1
|
Hu H, Vomund AN, Peterson OJ, Srivastava N, Li T, Kain L, Beatty WL, Zhang B, Hsieh CS, Teyton L, Lichti CF, Unanue ER, Wan X. Crinophagic granules in pancreatic β cells contribute to mouse autoimmune diabetes by diversifying pathogenic epitope repertoire. Nat Commun 2024; 15:8318. [PMID: 39333495 PMCID: PMC11437215 DOI: 10.1038/s41467-024-52619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Autoimmune attack toward pancreatic β cells causes permanent loss of glucose homeostasis in type 1 diabetes (T1D). Insulin secretory granules store and secrete insulin but are also thought to be tissue messengers for T1D. Here, we show that the crinophagic granules (crinosome), a minor set of vesicles formed by fusing lysosomes with the conventional insulin dense-core granules (DCG), are pathogenic in T1D development in mouse models. Pharmacological inhibition of crinosome formation in β cells delays T1D progression without affecting the dominant DCGs. Mechanistically, crinophagy inhibition diminishes the epitope repertoire in pancreatic islets, including cryptic, modified and disease-relevant epitopes derived from insulin. These unconventional insulin epitopes are largely undetectable in the MHC-II epitope repertoire of the thymus, where only canonical insulin epitopes are presented. CD4+ T cells targeting unconventional insulin epitopes display autoreactive phenotypes, unlike tolerized T cells recognizing epitopes presented in the thymus. Thus, the crinophagic pathway emerges as a tissue-intrinsic mechanism that transforms insulin from a signature thymic self-protein to a critical autoantigen by creating a peripheral-thymic mismatch in the epitope repertoire.
Collapse
Affiliation(s)
- Hao Hu
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anthony N Vomund
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Orion J Peterson
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Neetu Srivastava
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Tiandao Li
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lisa Kain
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Wandy L Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Luc Teyton
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Emil R Unanue
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Dolton G, Bulek A, Wall A, Thomas H, Hopkins JR, Rius C, Galloway SA, Whalley T, Tan LR, Morin T, Omidvar N, Fuller A, Topley K, Hasan MS, Jain S, D’Souza N, Hodges-Hoyland T, Spiller OB, Kronenberg-Versteeg D, Szomolay B, van den Berg HA, Jones LC, Peakman M, Cole DK, Rizkallah PJ, Sewell AK. HLA A*24:02-restricted T cell receptors cross-recognize bacterial and preproinsulin peptides in type 1 diabetes. J Clin Invest 2024; 134:e164535. [PMID: 39286976 PMCID: PMC11405051 DOI: 10.1172/jci164535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/25/2024] [Indexed: 09/19/2024] Open
Abstract
CD8+ T cells destroy insulin-producing pancreatic β cells in type 1 diabetes through HLA class I-restricted presentation of self-antigens. Combinatorial peptide library screening was used to produce a preferred peptide recognition landscape for a patient-derived T cell receptor (TCR) that recognized the preproinsulin-derived (PPI-derived) peptide sequence LWMRLLPLL in the context of disease risk allele HLA A*24:02. Data were used to generate a strong superagonist peptide, enabling production of an autoimmune HLA A*24:02-peptide-TCR structure by crystal seeding. TCR binding to the PPI epitope was strongly focused on peptide residues Arg4 and Leu5, with more flexibility at other positions, allowing the TCR to strongly engage many peptides derived from pathogenic bacteria. We confirmed an epitope from Klebsiella that was recognized by PPI-reactive T cells from 3 of 3 HLA A*24:02+ patients. Remarkably, the same epitope selected T cells from 7 of 8 HLA A*24+ healthy donors that cross-reacted with PPI, leading to recognition and killing of HLA A*24:02+ cells expressing PPI. These data provide a mechanism by which molecular mimicry between pathogen and self-antigens could have resulted in the breaking of self-tolerance to initiate disease.
Collapse
Affiliation(s)
- Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Anna Bulek
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Aaron Wall
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Hannah Thomas
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Jade R. Hopkins
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Cristina Rius
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Sarah A.E. Galloway
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Thomas Whalley
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Li Rong Tan
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Théo Morin
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Nader Omidvar
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Anna Fuller
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Katie Topley
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Md Samiul Hasan
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Shikha Jain
- Cwm Taf Morgannwg University Health Board, Princess of Wales Hospital, Mountain Ash, United Kingdom
| | - Nirupa D’Souza
- Cwm Taf Morgannwg University Health Board, Princess of Wales Hospital, Mountain Ash, United Kingdom
| | | | | | - Owen B. Spiller
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | | | - Barbara Szomolay
- Systems Immunology Research Institute, Cardiff University, Cardiff, United Kingdom
| | | | - Lucy C. Jones
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
- Cwm Taf Morgannwg University Health Board, Princess of Wales Hospital, Mountain Ash, United Kingdom
| | - Mark Peakman
- Department of Immunobiology, King’s College London, United Kingdom
| | - David K. Cole
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Pierre J. Rizkallah
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Andrew K. Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
- Systems Immunology Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
3
|
Amdare NP, Shultz LD, Greiner DL, DiLorenzo TP. Human insulin as both antigen and protector in type 1 diabetes. Eur J Immunol 2024; 54:e2350949. [PMID: 38778498 PMCID: PMC11563931 DOI: 10.1002/eji.202350949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Type 1 diabetes (T1D) is characterized by T-cell responses to islet antigens. Investigations in humans and the nonobese diabetic (NOD) mouse model of T1D have revealed that T-cell reactivity to insulin plays a central role in the autoimmune response. As there is no convenient NOD-based model to study human insulin (hIns) or its T-cell epitopes in the context of spontaneous T1D, we developed a NOD mouse strain transgenically expressing hIns in islets under the control of the human regulatory region. Female NOD.hIns mice developed T1D at approximately the same rate and overall incidence as NOD mice. Islet-infiltrating T cells from NOD.hIns mice recognized hIns peptides; both CD8 and CD4 T-cell epitopes were identified. We also demonstrate that islet-infiltrating T cells from HLA-transgenic NOD.hIns mice can be used to identify potentially patient-relevant hIns T-cell epitopes. Besides serving as an antigen, hIns was expressed in the thymus of NOD.hIns mice and could serve as a protector against T1D under certain circumstances, as previously suggested by genetic studies in humans. NOD.hIns mice and related strains facilitate human-relevant epitope discovery efforts and the investigation of fundamental questions that cannot be readily addressed in humans.
Collapse
Affiliation(s)
- Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY
| | | | - Dale L. Greiner
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA
| | - Teresa P. DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY
- Department of Medicine (Division of Endocrinology and Diabetes), Albert Einstein College of Medicine, Bronx, NY
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
4
|
Caspi I, Tremmel DM, Pulecio J, Yang D, Liu D, Yan J, Odorico JS, Huangfu D. Glucose Transporters Are Key Components of the Human Glucostat. Diabetes 2024; 73:1336-1351. [PMID: 38775784 PMCID: PMC11262048 DOI: 10.2337/db23-0508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/16/2024] [Indexed: 07/21/2024]
Abstract
Mouse models are extensively used in metabolic studies. However, inherent differences between the species, notably their blood glucose levels, hampered data translation into clinical settings. In this study, we confirmed GLUT1 to be the predominantly expressed glucose transporter in both adult and fetal human β-cells. In comparison, GLUT2 is detected in a small yet significant subpopulation of adult β-cells and is expressed to a greater extent in fetal β-cells. Notably, GLUT1/2 expression in INS+ cells from human stem cell-derived islet-like clusters (SC-islets) exhibited a closer resemblance to that observed in fetal islets. Transplantation of primary human islets or SC-islets, but not murine islets, lowered murine blood glucose to the human glycemic range, emphasizing the critical role of β-cells in establishing species-specific glycemia. We further demonstrate the functional requirements of GLUT1 and GLUT2 in glucose uptake and insulin secretion through chemically inhibiting GLUT1 in primary islets and SC-islets and genetically disrupting GLUT2 in SC-islets. Finally, we developed a mathematical model to predict changes in glucose uptake and insulin secretion as a function of GLUT1/2 expression. Collectively, our findings illustrate the crucial roles of GLUTs in human β-cells, and identify them as key components in establishing species-specific glycemic set points. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Inbal Caspi
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY
- Developmental Biology Program, Sloan Kettering Institute, New York, NY
| | - Daniel M. Tremmel
- Transplantation Division, Department of Surgery, University of Wisconsin-Madison, Madison, WI
| | - Julian Pulecio
- Developmental Biology Program, Sloan Kettering Institute, New York, NY
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY
| | - Dingyu Liu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jielin Yan
- Developmental Biology Program, Sloan Kettering Institute, New York, NY
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jon S. Odorico
- Transplantation Division, Department of Surgery, University of Wisconsin-Madison, Madison, WI
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY
| |
Collapse
|
5
|
Zhang ML, Li HB, Jin Y. Application and perspective of CRISPR/Cas9 genome editing technology in human diseases modeling and gene therapy. Front Genet 2024; 15:1364742. [PMID: 38666293 PMCID: PMC11043577 DOI: 10.3389/fgene.2024.1364742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) mediated Cas9 nuclease system has been extensively used for genome editing and gene modification in eukaryotic cells. CRISPR/Cas9 technology holds great potential for various applications, including the correction of genetic defects or mutations within the human genome. The application of CRISPR/Cas9 genome editing system in human disease research is anticipated to solve a multitude of intricate molecular biology challenges encountered in life science research. Here, we review the fundamental principles underlying CRISPR/Cas9 technology and its recent application in neurodegenerative diseases, cardiovascular diseases, autoimmune related diseases, and cancer, focusing on the disease modeling and gene therapy potential of CRISPR/Cas9 in these diseases. Finally, we provide an overview of the limitations and future prospects associated with employing CRISPR/Cas9 technology for diseases study and treatment.
Collapse
Affiliation(s)
- Man-Ling Zhang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hong-Bin Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yong Jin
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
6
|
de Groen PC. A new, all-encompassing aetiology of type 1 diabetes. Immunology 2024; 171:77-91. [PMID: 37772700 DOI: 10.1111/imm.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/10/2023] [Indexed: 09/30/2023] Open
Abstract
The aetiology of type 1 diabetes (T1D) is considered multifactorial with the contribution of the MHC on chromosome 6 being most important. Multiple factors also contribute to the aetiology of colorectal neoplasia, but the final event causing the change from normal mucosa to polyp and from polyp to cancer is due to a single somatic mutation event. Repeated formation of colorectal neoplasia within an at-risk population results in a predictable, tapering, exponential neoplasia distribution. Critical mutations driving colorectal neoplasia formation occur in mutation-prone DNA. These observations led to three hypotheses related to T1D. First, a single somatic mutation within the MHC of antigen presenting cells results in a change in phenotype from normal to T1D. Second, the distribution of additional autoimmune diseases (AAIDs) among persons with T1D adheres to a predictable, tapering, exponential distribution. And third, critical mutations driving development of T1D occur in mutation-prone DNA. To address the hypotheses in an orderly fashion, a new analytical method called genome-wide aetiology analysis (GWEA) consisting of nine steps is presented. All data required for GWEA of T1D are obtained from peer-reviewed publications or publicly available genome and proteome databases. Critical GWEA steps include AAID distribution among persons with T1D, analysis of at-risk HLA loci for mutation-prone DNA, determination of the role of non-MHC genes on GWAS, and verification of human data by cell culture or animal experiments. GWEA results show that distribution of AAID among persons with T1D adheres to a predictable, tapering, exponential distribution. A single, critical, somatic mutation within the epitope-binding groove of at-risk HLA loci alters HLA-insulin-peptide-T-cell-receptor (TCR) complex binding affinity and creates a new pathway that leads to loss of self-tolerance. The at-risk HLA loci, in particular binding pockets P1, P4 and P9, are encoded by mutation-prone DNA: GC-rich DNA sequence and somatic hypermutation hotspots. All other genes on GWAS can but do not have to amplify the new autoimmune pathway by facilitating DNA mutations, changing peptide binding affinity, reducing signal inhibition or augmenting signal intensity. Animal experiments agree with human studies. In conclusion, T1D is caused by a somatic mutation within the epitope-binding groove of an at-risk HLA gene that affects HLA-insulin-peptide-TCR complex binding affinity and initiates an autoimmune pathway. The nature of the peptide that binds to a mutated epitope-binding groove of an at-risk HLA gene determines the type of autoimmune disease that develops, that is, one at-risk HLA locus, multiple autoimmune diseases. Thus, T1D and AAIDs, and therefore common autoimmune diseases, share a similar somatic mutation-based aetiology.
Collapse
Affiliation(s)
- Piet C de Groen
- Division of Gastroenterology, Hepatology & Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
7
|
Thompson PJ, Pipella J, Rutter GA, Gaisano HY, Santamaria P. Islet autoimmunity in human type 1 diabetes: initiation and progression from the perspective of the beta cell. Diabetologia 2023; 66:1971-1982. [PMID: 37488322 PMCID: PMC10542715 DOI: 10.1007/s00125-023-05970-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 07/26/2023]
Abstract
Type 1 diabetes results from the poorly understood process of islet autoimmunity, which ultimately leads to the loss of functional pancreatic beta cells. Mounting evidence supports the notion that the activation and evolution of islet autoimmunity in genetically susceptible people is contingent upon early life exposures affecting the islets, especially beta cells. Here, we review some of the recent advances and studies that highlight the roles of these changes as well as antigen presentation and stress response pathways in beta cells in the onset and propagation of the autoimmune process in type 1 diabetes. Future progress in this area holds promise for advancing islet- and beta cell-directed therapies that could be implemented in the early stages of the disease and could be combined with immunotherapies.
Collapse
Affiliation(s)
- Peter J Thompson
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.
| | - Jasmine Pipella
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Guy A Rutter
- CRCHUM and Department of Medicine, Université de Montréal, Montréal, QC, Canada.
- Department of Diabetes, Endocrinology and Medicine, Faculty of Medicine, Imperial College, London, UK.
- LKC School of Medicine, Nanyang Technological College, Singapore, Republic of Singapore.
| | - Herbert Y Gaisano
- Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Pere Santamaria
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
8
|
Antevska A, Long CC, Dupuy SD, Collier JJ, Karlstad MD, Do TD. Mouse Pancreatic Peptide Hormones Probed at the Sub-Single-Islet Level: The Effects of Acute Corticosterone Treatment. J Proteome Res 2023; 22:235-245. [PMID: 36412564 DOI: 10.1021/acs.jproteome.2c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We combine liquid chromatography coupled with ion mobility spectrometry-mass spectrometry to elucidate how short exposure to corticosterone (Cort) alters the output of mouse pancreatic islet hormones. The workflow enables the robust separation of mouse insulin 1 (Ins1) and insulin 2 (Ins2) and the detection of major islet hormones in a homogenate equivalent to 100-150 islet cells. We show that Ins2 has a unique structure and is degraded much faster than Ins1. Further investigation indicates that Ins2 may populate both T and R states, whereas Ins1 may not. The assemblies of Ins1's B-chain also introduce more structural heterogeneity than Ins2. Collectively, these features account for their unique degradation profiles, the diabetes risk associated with Ins1, and the protective effect of Ins2. In the same experiments, we observe that the ratio of amylin to Ins1 increased significantly in Cort-treated mice (15:1) compared to the control mice (42:1), correlating well with β-cell proliferation observed in immunoassays on the same animal model. We observe no increase in intact full-length insulin levels but more of the truncated forms, indicating that enzymatic activity is accelerated. Our data provide a molecular basis for reduced insulin action induced by Cort and connections between insulin turnover and insulin resistance.
Collapse
Affiliation(s)
- Aleksandra Antevska
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Connor C Long
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Samuel D Dupuy
- Department of Surgery, Graduate School of Medicine, University of Tennessee, Knoxville, Tennessee37996, United States
| | - J Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana70808, United States
| | - Michael D Karlstad
- Department of Surgery, Graduate School of Medicine, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
9
|
Skovsø S, Overby P, Memar-Zadeh J, Lee JTC, Yang JCC, Shanina I, Sidarala V, Levi-D'Ancona E, Zhu J, Soleimanpour SA, Horwitz MS, Johnson JD. β-Cell Cre Expression and Reduced Ins1 Gene Dosage Protect Mice From Type 1 Diabetes. Endocrinology 2022; 163:6681115. [PMID: 36048448 DOI: 10.1210/endocr/bqac144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 11/19/2022]
Abstract
A central goal of physiological research is the understanding of cell-specific roles of disease-associated genes. Cre-mediated recombineering is the tool of choice for cell type-specific analysis of gene function in preclinical models. In the type 1 diabetes (T1D) research field, multiple lines of nonobese diabetic (NOD) mice have been engineered to express Cre recombinase in pancreatic β cells using insulin promoter fragments, but tissue promiscuity remains a concern. Constitutive Ins1tm1.1(cre)Thor (Ins1Cre) mice on the C57/bl6-J background have high β-cell specificity with no reported off-target effects. We explored whether NOD:Ins1Cre mice could be used to investigate β-cell gene deletion in T1D disease modeling. We studied wild-type (Ins1WT/WT), Ins1 heterozygous (Ins1Cre/WT or Ins1Neo/WT), and Ins1 null (Ins1Cre/Neo) littermates on a NOD background. Female Ins1Neo/WT mice exhibited significant protection from diabetes, with further near-complete protection in Ins1Cre/WT mice. The effects of combined neomycin and Cre knockin in Ins1Neo/Cre mice were not additive to the Cre knockin alone. In Ins1Neo/Cre mice, protection from diabetes was associated with reduced insulitis at age 12 weeks. Collectively, these data confirm previous reports that loss of Ins1 alleles protects NOD mice from diabetes development and demonstrates, for the first time, that Cre itself may have additional protective effects. This has important implications for the experimental design and interpretation of preclinical T1D studies using β-cell-selective Cre in NOD mice.
Collapse
Affiliation(s)
- Søs Skovsø
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Peter Overby
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jasmine Memar-Zadeh
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jason T C Lee
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jenny C C Yang
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Iryna Shanina
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Vaibhav Sidarala
- Department of Molecular and Integrative Physiology, Division of Metabolism, Endocrinology, and Diabetes of the Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Elena Levi-D'Ancona
- Department of Molecular and Integrative Physiology, Division of Metabolism, Endocrinology, and Diabetes of the Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Jie Zhu
- Department of Molecular and Integrative Physiology, Division of Metabolism, Endocrinology, and Diabetes of the Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Scott A Soleimanpour
- Department of Molecular and Integrative Physiology, Division of Metabolism, Endocrinology, and Diabetes of the Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Marc S Horwitz
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - James D Johnson
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
10
|
Khosravi-Maharlooei M, Madley R, Borsotti C, Ferreira LMR, Sharp RC, Brehm MA, Greiner DL, Parent AV, Anderson MS, Sykes M, Creusot RJ. Modeling human T1D-associated autoimmune processes. Mol Metab 2022; 56:101417. [PMID: 34902607 PMCID: PMC8739876 DOI: 10.1016/j.molmet.2021.101417] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease characterized by impaired immune tolerance to β-cell antigens and progressive destruction of insulin-producing β-cells. Animal models have provided valuable insights for understanding the etiology and pathogenesis of this disease, but they fall short of reflecting the extensive heterogeneity of the disease in humans, which is contributed by various combinations of risk gene alleles and unique environmental factors. Collectively, these factors have been used to define subgroups of patients, termed endotypes, with distinct predominating disease characteristics. SCOPE OF REVIEW Here, we review the gaps filled by these models in understanding the intricate involvement and regulation of the immune system in human T1D pathogenesis. We describe the various models developed so far and the scientific questions that have been addressed using them. Finally, we discuss the limitations of these models, primarily ascribed to hosting a human immune system (HIS) in a xenogeneic recipient, and what remains to be done to improve their physiological relevance. MAJOR CONCLUSIONS To understand the role of genetic and environmental factors or evaluate immune-modifying therapies in humans, it is critical to develop and apply models in which human cells can be manipulated and their functions studied under conditions that recapitulate as closely as possible the physiological conditions of the human body. While microphysiological systems and living tissue slices provide some of these conditions, HIS mice enable more extensive analyses using in vivo systems.
Collapse
Affiliation(s)
- Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Rachel Madley
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Chiara Borsotti
- Department of Health Sciences, Histology laboratory, Università del Piemonte Orientale, Novara, Italy
| | - Leonardo M R Ferreira
- Departments of Microbiology & Immunology, and Regenerative Medicine & Cell Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Robert C Sharp
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Michael A Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Audrey V Parent
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Mark S Anderson
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Remi J Creusot
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
11
|
Houeiss P, Boitard C, Luce S. Preclinical Models to Evaluate the Human Response to Autoantigen and Antigen-Specific Immunotherapy in Human Type 1 Diabetes. Front Endocrinol (Lausanne) 2022; 13:883000. [PMID: 35498419 PMCID: PMC9044628 DOI: 10.3389/fendo.2022.883000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Type 1 Diabetes (T1D) is an autoimmune disease that results from the destruction of pancreatic islet β-cells by auto-reactive T cells. The clinical management of T1D faces the lack of fully predictive biomarkers in its preclinical stage and of antigen-specific therapies to induce or re-induce immune tolerance to β-cell autoantigens and prevent its development. From a therapeutic standpoint, preclinical models of T1D have fallen short of directly translating into humans. To circumvent this limitation, preclinical models are being optimized to allow defining autoantigen epitopes that are presented to T cells and directly apply to the human. In this review, we propose to make a point on the latest available models such as humanized immunodeficient NOD mice models and HLA and autoantigen transgenic mice and their application in the context of T1D.
Collapse
Affiliation(s)
- Pamela Houeiss
- Laboratory Immunology of Diabetes, Cochin Institute, Department Endocrinology, Metabolism and Diabetologia (EMD), Institut Nationale de la Santé et de la Recherche Médicale, Unité 1016 (INSERMU1016), Paris, France
- Medical Faculty, Paris University, Paris, France
| | - Christian Boitard
- Laboratory Immunology of Diabetes, Cochin Institute, Department Endocrinology, Metabolism and Diabetologia (EMD), Institut Nationale de la Santé et de la Recherche Médicale, Unité 1016 (INSERMU1016), Paris, France
- Medical Faculty, Paris University, Paris, France
| | - Sandrine Luce
- Laboratory Immunology of Diabetes, Cochin Institute, Department Endocrinology, Metabolism and Diabetologia (EMD), Institut Nationale de la Santé et de la Recherche Médicale, Unité 1016 (INSERMU1016), Paris, France
- Medical Faculty, Paris University, Paris, France
| |
Collapse
|
12
|
Borg DJ, Faridi P, Giam KL, Reeves P, Fotheringham AK, McCarthy DA, Leung S, Ward MS, Harcourt BE, Ayala R, Scheijen JL, Briskey D, Dudek NL, Schalkwijk CG, Steptoe R, Purcell AW, Forbes JM. Short Duration Alagebrium Chloride Therapy Prediabetes Does Not Inhibit Progression to Autoimmune Diabetes in an Experimental Model. Metabolites 2021; 11:426. [PMID: 34203471 PMCID: PMC8305727 DOI: 10.3390/metabo11070426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Mechanisms by which advanced glycation end products (AGEs) contribute to type 1 diabetes (T1D) pathogenesis are poorly understood. Since life-long pharmacotherapy with alagebrium chloride (ALT) slows progression to experimental T1D, we hypothesized that acute ALT therapy delivered prediabetes, may be effective. However, in female, non-obese diabetic (NODShiLt) mice, ALT administered prediabetes (day 50-100) did not protect against experimental T1D. ALT did not decrease circulating AGEs or their precursors. Despite this, pancreatic β-cell function was improved, and insulitis and pancreatic CD45.1+ cell infiltration was reduced. Lymphoid tissues were unaffected. ALT pre-treatment, prior to transfer of primed GC98 CD8+ T cell receptor transgenic T cells, reduced blood glucose concentrations and delayed diabetes, suggesting islet effects rather than immune modulation by ALT. Indeed, ALT did not reduce interferon-γ production by leukocytes from ovalbumin-pre-immunised NODShiLt mice and NODscid recipients given diabetogenic ALT treated NOD splenocytes were not protected against T1D. To elucidate β-cell effects, NOD-derived MIN6N8 β-cell major histocompatibility complex (MHC) Class Ia surface antigens were examined using immunopeptidomics. Overall, no major changes in the immunopeptidome were observed during the various treatments with all peptides exhibiting allele specific consensus binding motifs. As expected, longer MHC Class Ia peptides were captured bound to H-2Db than H-2Kb under all conditions. Moreover, more 10-12 mer peptides were isolated from H-2Db after AGE modified bovine serum albumin (AGE-BSA) treatment, compared with bovine serum albumin (BSA) or AGE-BSA+ALT treatment. Proteomics of MIN6N8 cells showed enrichment of processes associated with catabolism, the immune system, cell cycling and presynaptic endocytosis with AGE-BSA compared with BSA treatments. These data show that short-term ALT intervention, given prediabetes, does not arrest experimental T1D but transiently impacts β-cell function.
Collapse
Affiliation(s)
- Danielle J. Borg
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
- Pregnancy and Development, Mater Research Institute, The University of Queensland, South Brisbane, QLD 4101, Australia
| | - Pouya Faridi
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Kai Lin Giam
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Peta Reeves
- Tolerance and Autoimmunity Group, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia; (P.R.); (R.S.)
| | - Amelia K. Fotheringham
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
| | - Domenica A. McCarthy
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
| | - Sherman Leung
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
| | - Micheal S. Ward
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
| | - Brooke E. Harcourt
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Rochelle Ayala
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Jean L. Scheijen
- Laboratory for Metabolism and Vascular Medicine, Department of Internal Medicine, Maastricht University, 6211 Maastricht, The Netherlands; (J.L.S.); (C.G.S.)
- Cardiovascular Research Institute Maastricht, 6211 Maastricht, The Netherlands
| | - David Briskey
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4067, Australia;
| | - Nadine L. Dudek
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Casper G. Schalkwijk
- Laboratory for Metabolism and Vascular Medicine, Department of Internal Medicine, Maastricht University, 6211 Maastricht, The Netherlands; (J.L.S.); (C.G.S.)
- Cardiovascular Research Institute Maastricht, 6211 Maastricht, The Netherlands
| | - Raymond Steptoe
- Tolerance and Autoimmunity Group, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia; (P.R.); (R.S.)
| | - Anthony W. Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Josephine M. Forbes
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Mater Clinical School, The University of Queensland, Brisbane, QLD 4101, Australia
| |
Collapse
|
13
|
Jhala G, Selck C, Chee J, Kwong CTJ, Pappas EG, Thomas HE, Kay TWH, Krishnamurthy B. Tolerance to Proinsulin-1 Reduces Autoimmune Diabetes in NOD Mice. Front Immunol 2021; 12:645817. [PMID: 33841427 PMCID: PMC8027244 DOI: 10.3389/fimmu.2021.645817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
T-cell responses to insulin and its precursor proinsulin are central to islet autoimmunity in humans and non-obese diabetic (NOD) mice that spontaneously develop autoimmune diabetes. Mice have two proinsulin genes proinsulin -1 and 2 that are differentially expressed, with predominant proinsulin-2 expression in the thymus and proinsulin-1 in islet beta-cells. In contrast to proinsulin-2, proinsulin-1 knockout NOD mice are protected from autoimmune diabetes. This indicates that proinsulin-1 epitopes in beta-cells maybe preferentially targeted by autoreactive T cells. To study the contribution of proinsulin-1 reactive T cells in autoimmune diabetes, we generated transgenic NOD mice with tetracycline-regulated expression of proinsulin-1 in antigen presenting cells (TIP-1 mice) with an aim to induce immune tolerance. TIP-1 mice displayed a significantly reduced incidence of spontaneous diabetes, which was associated with reduced severity of insulitis and insulin autoantibody development. Antigen experienced proinsulin specific T cells were significantly reduced in in TIP-1 mice indicating immune tolerance. Moreover, T cells from TIP-1 mice expressing proinsulin-1 transferred diabetes at a significantly reduced frequency. However, proinsulin-1 expression in APCs had minimal impact on the immune responses to the downstream antigen islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) and did not prevent diabetes in NOD 8.3 mice with a pre-existing repertoire of IGRP reactive T cells. Thus, boosting immune tolerance to proinsulin-1 partially prevents islet-autoimmunity. This study further extends the previously established role of proinsulin-1 epitopes in autoimmune diabetes in NOD mice.
Collapse
Affiliation(s)
- Gaurang Jhala
- St. Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, The University of Melbourne, St Vincent's Hospital, Fitzroy, VIC, Australia
| | | | - Jonathan Chee
- National Centre for Asbestos Related Diseases, Institute of Respiratory Health, University of Western Australia, Perth, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | | | | | - Helen E Thomas
- St. Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, The University of Melbourne, St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Thomas W H Kay
- St. Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, The University of Melbourne, St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Balasubramanian Krishnamurthy
- St. Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, The University of Melbourne, St Vincent's Hospital, Fitzroy, VIC, Australia
| |
Collapse
|
14
|
Gray ALH, Antevska A, Link BA, Bogin B, Burke SJ, Dupuy SD, Collier JJ, Levine ZA, Karlstad MD, Do TD. α-CGRP disrupts amylin fibrillization and regulates insulin secretion: implications on diabetes and migraine. Chem Sci 2021; 12:5853-5864. [PMID: 34168810 PMCID: PMC8179678 DOI: 10.1039/d1sc01167g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/13/2021] [Indexed: 11/21/2022] Open
Abstract
Despite being relatively benign and not an indicative signature of toxicity, fibril formation and fibrillar structures continue to be key factors in assessing the structure-function relationship in protein aggregation diseases. The inability to capture molecular cross-talk among key players at the tissue level before fibril formation greatly accounts for the missing link toward the development of an efficacious therapeutic intervention for Type II diabetes mellitus (T2DM). We show that human α-calcitonin gene-related peptide (α-CGRP) remodeled amylin fibrillization. Furthermore, while CGRP and/or amylin monomers reduce the secretion of both mouse Ins1 and Ins2 proteins, CGRP oligomers have a reverse effect on Ins1. Genetically reduced Ins2, the orthologous version of human insulin, has been shown to enhance insulin sensitivity and extend the life-span in old female mice. Beyond the mechanistic insights, our data suggest that CGRP regulates insulin secretion and lowers the risk of T2DM. Our result rationalizes how migraine might be protective against T2DM. We envision the new paradigm of CGRP : amylin interactions as a pivotal aspect for T2DM diagnostics and therapeutics. Maintaining a low level of amylin while increasing the level of CGRP could become a viable approach toward T2DM prevention and treatment.
Collapse
Affiliation(s)
- Amber L H Gray
- Department of Chemistry, University of Tennessee Knoxville TN 37996 USA
| | | | - Benjamin A Link
- Department of Chemistry, University of Tennessee Knoxville TN 37996 USA
| | - Bryan Bogin
- Department of Pathology, Yale School of Medicine New Haven CT 06520 USA
- Department of Molecular Biophysics & Biochemistry, Yale University New Haven CT 0652 USA
| | - Susan J Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center Baton Rouge LA 70808 USA
| | - Samuel D Dupuy
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center Knoxville TN 37920 USA
| | - J Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center Baton Rouge LA 70808 USA
| | - Zachary A Levine
- Department of Pathology, Yale School of Medicine New Haven CT 06520 USA
- Department of Molecular Biophysics & Biochemistry, Yale University New Haven CT 0652 USA
| | - Michael D Karlstad
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center Knoxville TN 37920 USA
| | - Thanh D Do
- Department of Chemistry, University of Tennessee Knoxville TN 37996 USA
| |
Collapse
|
15
|
Mannering SI, Bhattacharjee P. Insulin's other life: an autoantigen in type 1 diabetes. Immunol Cell Biol 2021; 99:448-460. [PMID: 33524197 DOI: 10.1111/imcb.12442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/21/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
One hundred years ago, Frederick Banting, John Macleod, Charles Best and James Collip, and their collaborators, discovered insulin. This discovery paved the way to saving countless lives and ushered in the "Insulin Era." Since the discovery of insulin, we have made enormous strides in understanding its role in metabolism and diabetes. Insulin has played a dramatic role in the treatment of people with diabetes; particularly type 1 diabetes (T1D). Insulin replacement is a life-saving therapy for people with T1D and some with type 2 diabetes. T1D is an autoimmune disease caused by the T-cell-mediated destruction of the pancreatic insulin-producing beta cells that leads to a primary insulin deficiency. It has become increasingly clear that insulin, and its precursors preproinsulin (PPI) and proinsulin (PI), can play another role-not as a hormone but as an autoantigen in T1D. Here we review the role played by the products of the INS gene as autoantigens in people with T1D. From many elegant animal studies, it is clear that T-cell responses to insulin, PPI and PI are essential for T1D to develop. Here we review the evidence that autoimmune responses to insulin and PPI arise in people with T1D and discuss the recently described neoepitopes derived from the products of the insulin gene. Finally, we look forward to new approaches to deliver epitopes derived from PPI, PI and insulin that may allow immune tolerance to pancreatic beta cells to be restored in people with, or at risk of, T1D.
Collapse
Affiliation(s)
- Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Pushpak Bhattacharjee
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| |
Collapse
|