1
|
Fan G, Chen W, He J, Wang D, Yang X. Bile acids alleviate intestinal inflammation by modulating gut microbiota composition in LPS-challenged broilers. Res Vet Sci 2025; 184:105526. [PMID: 39755074 DOI: 10.1016/j.rvsc.2024.105526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/10/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Previous research has identified bile acids (BAs) as a valuable supplement for animal feed, especially in the poultry industry. However, there is limited research on the use of bile acids as a preventative measure against intestinal inflammation in broilers. This study aims to investigate the impact of dietary BAs on LPS-triggered intestinal inflammation in broilers. 180 Arbor Acres broilers were randomly divided into four group: (1) broilers receiving a standard diet (Con group); (2) broilers from the Con category subjected to LPS challenge (LPS group); (3) broilers on a diet supplemented with BAs compound and exposed to LPS (BA+LPS group); and (4) broilers on a diet enriched with lithocholic acid (LCA) and challenged with LPS (LCA + LPS group).The results showed that the LPS challenge caused a notable rise in liver mass, plasma AST concentrations, and levels of inflammatory cytokines (P < 0.05). BAs compounds or LCA improved intestinal morphological damage, inflammation response and bile acid metabolism (P < 0.05). Furthermore, analysis of 16S rRNA gene sequences revealed that supplementation with BAs compounds or LCA mitigated the reduction in bacterial diversity, while also increasing the abundance of operational taxonomic units (OTUs) associated with Bacteroides and Bifidobacterium. Additionally, the increased abundance of Candidatus_Arthromitus due to BAs compound or LCA supplementation showed a significant negative correlation with the concentrations of intestinal inflammatory cytokines (P < 0.05). These results suggest that the supplementation of BAs compound or LCA has the potential to alleviate intestinal inflammation and regulate gut microbiota in broilers subjected to LPS challenge.
Collapse
Affiliation(s)
- Guoqiang Fan
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenjing Chen
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jianxing He
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Danping Wang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
2
|
Lai Y, Lan X, Qin Y, Wei Y, Li X, Feng J, Jiang J. Polysaccharides of natural products alleviate antibiotic-associated diarrhea by regulating gut microbiota: a review. Arch Microbiol 2024; 206:461. [PMID: 39508892 DOI: 10.1007/s00203-024-04184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
Antibiotic-associated diarrhea (AAD) is diarrhea caused by disturbances in intestinal microbiota and metabolism following inappropriate use of antibiotics. With the over-reliance on antibiotics, the incidence of AAD is increasing worldwide. Recently, the role of probiotics and prebiotic preparations in the prevention and treatment of AAD has received increasing attention. Various prebiotics can not only reduce the incidence of AAD, but also effectively shorten the course of the disease and alleviate the symptoms. Notably, many polysaccharides derived from plants and fungi are a class of biologically active and rich prebiotics with great potential to alleviate AAD. Therefore, this review aims to summarize the latest research on natural product polysaccharides to alleviate antibiotic-associated diarrhea by modulating the gut microbiota. It provides a theoretical basis for exploring the mechanism of natural product modulation of gut microbiota to alleviate AAD, and provides a reference for further development of active prebiotics.
Collapse
Affiliation(s)
- Yong Lai
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Xin Lan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yahui Qin
- The Fourth Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yuankui Wei
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xi Li
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Jianan Feng
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Junping Jiang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| |
Collapse
|
3
|
Koehle AP, Brumwell SL, Seto EP, Lynch AM, Urbaniak C. Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity 2023; 9:47. [PMID: 37344487 DOI: 10.1038/s41526-023-00285-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
With the construction of the International Space Station, humans have been continuously living and working in space for 22 years. Microbial studies in space and other extreme environments on Earth have shown the ability for bacteria and fungi to adapt and change compared to "normal" conditions. Some of these changes, like biofilm formation, can impact astronaut health and spacecraft integrity in a negative way, while others, such as a propensity for plastic degradation, can promote self-sufficiency and sustainability in space. With the next era of space exploration upon us, which will see crewed missions to the Moon and Mars in the next 10 years, incorporating microbiology research into planning, decision-making, and mission design will be paramount to ensuring success of these long-duration missions. These can include astronaut microbiome studies to protect against infections, immune system dysfunction and bone deterioration, or biological in situ resource utilization (bISRU) studies that incorporate microbes to act as radiation shields, create electricity and establish robust plant habitats for fresh food and recycling of waste. In this review, information will be presented on the beneficial use of microbes in bioregenerative life support systems, their applicability to bISRU, and their capability to be genetically engineered for biotechnological space applications. In addition, we discuss the negative effect microbes and microbial communities may have on long-duration space travel and provide mitigation strategies to reduce their impact. Utilizing the benefits of microbes, while understanding their limitations, will help us explore deeper into space and develop sustainable human habitats on the Moon, Mars and beyond.
Collapse
Affiliation(s)
- Allison P Koehle
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Stephanie L Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | | | - Anne M Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc, Middleburg Heights, OH, USA.
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
4
|
Yi X, Zhou K, Jiang P, Deng N, Peng X, Tan Z. Brain-bacteria-gut axis and oxidative stress mediated by intestinal mucosal microbiota might be an important mechanism for constipation in mice. 3 Biotech 2023; 13:192. [PMID: 37205176 PMCID: PMC10185723 DOI: 10.1007/s13205-023-03580-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
Intestinal microbiota disorder was associated with constipation. This study investigated the microbiota-gut-brain axis and oxidative stress mediated by intestinal mucosal microbiota in mice with spleen deficiency constipation. The Kunming mice were randomly divided into the control (MC) group and the constipation (MM) group. The spleen deficiency constipation model was established by gavage with Folium sennae decoction and controlled diet and water intake. The body weight, spleen and thymus index, 5-Hydroxytryptamine (5-HT) and Superoxide Dismutase (SOD) content were significantly lower in the MM group than the MC group, the content of vasoactive intestinal peptide (VIP) and malondialdehyde (MDA) content were significantly higher than the MC group. The Alpha diversity of intestinal mucosal bacteria was not changed but beta diversity was changed in mice with spleen deficiency constipation. Compared to the MC group, the relative abundance of Proteobacteria was an upward trend and the Firmicutes/Bacteroidota (F/B) value was a downward trend in the MM group. There was a significant difference in the characteristic microbiota between the two groups. In the MM group, Brevinema, Akkermansia, Parasutterella, Faecalibaculum, Aeromonas, Sphingobium, Actinobacillus, and other pathogenic bacteria were enriched. Meanwhile, there was a certain relationship between the microbiota and gastrointestinal neuropeptide and oxidative stress indicators. The community structure of intestinal mucosal bacteria in mice with spleen deficiency constipation was changed, which was characterized by the reduction of F/B value and enrichment of Proteobacteria. Microbiota-gut-brain axis may be important for spleen deficiency constipation.
Collapse
Affiliation(s)
- Xin Yi
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 China
| | - Kang Zhou
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 China
| | - Ping Jiang
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007 China
| | - Na Deng
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 China
| | - Xinxin Peng
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007 China
| | - Zhoujin Tan
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 China
| |
Collapse
|
5
|
Angulo M, Ramos A, Reyes-Becerril M, Guerra K, Monreal-Escalante E, Angulo C. Probiotic Debaryomyces hansenii CBS 8339 yeast enhanced immune responses in mice. 3 Biotech 2023; 13:28. [PMID: 36590244 PMCID: PMC9797638 DOI: 10.1007/s13205-022-03442-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022] Open
Abstract
This study aimed to examine the effect of Debaryomyces hansenii CBS 8339 on innate immune responses in mice. Thirty BALB/c mice were randomly treated with phosphate buffered saline (PBS) (control) and two D. hansenii (Dh) doses: Dh 10ˆ6 CFU (colony forming units) and Dh 10ˆ8 CFU daily for 15 days. Spleen, blood, and gut samples were taken on days 7 and 15. Mouse splenocytes were isolated and challenged with Escherichia coli. Immunological assays and immune-related gene expressions were performed. Serum was obtained from blood for total IgA and IgG antibody titer determination. Gut samples were taken for yeast colonization assessment. Phagocytosis, respiratory burst activity, and nitric oxide production in mice were mainly enhanced (p < 0.05) upon 7 days of D. hansenii intake at a concentration of 10ˆ8 CFU before and after bacterial challenge. Moreover, oral D. hansenii in mice upregulated (p < 0.05) gene expression of pro-inflammatory cytokines (INF-γ, IL-6 and IL-1β) before or after E. coli challenge on day 7 but downregulated (p < 0.05) on day 15. Furthermore, total serum IgG and IgA titers were higher (p < 0.05) in Dh 10ˆ8 CFU at days 7 and 15, and only at day 7, respectively, than that in the other dose and control groups. Finally, D. hansenii was detected in the gut of mice that received the treatments, suggesting that yeast survived gastrointestinal transit. Altogether, a short period (7 days) of D. hansenii CBS 8339 oral delivery improved immune innate response on mice.
Collapse
Affiliation(s)
- Miriam Angulo
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Abel Ramos
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Martha Reyes-Becerril
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Kevyn Guerra
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Elizabeth Monreal-Escalante
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Carlos Angulo
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| |
Collapse
|
6
|
Li W, Zhang S, Wang Y, Bian H, Yu S, Huang L, Ma W. Complex probiotics alleviate ampicillin-induced antibiotic-associated diarrhea in mice. Front Microbiol 2023; 14:1156058. [PMID: 37125182 PMCID: PMC10145528 DOI: 10.3389/fmicb.2023.1156058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Aim Antibiotic-associated diarrhea (AAD) is a common side effect during antibiotic treatment, which can cause dysbacteriosis of the gut microbiota. Previous studies have shown beneficial effects in AAD treatment with Bifidobacterium lactis XLTG11, Lactobacillus casei Zhang, Lactobacillus plantarum CCFM8661, and Lactobacillus rhamnosus Probio-M9. However, no studies have been conducted on the immunomodulatory effects and protective intestinal barrier function of four complex probiotics. The aim of our study is to investigate the alleviation effects of complex probiotics on ampicillin-induced AAD. Methods Thirty-six BALB/c mice were randomly divided into six groups: normal control group (NC), model control group (MC), low-, medium-, and high-dose probiotics groups (LD, MD, and HD), and positive drug (Bifico, 1 × 107 cfu) control group (PDC; Bifico, also known as Bifidobacterium Triple Live Capsule, is composed of Bifidobacterium longum, Lactobacillus acidophilus, and Enterococcus faecalis). An AAD model was established by intragastric administration of ampicillin, by gavage of different doses of complex probiotics and Bifico. The weight gain, fecal water content, loose stool grade, intestinal permeability, total protein and albumin levels, intestinal barrier, cytokine levels, and gut microbiota were determined. Results The results showed that complex probiotics significantly decreased the fecal water content, loose stool grade, intestinal permeability, and ileum tissue damage. Their application increased the weight gain, SIgA, TP, and ALB levels. Additionally, complex probiotics significantly decreased the levels of pro-inflammatory cytokines and increased those of anti-inflammatory cytokines. Meanwhile, the mRNA expression levels of ZO-1, occludin, claudin-1, and MUC2 were significantly upregulated in the probiotic-treated group. Furthermore, the complex probiotics increased the gut microbiota diversity and modulated the changes in the gut microbiota composition caused by ampicillin. At the phylum level, the abundance of Proteobacteria in the HD group was lower than that in the MC group, whereas that of Bacteroidetes was higher. At the genus level, the abundances of Klebsiella and Parabacteroides in the HD group were lower, whereas those of Bacteroides, Muribaculaceae, and Lactobacillus were higher than those in the MC group. Moreover, Spearman's correlation analysis also found that several specific gut microbiota were significantly correlated with AAD-related indicators. Conclusion We found that complex probiotics improved the diarrhea-related indexes, regulated gut microbiota composition and diversity, increased the expression levels of intestinal protective barrier-related genes, preserved the intestinal barrier function, and relieved inflammation and intestinal injury, thereby effectively improving AAD-associated symptoms. Graphical Abstract.
Collapse
|
7
|
Ramires FA, Bleve G, De Domenico S, Leone A. Combination of Solid State and Submerged Fermentation Strategies to Produce a New Jellyfish-Based Food. Foods 2022; 11:3974. [PMID: 36553715 PMCID: PMC9778331 DOI: 10.3390/foods11243974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
This study describes the set-up and optimization of a fermentation strategy applied to a composite raw material containing jellyfish biomass as the principal ingredient. New fermented food was developed by combining fresh jellyfish Rhizostoma pulmo and the sequential solid-state submerged liquid fermentation method used in Asian countries for processing a high-salt-containing raw material. Aspergillus oryzae was used to drive the first fermentation, conducted in solid-state conditions, of a jellyfish-based product, here named Jelly paste. The second fermentation was performed by inoculating the Jelly paste with different selected bacteria and yeasts, leading to a final product named fermented Jellyfish paste. For the first time, a set of safety parameters necessary for monitoring and describing a jellyfish-based fermented food was established. The new fermented products obtained by the use of Debaryomyces hansenii BC T3-23 yeast strain and the Bacillus amyloliquefaciens MS3 bacterial strain revealed desirable nutritional traits in terms of protein, lipids and total phenolic content, as well as valuable total antioxidant activity. The obtained final products also showed a complex enzyme profile rich in amylase, protease and lipase activities, thus making them characterized by unique composite sensory odor descriptors (umami, smoked, dried fruit, spices).
Collapse
Affiliation(s)
- Francesca Anna Ramires
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, 73100 Lecce, Italy
| | - Gianluca Bleve
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, 73100 Lecce, Italy
| | - Stefania De Domenico
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, 73100 Lecce, Italy
- Dipartimento di Biologia e Scienze Biologiche e Ambientali (DiSTeBA), Campus Ecotekne, Università del Salento, 73100 Lecce, Italy
| | - Antonella Leone
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, 73100 Lecce, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Local Unit of Lecce, 73100 Lecce, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
8
|
Zhu J, Wang T, Lin Y, Xiong M, Chen J, Jian C, Zhang J, Xie H, Zeng F, Huang Q, Su J, Zhao Y, Li S, Zeng F. The change of plasma metabolic profile and gut microbiome dysbiosis in patients with rheumatoid arthritis. Front Microbiol 2022; 13:931431. [PMID: 36329847 PMCID: PMC9623673 DOI: 10.3389/fmicb.2022.931431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/19/2022] [Indexed: 11/14/2022] Open
Abstract
Objective Rheumatoid arthritis (RA) is a chronic inflammatory joint disease, which is associated with progressive disability, systemic complications, and early death. But its etiology and pathogenesis are not fully understood. We aimed to investigate the alterations in plasma metabolite profiles, gut bacteria, and fungi and their role of them in the pathogenesis of RA. Methods Metabolomics profiling of plasma from 363 participants including RA (n = 244), systemic lupus erythematosus (SLE, n = 50), and healthy control (HC, n = 69) were performed using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. The differentially expressed metabolites were selected among groups and used to explore important metabolic pathways. Gut microbial diversity analysis was performed by 16S rRNA sequencing and ITS sequencing (RA = 195, HC = 269), and the specific microbial floras were identified afterward. The diagnosis models were established based on significant differential metabolites and microbial floras, respectively. Results There were 63 differential metabolites discovered between RA and HC groups, mainly significantly enriched in the arginine and proline metabolism, glycine, serine, and threonine metabolism, and glycerophospholipid metabolism between RA and HC groups. The core differential metabolites included L-arginine, creatine, D-proline, ornithine, choline, betaine, L-threonine, LysoPC (18:0), phosphorylcholine, and glycerophosphocholine. The L-arginine and phosphorylcholine were increased in the RA group. The AUC of the predictive model was 0.992, based on the combination of the 10 differential metabolites. Compared with the SLE group, 23 metabolites increased and 61 metabolites decreased in the RA group. However, no significant metabolic pathways were enriched between RA and SLE groups. On the genus level, a total of 117 differential bacteria genera and 531 differential fungal genera were identified between RA and HC groups. The results indicated that three bacteria genera (Eubacterium_hallii_group, Escherichia-Shigella, Streptococcus) and two fungal genera (Candida and Debaryomyces) significantly increased in RA patients. The AUC was 0.80 based on a combination of six differential bacterial genera and the AUC was 0.812 based on a combination of seven differential fungal genera. Functional predictive analysis displayed that differential bacterial and differential fungus both were associated with KEGG pathways involving superpathway of L-serine and glycine biosynthesis I, arginine, ornithine, and proline interconversion. Conclusion The plasma metabolism profile and gut microbe profile changed markedly in RA. The glycine, serine, and threonine metabolism and arginine and proline metabolism played an important role in RA.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingting Wang
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Yifei Lin
- Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Minghao Xiong
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | | | - Congcong Jian
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Zhang
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Huanhuan Xie
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Fanwei Zeng
- Sichuan Province Orthopaedic Hospital, Chengdu, China
| | - Qian Huang
- Dazhou Vocational and Technical College, Dazhou, China
| | - Jiang Su
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Clinical Institute of Inflammation and Immunology, Sichuan University, Chengdu, China
- *Correspondence: Yi Zhao,
| | - Shilin Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
- Shilin Li,
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
- Fanxin Zeng,
| |
Collapse
|
9
|
Wang K, Xu X, Maimaiti A, Hao M, Sang X, Shan Q, Wu X, Cao G. Gut microbiota disorder caused by diterpenoids extracted from Euphorbia pekinensis aggravates intestinal mucosal damage. Pharmacol Res Perspect 2021; 9:e00765. [PMID: 34523246 PMCID: PMC8440943 DOI: 10.1002/prp2.765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota disorder will lead to intestinal damage. This study evaluated the influence of total diterpenoids extracted from Euphorbia pekinensis (TDEP) on gut microbiota and intestinal mucosal barrier after long‐term administration, and the correlations between gut microbiota and intestinal mucosal barrier were analysed by Spearman correlation analysis. Mice were randomly divided to control group, TDEP groups (4, 8, 16 mg/kg), TDEP (16 mg/kg) + antibiotic group. Two weeks after intragastric administration, inflammatory factors (TNF‐α, IL‐6, IL‐1β) and LPS in serum, short chain fatty acids (SCFAs) in feces were tested by Enzyme‐linked immunosorbent assay (ELISA) and high‐performance liquid chromatography (HPLC), respectively. The expression of tight junction (TJ) protein in colon was measured by western blotting. Furthermore, the effects of TDEP on gut microbiota community in mice have been investigated by 16SrDNA high‐throughput sequencing. The results showed TDEP significantly increased the levels of inflammatory factors in dose‐dependent manners, and decreased the expression of TJ protein and SCFAs, and the composition of gut microbiota of mice in TDEP group was significantly different from that of control group. When antibiotics were added, the diversity of gut microbiota was significantly reduced, and the colon injury was more serious. Finally, through correlation analysis, we have found nine key bacteria (Barnesiella, Muribaculaceae_unclassified, Alloprevotella, Candidatus_Arthromitus, Enterorhabdus, Alistipes, Bilophila, Mucispirillum, Ruminiclostridium) that may be related to colon injury caused by TDEP. Taken together, the disturbance of gut microbiota caused by TDEP may aggravate the colon injury, and its possible mechanism may be related to the decrease of SCFAs in feces, disrupted the expression of TJ protein in colon and increasing the contents of inflammatory factors.
Collapse
Affiliation(s)
- Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofen Xu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Aikebaier Maimaiti
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Wu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Recent advances in the application of probiotic yeasts, particularly Saccharomyces, as an adjuvant therapy in the management of cancer with focus on colorectal cancer. Mol Biol Rep 2021; 48:951-960. [PMID: 33389533 PMCID: PMC7778720 DOI: 10.1007/s11033-020-06110-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/18/2020] [Indexed: 01/31/2023]
Abstract
Today, the increasing rate of cancer-related mortality, has rendered cancer a major global challenge, and the second leading cause of death worldwide. Conventional approaches in the treatment of cancer mainly include chemotherapy, surgery, immunotherapy, and radiotherapy. However, these approaches still come with certain disadvantages, including drug resistance, and different side effects such as gastrointestinal (GI) irritation (e.g., diarrhea, mucositis). This has encouraged scientists to look for alternative therapeutic methods and adjuvant therapies for a more proper treatment of malignancies. Application of probiotics as an adjuvant therapy in the clinical management of cancer appears to be a promising strategy, with several notable advantages, e.g., increased safety, higher tolerance, and negligible GI side effects. Both in vivo and in vitro analyses have indicated the active role of yeast probiotics in mitigating the rate of cancer cell proliferation, and the induction of apoptosis through regulating the expression of cancer-related genes and cellular pathways. Strain-specific anti-cancer activities of yeast probiotics strongly suggest that their administration along with the current cancer therapies may be an efficient method to reduce the side effects of these approaches. The main purpose of this article is to evaluate the efficacy of yeast probiotics in alleviating the adverse effects associated with cancer therapies.
Collapse
|
11
|
Wu Y, Zhang C, Shao H, Luo H, Tan Z. Characteristics of intestinal microbiota and enzyme activities in mice fed with lily bulb. 3 Biotech 2021; 11:17. [PMID: 33442516 PMCID: PMC7778670 DOI: 10.1007/s13205-020-02597-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/15/2020] [Indexed: 01/30/2023] Open
Abstract
The aim was to investigate the effect of lily bulbs on the microecological characteristics of intestinal microbiota and enzyme activities in normal mice. Thirty SPF Kunming mice were randomly divided into the control group, Lilium lancifolium (LL) group and Lilium davidii var. unicolor (LDU) group. Mice of the latter two groups were given 0.15 g·mL-1 lily bulb solution, respectively, by gavage twice a day, while the control group was given the same volume of sterilized water. After 49 days, intestinal contents and mucosa of all mice were collected and the characteristics of intestinal microbiota and enzyme activities were analyzed. Results showed that the number of Lactobacillus spp. and Bifidobacteria spp. in the LL group was significantly higher than that in the control group (t = 2.68 × 107, P = 0.000; t = 5.96 × 107; P = 0.000) and the LDU group (t = 6.12 × 107, P = 0.000; t = 2.71 × 107, P = 0.000), while the number of total bacteria was significantly lower (P = 0.040). Microbial activity in intestinal contents and mucosa of the LDU group (t = 0.43, P = 0.001; t = 0.69, P = 0.000) decreased, and microbial activity in intestinal mucosa of the LL group decreased significantly (t = 0.89, P = 0.000) but increased significantly in intestinal contents of the LL group (t = 0.81, P = 0.000). The activities of amylase (t = 455.73, P = 0.000; t = 206.56, P = 0.000) and protease (t = 52.32, P = 0.000) increased but the activities of lactase (t = 443.51, P = 0.000; t = 15.71, P = 0.000) and sucrase (t = 5.82, P = 0.000; t = 366.82, P = 0.000) decreased significantly in contents from the LL group and LDU group. Except for the sucrase activity, enzyme activities in mucosa of the LL group were completely opposite to those in contents (t = 44.15, P = 0.000; t = 1.25, P = 0.007; t = 14.64, P = 0.011). In conclusion, dietary lily bulbs increased intestinal contents amylase activities and mucosa lactase activity significantly. Lily bulbs, especially Lilium lancifolium, can promote the growth of Lactobacillus spp. and Bifidobacteria spp., and inhibit the growth of total bacteria in the intestines of normal mice. Lilium lancifolium bulbs have the potential to be a functional food.
Collapse
Affiliation(s)
- Yi Wu
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan Province China
| | - Chenyang Zhang
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan Province China
| | - Haoqing Shao
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan Province China
| | - Huaihao Luo
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan Province China
| | - Zhoujin Tan
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan Province China
| |
Collapse
|
12
|
Shao H, Zhang C, Wang C, Tan Z. Intestinal mucosal bacterial diversity of antibiotic-associated diarrhea (AAD) mice treated with Debaryomyces hansenii and Qiweibaizhu powder. 3 Biotech 2020; 10:392. [PMID: 32832342 PMCID: PMC7429618 DOI: 10.1007/s13205-020-02383-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023] Open
Abstract
The aim was to investigate the combined effect of Debaryomyces hansenii and Qiweibaizhu powder (QWBZP) on the bacterial diversity of the intestinal mucosa of antibiotic-associated diarrhea (AAD) mice, for the potential treatment of diarrhea, especially which is induced by administration of antibiotics. Eighteen (18) mice were randomly assigned to three equal groups of six mice, namely Normal (mn group), Placebo control (mm group) and D. hansenii and QWBZP (DQ) treatment (mdq group). Mice were gavaged with a solution (23.33 mL·kg-1·day-1) consisting of gentamicin and cefradine to establish AAD. The DQ treatment group was gavaged with DQ for 4 days, and sterile water was used as a placebo control. The metagenome DNA of the intestinal mucosal microbiota was extracted, and the 16S rRNA gene was sequenced. Analysis showed that there were 288 OTUs for the normal group, 443 for the placebo control group, and 229 for the DQ treatment group. Phylogenetically, the gut microbiota of the DQ treatment group and the normal group were closer to each other than to the placebo control group. Both the DQ and placebo-treated groups included Stenotrophomonas, Robinsoniella, Bacteroidales S24-7 group norank, Citrobacter, and Glutamicibacter, but their abundances were significantly higher in the DQ treatment group than in the placebo control group. This suggested that the combined use of D. hansenii and QWBZP overcame the influence of dysbacteriosis and could lead to the recovery of intestinal mucosal microbiota homeostasis. This positive effect is likely related to short-chain fatty acid (SCFA)-producing bacteria, such as members of Micrococcaceae, Lachnospiraceae, and Bacteroidales S24-7 group, which could play beneficial roles in protecting the mucosal barrier and stimulating the immune response in mice.
Collapse
Affiliation(s)
- Haoqing Shao
- Hunan University of Chinese Medicine, Changsha, Hunan China
| | - Chenyang Zhang
- Hunan University of Chinese Medicine, Changsha, Hunan China
| | - Chunhui Wang
- Hunan Edible Fungus Research Institute, Changsha, Hunan China
| | - Zhoujin Tan
- Hunan University of Chinese Medicine, Changsha, Hunan China
| |
Collapse
|
13
|
Zhang C, Shao H, Peng X, Liu T, Tan Z. Microbiotal characteristics colonized in intestinal mucosa of mice with diarrhoea and repeated stress. 3 Biotech 2020; 10:372. [PMID: 32832332 PMCID: PMC7399726 DOI: 10.1007/s13205-020-02368-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
To understand the role of intestinal mucosal microbiota on mental stress-related diarrhoea, we collected the intestinal mucosa of mice treated with Folium senna extract gavage combined with restraint and tail pinch stress for 7 days; and intestinal mucosal microbiota characteristics were analyzed by 16S rRNA Pacbio SMRT gene full-length sequencing. The results showed that the diversity (i.e., alpha diversity including the Chao1, Simpson, ACE, and Shannon indices and beta diversity including the NMDS of weighted UniFrac distances) and composition of the microbial community in the intestinal mucosa of mice with diarrhoea and repeated stress changed significantly (P < 0.05). In the co-occurrence network, Staphylococcus sciuri and Escherichia fergusonii was identified as putative keystone species. Moreover, the characteristics of the intestinal microbial species was analyzed by LEfSe, Metastats, and group difference, and ten altered gut microbiota species can be used as characteristic microbes in the mice with diarrhoea and repeated stress: the abundances of Stigmatella aurantiaca, Candidatus arthromitus sp. SFB-mouse, Erythrobacter gaetbuli, Desulfitobacterium hafniense, Ochrobactrum pituitosum, and Candidatus arthromitus sp. SFB-mouse-NL in the model group were significantly lower than those in the control group (P < 0.05); whereas Microbacterium dextranolyticum, Klebsiella pneumoniae, Escherichia sp. BBDP27, and Streptococcus danieliae were enriched in the control group (P < 0.05). Collectively, mental stress-related diarrhoea increased the intestinal microbiota diversity. The species associated with mental stress-related diarrhoea including Microbacterium dextranolyticum, Klebsiella pneumoniae, Escherichia sp. BBDP27, and Streptococcus danieliae were significantly enriched; while the species which are beneficial to mental stress-related diarrhoea are Stigmatella aurantiaca, Candidatus arthromitus sp. SFB-mouse, Erythrobacter gaetbuli, Desulfitobacterium hafniense, Ochrobactrum pituitosum, and Candidatus arthromitus sp. SFB-mouse-NL for its significantly depleted.
Collapse
Affiliation(s)
- Chenyang Zhang
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan Province China
| | - Haoqing Shao
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan Province China
| | - Xinxin Peng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007 Hunan Province China
| | - Tianhao Liu
- College of Chinese Medicine, Jinan University, No. 601 Huangpu Avenue West, Tianhe District, Guangzhou, 510632 Guangdong China
| | - Zhoujin Tan
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan Province China
| |
Collapse
|
14
|
Angulo M, Reyes-Becerril M, Medina-Córdova N, Tovar-Ramírez D, Angulo C. Probiotic and nutritional effects of Debaryomyces hansenii on animals. Appl Microbiol Biotechnol 2020; 104:7689-7699. [PMID: 32686006 DOI: 10.1007/s00253-020-10780-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Debaryomyces hansenii comes of age as a new potential probiotic for terrestrial and aquatic animals. Probiotic properties, including inmunostimulatory effects, gut microbiota modulation, enhanced cell proliferation and differentiation, and digestive function improvements have been related to the oral delivery of D. hansenii. Its functional compounds, such as cell wall components and polyamines, have been identified and implicated in its immunomodulatory activity. In addition, in vitro studies using immune cells have shown standpoints on the possible recognition, regulation, and effector immune mechanisms stimulated by this yeast. This review describes historic, cutting-edge research findings, implications, and perspectives on the use of D. hansenii as a promising probiotic for animals. KEY POINTS: • Debaryomyces hansenii has probiotic effects in terrestrial and aquatic animals. • Nutritional effects could be associated to probiotic D. hansenii strains. • β-D-Glucan and polyamines from D. hansenii are associated to probiotic properties. • Adoption by the industry is expected in the next years.
Collapse
Affiliation(s)
- Miriam Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., C.P. 23096, Mexico
| | - Martha Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., C.P. 23096, Mexico
| | - Noe Medina-Córdova
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., C.P. 23096, Mexico
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Todos Santos, Agricultura s/n entre México y Durango, Emiliano Zapata, La Paz, B.C.S., C.P: 23070, Mexico
| | - Dariel Tovar-Ramírez
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., C.P. 23096, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., C.P. 23096, Mexico.
| |
Collapse
|