts with zinc finger protein THAP12 and promotes the G1-to-S-phase transition during cell cycle progression. Mutation of ZFP574 impairs nuclear localization of the ZFP574-THAP12 complex. ZFP574 or THAP12 deficiency results in cell cycle arrest and impaired lymphoproliferation. Germline mutation, acute gene deletion, or targeted degradation of ZFP574 suppressed Myc-driven B cell leukemia in mice, but normal B cells were largely spared, permitting long-term survival, whereas complete lethality was observed in control animals. Our findings support the identification of drugs targeting ZFP574-THAP12 as a unique strategy to treat B cell malignancies.
Collapse
Affiliation(s)
- Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - James J. Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jeffrey A. SoRelle
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Ran Song
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Yiao Jiang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Mylinh T. Nguyen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Chun Hui Bu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Eva Marie Y. Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
3
|
Katayama K, Ito J, Murakami R, Yamashita A, Sasajima H, Narahashi S, Chiba J, Yamamoto I, Fujii W, Tochigi Y, Suzuki H. Mutation of the Thap4 gene causes dwarfism and testicular anomalies in rats and mice. Mamm Genome 2024; 35:149-159. [PMID: 38658415 DOI: 10.1007/s00335-024-10041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
The petit (pet) locus is associated with dwarfism, testicular anomalies, severe thymic hypoplasia, and high postnatal lethality, which are inherited in autosomal recessive mode of inheritance in rats with a Wistar strain genetic background. Linkage analysis localized the pet locus between 98.7 Mb and 101.2 Mb on rat chromosome 9. Nucleotide sequence analysis identified 2 bp deletion in exon 2 of the Thap4 gene as the causative mutation for pet. This deletion causes a frameshift and premature termination codon, resulting in a truncated THAP4 protein lacking approximately two-thirds of the C-terminal side. Thap4 is expressed in various organs, including the testis and thymus in rats. To elucidate the biological function of THAP4 in other species, we generated Thap4 knockout mice lacking exon 2 of the Thap4 gene through genome editing. Thap4 knockout mice also exhibited dwarfism and small testis but did not show high postnatal lethality. Thymus weights of adult Thap4 knockout male mice were significantly higher compared to wild-type male mice. Although Thap4 knockout male mice were fertile, their testis contained seminiferous tubules with spermatogenesis and degenerative seminiferous tubules lacking germ cells. Additionally, we observed vacuoles in seminiferous tubules, and clusters of cells in the lumen in seminiferous tubules in Thap4 knockout male mice. These results demonstrate that spontaneous mutation of Thap4 gene in rats and knockout of Thap4 gene in mice both cause dwarfism and testicular anomalies. Thap4 gene in rats and mice is essential for normal testicular development, maintaining spermatogenesis throughout the entire region of seminiferous tubules.
Collapse
Affiliation(s)
- Kentaro Katayama
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Junya Ito
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Rei Murakami
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Ayako Yamashita
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Hotaka Sasajima
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Satomi Narahashi
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Junko Chiba
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Ichiro Yamamoto
- Laboratory of Veterinary Biochemistry, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Wataru Fujii
- Laboratory of Biomedical Science, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuki Tochigi
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Hiroetsu Suzuki
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan.
| |
Collapse
|
4
|
Rashmi R, Nandi C, Majumdar S. Bioinformatic analysis of THAP9 transposase homolog: conserved regions, novel motifs. Curr Res Struct Biol 2023; 7:100113. [PMID: 38292821 PMCID: PMC10824691 DOI: 10.1016/j.crstbi.2023.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 02/01/2024] Open
Abstract
THAP9 is a transposable element-derived gene that encodes the THAP9 protein, which is homologous to the Drosophila P-element transposase (DmTNP) and can cut and paste DNA. However, the exact functional role of THAP9 is unknown. Here, we perform structure prediction, evolutionary analysis and extensive in silico characterization of THAP9, including predicting domains and putative post-translational modification sites. Comparison of the AlphaFold-predicted structure of THAP9 with the DmTNP CryoEM structure, provided insights about the C2CH motif and other DNA binding residues, RNase H-like catalytic domain and insertion domain of the THAP9 protein. We also predicted previously unreported mammalian-specific post-translational modification sites that may play a role in the subcellular localization of THAP9. Furthermore, we observed that there are distinct organism class-specific conservation patterns of key functional residues in certain THAP9 domains.
Collapse
Affiliation(s)
- Richa Rashmi
- Discipline of Biological Engineering, IIT Gandhinagar, Gandhinagar, Gujarat, India
| | - Chandan Nandi
- Discipline of Biological Engineering, IIT Gandhinagar, Gandhinagar, Gujarat, India
| | - Sharmistha Majumdar
- Discipline of Biological Engineering, IIT Gandhinagar, Gandhinagar, Gujarat, India
| |
Collapse
|
5
|
Soon HR, Gaunt JR, Bansal VA, Lenherr C, Sze SK, Ch’ng TH. Seizure enhances SUMOylation and zinc-finger transcriptional repression in neuronal nuclei. iScience 2023; 26:107707. [PMID: 37694138 PMCID: PMC10483055 DOI: 10.1016/j.isci.2023.107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
A single episode of pilocarpine-induced status epilepticus can trigger the development of spontaneous recurrent seizures in a rodent model for epilepsy. The initial seizure-induced events in neuronal nuclei that lead to long-term changes in gene expression and cellular responses likely contribute toward epileptogenesis. Using a transgenic mouse model to specifically isolate excitatory neuronal nuclei, we profiled the seizure-induced nuclear proteome via tandem mass tag mass spectrometry and observed robust enrichment of nuclear proteins associated with the SUMOylation pathway. In parallel with nuclear proteome, we characterized nuclear gene expression by RNA sequencing which provided insights into seizure-driven transcriptional regulation and dynamics. Strikingly, we saw widespread downregulation of zinc-finger transcription factors, specifically proteins that harbor Krüppel-associated box (KRAB) domains. Our results provide a detailed snapshot of nuclear events induced by seizure activity and demonstrate a robust method for cell-type-specific nuclear profiling that can be applied to other cell types and models.
Collapse
Affiliation(s)
- Hui Rong Soon
- School of Biological Science, Nanyang Technological University, Singapore 636551, Singapore
| | - Jessica Ruth Gaunt
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Vibhavari Aysha Bansal
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Clara Lenherr
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Centre for Discovery Brain Science, The University of Edinburgh, Edinburgh, UK
| | - Siu Kwan Sze
- Faculty of Applied Health Sciences, Brock University, St. Catherines, ON, Canada
| | - Toh Hean Ch’ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- School of Biological Science, Nanyang Technological University, Singapore 636551, Singapore
| |
Collapse
|
6
|
Castro VL, Paz D, Virrueta V, Estevao IL, Grajeda BI, Ellis CC, Quintana AM. Missense and nonsense mutations of the zebrafish hcfc1a gene result in contrasting mTor and radial glial phenotypes. Gene 2023; 864:147290. [PMID: 36804358 PMCID: PMC11373874 DOI: 10.1016/j.gene.2023.147290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/20/2023]
Abstract
Mutations in the HCFC1 transcriptional co-factor protein are the cause of cblX syndrome and X-linked intellectual disability (XLID). cblX is the more severe disorder associated with intractable epilepsy, abnormal cobalamin metabolism, facial dysmorphia, cortical gyral malformations, and intellectual disability. In vitro, murine Hcfc1 regulates neural precursor (NPCs) proliferation and number, which has been validated in zebrafish. However, conditional deletion of mouse Hcfc1 in Nkx2.1 + cells increased cell death, reduced Gfap expression, and reduced numbers of GABAergic neurons. Thus, the role of this gene in brain development is not completely understood. Recently, knock-in of both a cblX (HCFC1) and cblX-like (THAP11) allele were created in mice. Knock-in of the cblX-like allele was associated with increased expression of proteins required for ribosome biogenesis. However, the brain phenotypes were not comprehensively studied due to sub-viability. Therefore, a mechanism underlying increased ribosome biogenesis was not described. We used a missense, a nonsense, and two conditional zebrafish alleles to further elucidate this mechanism during brain development. We observed contrasting phenotypes at the level of Akt/mTor activation, the number of radial glial cells, and the expression of two downstream target genes of HCFC1, asxl1 and ywhab. Despite these divergent phenotypes, each allele studied demonstrates with a high degree of face validity when compared to the phenotypes reported in the literature. Collectively, these data suggest that individual mutations in the HCFC1 protein result in differential mTOR activity which may be associated with contrasting cellular phenotypes.
Collapse
Affiliation(s)
- Victoria L Castro
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA.
| | - David Paz
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Valeria Virrueta
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Igor L Estevao
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Brian I Grajeda
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Cameron C Ellis
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Anita M Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA.
| |
Collapse
|
7
|
Watkins D, Rosenblatt DS. Inherited defects of cobalamin metabolism. VITAMINS AND HORMONES 2022; 119:355-376. [PMID: 35337626 DOI: 10.1016/bs.vh.2022.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cobalamin (vitamin B12) is required for activity of the enzymes methylmalonyl-CoA mutase and methionine synthase in human cells. Inborn errors affecting cobalamin uptake or metabolism are characterized by accumulation of the substrates for these enzymes, methylmalonic acid and homocysteine, in blood and urine. Inborn errors affecting synthesis of the adenosylcobalamin coenzyme required by methylmalonyl-CoA mutase (cblA and cblB) result in isolated methylmalonic aciduria; inborn errors affecting synthesis of the methylcobalamin coenzyme required by methionine synthase (cblE and cblG) result in isolated homocystinuria. Combined methylmalonic aciduria and homocystinuria is seen in patients with impaired intestinal cobalamin absorption (intrinsic factor deficiency, Imerslund-Gräsbeck syndrome) and with defects affecting synthesis of both cobalamin coenzymes (cblC, cblD, cblF and cblJ). A series of disorders caused by pathogenic variant mutations affecting gene regulators (transcription factors) of the MMACHC gene have recently been described (HCFC1 [cblX disorder] and deficiencies of THAP11, and ZNF143 [the cblK disorder]).
Collapse
Affiliation(s)
- David Watkins
- Department of Human Genetics, McGill University, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - David S Rosenblatt
- Department of Human Genetics, McGill University, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
8
|
Chern T, Achilleos A, Tong X, Hill MC, Saltzman AB, Reineke LC, Chaudhury A, Dasgupta SK, Redhead Y, Watkins D, Neilson JR, Thiagarajan P, Green JBA, Malovannaya A, Martin JF, Rosenblatt DS, Poché RA. Mutations in Hcfc1 and Ronin result in an inborn error of cobalamin metabolism and ribosomopathy. Nat Commun 2022; 13:134. [PMID: 35013307 PMCID: PMC8748873 DOI: 10.1038/s41467-021-27759-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Combined methylmalonic acidemia and homocystinuria (cblC) is the most common inborn error of intracellular cobalamin metabolism and due to mutations in Methylmalonic Aciduria type C and Homocystinuria (MMACHC). Recently, mutations in the transcriptional regulators HCFC1 and RONIN (THAP11) were shown to result in cellular phenocopies of cblC. Since HCFC1/RONIN jointly regulate MMACHC, patients with mutations in these factors suffer from reduced MMACHC expression and exhibit a cblC-like disease. However, additional de-regulated genes and the resulting pathophysiology is unknown. Therefore, we have generated mouse models of this disease. In addition to exhibiting loss of Mmachc, metabolic perturbations, and developmental defects previously observed in cblC, we uncovered reduced expression of target genes that encode ribosome protein subunits. We also identified specific phenotypes that we ascribe to deregulation of ribosome biogenesis impacting normal translation during development. These findings identify HCFC1/RONIN as transcriptional regulators of ribosome biogenesis during development and their mutation results in complex syndromes exhibiting aspects of both cblC and ribosomopathies. Combined methylmalonic acidemia (MMA) and hyperhomocysteinemias are inborn errors of vitamin B12 metabolism, and mutations in the transcriptional regulators HCFC1 and RONIN (THAP11) underlie some forms of these disorders. Here the authors generated mouse models of a human syndrome due to mutations in RONIN (THAP11) and HCFC1, and show that this syndrome is both an inborn error of vitamin B12 metabolism and displays some features of ribosomopathy.
Collapse
Affiliation(s)
- Tiffany Chern
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Annita Achilleos
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus.
| | - Xuefei Tong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Matthew C Hill
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alexander B Saltzman
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lucas C Reineke
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Arindam Chaudhury
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Swapan K Dasgupta
- Department of Pathology, Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, 77030, USA
| | - Yushi Redhead
- The Francis Crick Institute, London, NW1 1AT, UK.,Centre for Craniofacial Biology and Regeneration, King's College London, London, SE1 9RT, UK
| | - David Watkins
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, QC, Canada.,Division of Medical Biochemistry, Department of Specialized Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Joel R Neilson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Perumal Thiagarajan
- Department of Pathology, Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jeremy B A Green
- Centre for Craniofacial Biology and Regeneration, King's College London, London, SE1 9RT, UK
| | - Anna Malovannaya
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.,Texas Heart Institute, Houston, TX, 77030, USA
| | - David S Rosenblatt
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, QC, Canada.,Division of Medical Biochemistry, Department of Specialized Medicine, McGill University Health Centre, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Ross A Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Yu X, Liu Z, Pan Y, Cui X, Zhao X, Li D, Xue X, Fu J. Co-expression network analysis for identification of novel biomarkers of bronchopulmonary dysplasia model. Front Pediatr 2022; 10:946747. [PMID: 36440350 PMCID: PMC9696732 DOI: 10.3389/fped.2022.946747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is the most common neonatal chronic lung disease. However, its exact molecular pathogenesis is not understood. We aimed to identify relevant gene modules that may play crucial roles in the occurrence and development of BPD by weighted gene co-expression network analysis (WGCNA). METHODS We used RNA-Seq data of BPD and healthy control rats from our previous studies, wherein data from 30 samples was collected at days 1, 3, 7, 10, and 14. Data for preprocessing analysis included 17,613 differentially expressed genes (DEGs) with false discovery rate <0.05. RESULTS We grouped the highly correlated genes into 13 modules, and constructed a network of mRNA gene associations, including the 150 most associated mRNA genes in each module. Lgals8, Srpra, Prtfdc1, and Thap11 were identified as the key hub genes. Enrichment analyses revealed Golgi vesicle transport, coated vesicle, actin-dependent ATPase activity and endoplasmic reticulum pathways associated with these genes involved in the pathological process of BPD in module. CONCLUSIONS This is a study to analyze data obtained from BPD animal model at different time-points using WGCNA, to elucidate BPD-related susceptibility modules and disease-related genes.
Collapse
Affiliation(s)
- Xuefei Yu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuqing Pan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuewei Cui
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinyi Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|