1
|
Rasri N, Kornyanee C, Srisanga K, Nutho B, Chanarat S, Kuhaudomlarp S, Tinikul R, Pakotiprapha D. Biochemical characterization and inhibitor potential of African swine fever virus thymidine kinase. Int J Biol Macromol 2025; 293:139391. [PMID: 39743116 DOI: 10.1016/j.ijbiomac.2024.139391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
African Swine Fever (ASF) is a highly contagious disease affecting both domestic pigs and wild boars. In domestic pigs, ASF is a rapidly-progressing disease with a mortality rate reaching 100 %, causing tremendous economic loss in affected areas. ASFV is caused by African Swine Fever Virus (ASFV), which is a large, enveloped double-stranded DNA virus belonging to the Asfarviridae family. ASFV has a remarkably large genome size that encodes more than 150 open reading frames. Among the virally encoded enzymes, thymidine kinase (ASFV-TK) has been shown to be critical for the efficient replication and virulence of ASFV. Here, we report the bioinformatics analysis and biochemical characterization of ASFV-TK. Amino acid sequence analysis revealed that ASFV-TK can be classified as a type II thymidine kinase. Kinetics characterization revealed a maximum velocity (Vmax) and Michaelis constants (Km) that are within the same range as previously characterized type II enzymes. ASFV-TK is competitively inhibited by the feedback inhibitor thymidine 5'-triphosphate and can use 3'-azido-3'-deoxythymidine (AZT) as a substrate with kinetics parameters comparable to those obtained with natural substrates, suggesting that nucleosides and nucleotide analogs could be explored as anti-ASFV agents.
Collapse
Affiliation(s)
- Natchaya Rasri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Chayakul Kornyanee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kitima Srisanga
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sittinan Chanarat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sakonwan Kuhaudomlarp
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
2
|
Faustini G, Soret M, Defossez A, Bosch J, Conte A, Tran A. Habitat suitability mapping and landscape connectivity analysis to predict African swine fever spread in wild boar populations: A focus on Northern Italy. PLoS One 2025; 20:e0317577. [PMID: 39883672 PMCID: PMC11781678 DOI: 10.1371/journal.pone.0317577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/01/2025] [Indexed: 02/01/2025] Open
Abstract
African swine fever (ASF) is a highly contagious disease affecting wild and domestic pigs, characterised by severe haemorrhagic symptoms and high mortality rates. Originally confined to Sub-Saharan Africa, ASF virus genotype II has spread to Europe since 2014, mainly affecting Eastern Europe, and progressing through wild boar migrations and human action. In January 2022, the first case of ASF, due to genotype II, was reported in North-western Italy, in a wild boar carcass. Thereafter, numerous positive wild boars were identified, indicating an expanding wild epidemic, severely threatening Italian pig farming and trade. This study focused on the mapping of the suitable habitats for wild boars and their potential dispersal corridors in Northern Italy, using species distribution models and landscape connectivity analysis. The resulting maps identified areas with higher likelihood of wild boar presence, highlighting their preferential pathways crossing Northern Italy. The distribution of ASF positive wild boars along the major corridors predicted by the model suggests the obtained maps as valuable support to decision-makers to improve ASF surveillance and carcass early detection, aiming for eradication. The applied framework can be easily replicated in other regions and countries.
Collapse
Affiliation(s)
- Giulia Faustini
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | - Marie Soret
- National Research Institute for Agriculture, Food and Environment (INRAE), Montpellier, France
- TETIS, Université de Montpellier, AgroParisTech, CIRAD, INRAE, Montpellier, France
- Oïkolab, TerrOïko, Sorèze, France
| | - Alexandre Defossez
- National Research Institute for Agriculture, Food and Environment (INRAE), Montpellier, France
- TETIS, Université de Montpellier, AgroParisTech, CIRAD, INRAE, Montpellier, France
| | - Jaime Bosch
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Annamaria Conte
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’ (IZS-Teramo), Teramo, Italy
| | - Annelise Tran
- TETIS, Université de Montpellier, AgroParisTech, CIRAD, INRAE, Montpellier, France
- French Agricultural Research Centre for International Development (CIRAD), UMR TETIS, Montpellier, France
| |
Collapse
|
3
|
European Food Safety Authority (EFSA), Boklund AE, Ståhl K, Miranda Chueca MÁ, Podgórski T, Vergne T, Cortiñas Abrahantes J, Cattaneo E, Dhollander S, Papanikolaou A, Tampach S, Mur L. Risk and protective factors for ASF in domestic pigs and wild boar in the EU, and mitigation measures for managing the disease in wild boar. EFSA J 2024; 22:e9095. [PMID: 39633872 PMCID: PMC11615515 DOI: 10.2903/j.efsa.2024.9095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Five epidemiological aspects of ASF were evaluated using literature reviews, field studies, questionnaires and mathematical models. First, a literature review and a case-control study in commercial pig farms emphasised the importance of biosecurity and farming practices, including the spread of manure around farms and the use of bedding material as risk factors, while the use of insect nets was a protective factor. Second, although wild boar density is a relevant known factor, the statistical and mechanistic models did not show a clear and consistent effect of wild boar density on ASF epidemiology in the selected scenarios. Other factors, such as vegetation, altitude, climate and barriers affecting population connectivity, also played a role on ASF epidemiology in wild boar. Third, knowledge on Ornithodoros erraticus competence, presence and surveillance was updated concluding that this species did not play any role in the current ASF epidemic in affected areas of the EU. Available scientific evidence suggests that stable flies and horse flies are exposed to ASFV in affected areas of the EU and have the capacity to introduce ASFV into farms and transmit it to pigs. However, there is uncertainty about whether this occurs, and if so, to what extent. Fourth, research and field experience from affected countries in the EU demonstrates that the use of fences, potentially used with existing road infrastructure, coupled with other control methods such as culling and carcass removal, can effectively reduce wild boar movements contributing to ASF management in wild boar. Fences can contribute to control ASF in both scenarios, focal introductions and wave-like spread. Fifth, the use of gonadotropin-releasing hormone (GnRH) vaccines as an immune contraceptive has the potential, as a complementary tool, to reduce and control wild boar populations. However, the development of an oral GnRH vaccine for wild boar still requires substantial additional work.
Collapse
|
4
|
Ruedas-Torres I, Thi to Nga B, Salguero FJ. Pathogenicity and virulence of African swine fever virus. Virulence 2024; 15:2375550. [PMID: 38973077 PMCID: PMC11232652 DOI: 10.1080/21505594.2024.2375550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024] Open
Abstract
African swine fever (ASF) is a devastating disease with a high impact on the pork industry worldwide. ASF virus (ASFV) is a very complex pathogen, the sole member of the family Asfaviridae, which induces a state of immune suppression in the host through infection of myeloid cells and apoptosis of lymphocytes. Moreover, haemorrhages are the other main pathogenic effect of ASFV infection in pigs, related to the infection of endothelial cells, as well as the activation and structural changes of this cell population by proinflammatory cytokine upregulation within bystander monocytes and macrophages. There are still many gaps in the knowledge of the role of proteins produced by the ASFV, which is related to the difficulty in producing a safe and effective vaccine to combat the disease, although few candidates have been approved for use in Southeast Asia in the past couple of years.
Collapse
Affiliation(s)
- Ines Ruedas-Torres
- Vaccine Development and Evaluation Centre (VDEC), United Kingdom Health Security Agency, Salisbury, UK
| | - Bui Thi to Nga
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Francisco J. Salguero
- Vaccine Development and Evaluation Centre (VDEC), United Kingdom Health Security Agency, Salisbury, UK
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
5
|
Vu HLX, McVey DS. Recent progress on gene-deleted live-attenuated African swine fever virus vaccines. NPJ Vaccines 2024; 9:60. [PMID: 38480758 PMCID: PMC10937926 DOI: 10.1038/s41541-024-00845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
African Swine Fever (ASF) is a highly lethal viral disease in swine, with mortality rates approaching 100%. The disease has spread to many swine-producing countries, leading to significant economic losses and adversely impacting global food security. Extensive efforts have been directed toward developing effective ASF vaccines. Among the vaccinology approaches tested to date, live-attenuated virus (LAV) vaccines produced by rational deleting virulence genes from virulent African Swine Fever Virus (ASFV) strains have demonstrated promising safety and efficacy in experimental and field conditions. Many gene-deleted LAV vaccine candidates have been generated in recent years. The virulence genes targeted for deletion from the genome of virulent ASFV strains can be categorized into four groups: Genes implicated in viral genome replication and transcription, genes from the multigene family located at both 5' and 3' termini, genes participating in mediating hemadsorption and putative cellular attachment factors, and novel genes with no known functions. Some promising LAV vaccine candidates are generated by deleting a single viral virulence gene, whereas others are generated by simultaneously deleting multiple genes. This article summarizes the recent progress in developing and characterizing gene-deleted LAV vaccine candidates.
Collapse
Affiliation(s)
- Hiep L X Vu
- Department of Animal Science, and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - D Scott McVey
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
6
|
Moskalenko L, Schulz K, Nedosekov V, Mõtus K, Viltrop A. Understanding Smallholder Pigkeepers' Awareness and Perceptions of African Swine Fever and Its Control Measures in Ukraine. Pathogens 2024; 13:139. [PMID: 38392877 PMCID: PMC10893472 DOI: 10.3390/pathogens13020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
African swine fever (ASF) has posed a significant threat to Ukrainian pig farming since its identification in 2012. In this study, recognising the pivotal role of pigkeepers in disease control, we conducted ten focus groups involving 52 smallholders across eight regions in Ukraine. Using participatory methods, we revealed their awareness of ASF signs, transmission routes, preventive measures, and the perceptions of stakeholders involved in ASF control. Furthermore, we identified the smallholders' acceptance of eradication and restriction measures, the perceived impact of zoning consequences, and their main sources of ASF information. Smallholders identified fever and skin haemorrhage as the most indicative signs of ASF and highlighted rodents as a primary transmission concern. Disinfection was seen as the most effective measure for preventing the introduction of ASF. Pigkeepers who perceived their stakeholder role in ASF control showed more trust in themselves and veterinarians than in central veterinary authorities. Farm-level ASF eradication measures were generally accepted; however, culling within the protection zone was least accepted, with economic losses listed as the most impactful consequence for pigkeepers. For ASF information, pigkeepers favour web searches and veterinarians, as well as traditional media and word-of-mouth news. This study provides valuable insights into refining the ASF communication strategies in Ukraine.
Collapse
Affiliation(s)
- Lidiia Moskalenko
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Science, 51014 Tartu, Estonia; (K.M.); (A.V.)
| | - Katja Schulz
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany;
| | - Vitalii Nedosekov
- Department of Epizootology, National University of Life and Environmental Science of Ukraine, 03041 Kyiv, Ukraine;
| | - Kerli Mõtus
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Science, 51014 Tartu, Estonia; (K.M.); (A.V.)
| | - Arvo Viltrop
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Science, 51014 Tartu, Estonia; (K.M.); (A.V.)
| |
Collapse
|
7
|
Pakotiprapha D, Kuhaudomlarp S, Tinikul R, Chanarat S. Bridging the Gap: Can COVID-19 Research Help Combat African Swine Fever? Viruses 2023; 15:1925. [PMID: 37766331 PMCID: PMC10536364 DOI: 10.3390/v15091925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
African swine fever (ASF) is a highly contagious and economically devastating disease affecting domestic pigs and wild boar, caused by African swine fever virus (ASFV). Despite being harmless to humans, ASF poses significant challenges to the swine industry, due to sudden losses and trade restrictions. The ongoing COVID-19 pandemic has spurred an unparalleled global research effort, yielding remarkable advancements across scientific disciplines. In this review, we explore the potential technological spillover from COVID-19 research into ASF. Specifically, we assess the applicability of the diagnostic tools, vaccine development strategies, and biosecurity measures developed for COVID-19 for combating ASF. Additionally, we discuss the lessons learned from the pandemic in terms of surveillance systems and their implications for managing ASF. By bridging the gap between COVID-19 and ASF research, we highlight the potential for interdisciplinary collaboration and technological spillovers in the battle against ASF.
Collapse
Affiliation(s)
| | | | | | - Sittinan Chanarat
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
8
|
Afe AE, Shen ZJ, Guo X, Zhou R, Li K. African Swine Fever Virus Interaction with Host Innate Immune Factors. Viruses 2023; 15:1220. [PMID: 37376520 DOI: 10.3390/v15061220] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/22/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2023] Open
Abstract
African swine fever virus (ASFV) adversely affects pig farming owing to its 100% mortality rate. The condition is marked by elevated body temperature, bleeding, and ataxia in domestic pigs, whereas warthogs and ticks remain asymptomatic despite being natural reservoirs for the virus. Breeding ASFV-resistant pigs is a promising solution for eradicating this disease. ASFV employs several mechanisms to deplete the host antiviral response. This review explores the interaction of ASFV proteins with innate host immunity and the various types of machinery encompassed by viral proteins that inhibit and induce different signaling pathways, such as cGAS-STING, NF-κB, Tumor growth factor-beta (TGF-β), ubiquitination, viral inhibition of apoptosis, and resistance to ASFV infection. Prospects for developing a domestic pig that is resistant to ASFV are also discussed.
Collapse
Affiliation(s)
- Ayoola Ebenezer Afe
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhao-Ji Shen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaorong Guo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528231, China
| | - Rong Zhou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
9
|
An Updated Review of Ornithodoros Ticks as Reservoirs of African Swine Fever in Sub-Saharan Africa and Madagascar. Pathogens 2023; 12:pathogens12030469. [PMID: 36986391 PMCID: PMC10059854 DOI: 10.3390/pathogens12030469] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
This updated review provides an overview of the available information on Ornithodoros ticks as reservoirs and biological vectors of the ASF virus in Africa and Indian Ocean islands in order to update the current knowledge in this field, inclusive of an overview of available methods to investigate the presence of ticks in the natural environment and in domestic pig premises. In addition, it highlights the major areas of research that require attention in order to guide future investigations and fill knowledge gaps. The available information suggests that current knowledge is clearly insufficient to develop risk-based control and prevention strategies, which should be based on a sound understanding of genotype distribution and the potential for spillover from the source population. Studies on tick biology in the natural and domestic cycle, including genetics and systematics, represent another important knowledge gap. Considering the rapidly changing dynamics affecting the African continent (demographic growth, agricultural expansion, habitat transformation), anthropogenic factors influencing tick population distribution and ASF virus (ASFV) evolution in Africa are anticipated and have been recorded in southern Africa. This dynamic context, together with the current global trends of ASFV dissemination, highlights the need to prioritize further investigation on the acarological aspects linked with ASF ecology and evolution.
Collapse
|
10
|
Luan Y, Gou J, Zhong D, Ma L, Yin C, Shu M, Liu G, Lin Q. The Tick-Borne Pathogens: An Overview of China's Situation. Acta Parasitol 2023; 68:1-20. [PMID: 36642777 PMCID: PMC9841149 DOI: 10.1007/s11686-023-00658-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/02/2023] [Indexed: 01/17/2023]
Abstract
BACKGROUND Ticks are important medical arthropods that can transmit hundreds of pathogens, such as parasites, bacteria, and viruses, leading to serious public health burdens worldwide. Unexplained fever is the most common clinical manifestation of tick-borne diseases. Since the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the surge of coronavirus disease 2019 (COVID-19) cases led to the hospital overload and fewer laboratory tests for tick-borne diseases. Therefore, it is essential to review the tick-borne pathogens and further understand tick-borne diseases. PURPOSE The geographic distribution and population of ticks in the Northern hemisphere have expanded while emerging tick-borne pathogens have been introduced to China continuously. This paper focused on the tick-borne pathogens that are threatening public health in the world. Their medical significant tick vectors, as well as the epidemiology, clinical manifestations, diagnosis, treatment, prevention, and control measures, are emphasized in this document. METHODS In this study, all required data were collected from articles indexed in English databases, including Scopus, PubMed, Web of Science, Science Direct, and Google Scholar. RESULTS Ticks presented a great threat to the economy and public health. Although both infections by tick-borne pathogens and SARS-CoV-2 have fever symptoms, the history of tick bite and its associated symptoms such as encephalitis or eschar could be helpful for the differential diagnosis. Additionally, as a carrier of vector ticks, migratory birds may play a potential role in the geographical expansion of ticks and tick-borne pathogens during seasonal migration. CONCLUSION China should assess the risk score of vector ticks and clarify the potential role of migratory birds in transmitting ticks. Additionally, the individual and collective protection, vector control, comprehensive surveillance, accurate diagnosis, and symptomatic treatment should be carried out, to meet the challenge.
Collapse
Affiliation(s)
- Yuxuan Luan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,School of Basic Medical Science, Fudan University, Shanghai, 200032, China
| | - Jingmin Gou
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Dongjie Zhong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Li Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Chuansong Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Minfeng Shu
- School of Basic Medical Science, Fudan University, Shanghai, 200032, China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Qing Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China. .,State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China.
| |
Collapse
|
11
|
Hien ND, Nguyen LT, Isoda N, Sakoda Y, Hoang LT, Stevenson MA. Descriptive epidemiology and spatial analysis of African swine fever epidemics in Can Tho, Vietnam, 2019. Prev Vet Med 2023; 211:105819. [PMID: 36571907 DOI: 10.1016/j.prevetmed.2022.105819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 11/03/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The objectives of this study were to describe the epidemiology of African swine fever (ASF) and to identify factors that increased commune-level risk for ASF in Can Tho, a province in the Mekong River Delta of Vietnam. In 2019, a total of 2377 of the 5220 pig farms in Can Tho were ASF positive, an incidence risk of 46 (95% CI 44-47) ASF positive farms for every 100 farms at risk. Throughout the outbreak ASF resulted in either the death or culling of 59,529 pigs out of a total population size of 124,516 (just under half of the total pig population, 48%). After the first detection in Can Tho in May 2019, ASF spread quickly across all districts with an estimated dissemination ratio (EDR) of greater than one up until the end of July 2019. A mixed-effects Poisson regression model was developed to identify risk factors for ASF. One hundred unit increases in the number of pigs per square kilometre was associated with a 1.28 (95% CrI 1.05-1.55) fold increase in commune-level ASF incidence rate. One unit increases in the number of pig farms per square kilometre was associated with a 0.91 (95% CrI 0.84-0.99) decrease in commune-level ASF incidence rate. Mapping spatially contiguous communes with elevated (unaccounted-for) ASF risk provide a means for generating hypotheses for continued disease transmission. We propose that the analyses described in this paper might be run on an ongoing basis during an outbreak and disease control efforts modified in light of the information provided.
Collapse
Affiliation(s)
- Nguyen Duc Hien
- Faculty of Veterinary Medicine, College of Agriculture, Can Tho University, Campus II, 3/2 street, Ninh Kieu district, Can Tho, Viet Nam; Can Tho Sub-Department of Animal Health, Ministry of Agriculture and Rural Development, 30/4 street, Ninh Kieu district, Can Tho, Viet Nam.
| | - Lam Thanh Nguyen
- Faculty of Veterinary Medicine, College of Agriculture, Can Tho University, Campus II, 3/2 street, Ninh Kieu district, Can Tho, Viet Nam.
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.
| | - Le Trung Hoang
- Faculty of Veterinary Medicine, College of Agriculture, Can Tho University, Campus II, 3/2 street, Ninh Kieu district, Can Tho, Viet Nam; Can Tho Sub-Department of Animal Health, Ministry of Agriculture and Rural Development, 30/4 street, Ninh Kieu district, Can Tho, Viet Nam.
| | - Mark A Stevenson
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
12
|
Filatov S, Dyčka F, Sterba J, Rego RO. A simple non-invasive method to collect soft tick saliva reveals differences in Ornithodoros moubata saliva composition between ticks infected and uninfected with Borrelia duttonii spirochetes. Front Cell Infect Microbiol 2023; 13:1112952. [PMID: 36743301 PMCID: PMC9895398 DOI: 10.3389/fcimb.2023.1112952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Introduction: We developed a new simple method to assess the composition of proteinaceous components in the saliva of Ornithodoros moubata, the main vehicle for pathogen transmission and a likely source of bioactive molecules acting at the tick-vertebrate host interface. To collect naturally expectorated saliva from the ticks we employed an artificial membrane feeding technique using a simple, chemically defined diet containing phagostimulants and submitted native saliva samples collected in this way for liquid chromatography-mass spectrometry (LC-MS) analysis. These experiments were conducted with groups of uninfected ticks as well as with O. moubata infected with B. duttonii. The ticks exhibited a fair feeding response to the tested diet with engorgement rates reaching as high as 60-100% of ticks per feeding chamber. The LC-MS analysis identified a total of 17 and 15 proteins in saliva samples from the uninfected and infected O. moubata nymphs, respectively. Importantly, the analysis was sensitive enough to detect up to 9 different proteins in the samples of saliva containing diet upon which as few as 6 nymphal ticks fed during the experiments. Some of the proteins recognized in the analysis are well known for their immunomodulatory activity in a vertebrate host, whereas others are primarily thought of as structural or "housekeeping" proteins and their finding in the naturally expectorated tick saliva confirms that they can be secreted and might serve some functions at the tick-host interface. Most notably, some of the proteins that have long been suspected for their importance in the vector-pathogen interactions of Borrelia spirochetes were detected only in the samples from infected ticks, suggesting that their expression was altered by the persistent colonization of the tick's salivary glands by spirochetes. The simple method described herein is an important addition to the toolbox available to study the vector-host-pathogen interactions in the rapidly feeding soft ticks.
Collapse
Affiliation(s)
- Serhii Filatov
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", Kharkiv, Ukraine,*Correspondence: Serhii Filatov, ; Ryan O.M. Rego,
| | - Filip Dyčka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Jan Sterba
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Ryan O.M. Rego
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia,*Correspondence: Serhii Filatov, ; Ryan O.M. Rego,
| |
Collapse
|
13
|
Lv T, Xie X, Song N, Zhang S, Ding Y, Liu K, Diao L, Chen X, Jiang S, Li T, Zhang W, Cao Y. Expounding the role of tick in Africa swine fever virus transmission and seeking effective prevention measures: A review. Front Immunol 2022; 13:1093599. [PMID: 36591310 PMCID: PMC9800779 DOI: 10.3389/fimmu.2022.1093599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
African swine fever (ASF), a highly contagious, deadly infectious disease, has caused huge economic losses to animal husbandry with a 100% mortality rate of the most acute and acute infection, which is listed as a legally reported animal disease by the World Organization for Animal Health (OIE). African swine fever virus (ASFV) is the causative agent of ASF, which is the only member of the Asfarviridae family. Ornithodoros soft ticks play an important role in ASFV transmission by active biological or mechanical transmission or by passive transport or ingestion, particularly in Africa, Europe, and the United States. First, this review summarized recent reports on (1) tick species capable of transmitting ASFV, (2) the importance of ticks in the transmission and epidemiological cycle of ASFV, and (3) the ASFV strains of tick transmission, to provide a detailed description of tick-borne ASFV. Second, the dynamics of tick infection with ASFV and the tick-induced immune suppression were further elaborated to explain how ticks spread ASFV. Third, the development of the anti-tick vaccine was summarized, and the prospect of the anti-tick vaccine was recapitulated. Then, the marked attenuated vaccine, ASFV-G-ΔI177L, was compared with those of the anti-tick vaccine to represent potential therapeutic or strategies to combat ASF.
Collapse
Affiliation(s)
- Tianbao Lv
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xufeng Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ning Song
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shilei Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yue Ding
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kun Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Luteng Diao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xi Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shuang Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tiger Li
- Portsmouth Abbey School, Portsmouth, RI, United States
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
- Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
- Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
14
|
Ruiz-Saenz J, Diaz A, Bonilla-Aldana DK, Rodríguez-Morales AJ, Martinez-Gutierrez M, Aguilar PV. African swine fever virus: A re-emerging threat to the swine industry and food security in the Americas. Front Microbiol 2022; 13:1011891. [PMID: 36274746 PMCID: PMC9581234 DOI: 10.3389/fmicb.2022.1011891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/16/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales—GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia,*Correspondence: Julian Ruiz-Saenz ;
| | - Andres Diaz
- PIC—Pig Improvement Company, Querétaro, Mexico
| | - D. Katterine Bonilla-Aldana
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas, Pereira, Colombia
| | - Alfonso J. Rodríguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas, Pereira, Colombia,Faculty of Health Sciences, Universidad Cientifica del Sur, Lima, Peru
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Microbiología Veterinaria, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Patricia V. Aguilar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States,Center for Tropical Diseases, Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
15
|
Li Z, Chen W, Qiu Z, Li Y, Fan J, Wu K, Li X, Zhao M, Ding H, Fan S, Chen J. African Swine Fever Virus: A Review. Life (Basel) 2022; 12:1255. [PMID: 36013434 PMCID: PMC9409812 DOI: 10.3390/life12081255] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
African swine fever (ASF) is a viral disease with a high fatality rate in both domestic pigs and wild boars. ASF has greatly challenged pig-raising countries and also negatively impacted regional and national trade of pork products. To date, ASF has spread throughout Africa, Europe, and Asia. The development of safe and effective ASF vaccines is urgently required for the control of ASF outbreaks. The ASF virus (ASFV), the causative agent of ASF, has a large genome and a complex structure. The functions of nearly half of its viral genes still remain to be explored. Knowledge on the structure and function of ASFV proteins, the mechanism underlying ASFV infection and immunity, and the identification of major immunogenicity genes will contribute to the development of an ASF vaccine. In this context, this paper reviews the available knowledge on the structure, replication, protein function, virulence genes, immune evasion, inactivation, vaccines, control, and diagnosis of ASFV.
Collapse
Affiliation(s)
- Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zilong Qiu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| |
Collapse
|
16
|
Craig AF, Schade-Weskott ML, Rametse T, Heath L, Kriel GJP, de Klerk-Lorist LM, van Schalkwyk L, Trujillo JD, Crafford JE, Richt JA, Swanepoel R. Detection of African Swine Fever Virus in Ornithodoros Tick Species Associated with Indigenous and Extralimital Warthog Populations in South Africa. Viruses 2022; 14:1617. [PMID: 35893686 PMCID: PMC9331695 DOI: 10.3390/v14081617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
We investigated the possibility that sylvatic circulation of African swine fever virus (ASFV) in warthogs and Ornithodoros ticks had extended beyond the historically affected northern part of South Africa that was declared a controlled area in 1935 to prevent the spread of infection to the rest of the country. We recently reported finding antibody to the virus in extralimital warthogs in the south of the country, and now describe the detection of infected ticks outside the controlled area. A total of 5078 ticks was collected at 45 locations in 7/9 provinces during 2019-2021 and assayed as 711 pools for virus content by qPCR, while 221 pools were also analysed for tick phylogenetics. Viral nucleic acid was detected in 50 tick pools representing all four members of the Ornithodoros (Ornithodoros) moubata complex known to occur in South Africa: O. (O.) waterbergensis and O. (O.) phacochoerus species yielded ASFV genotypes XX, XXI, XXII at 4 locations and O. (O.) moubata yielded ASFV genotype I at two locations inside the controlled area. Outside the controlled area, O. (O.) moubata and O. (O.) compactus ticks yielded ASFV genotype I at 7 locations, while genotype III ASFV was identified in O. (O.) compactus ticks at a single location. Two of the three species of the O. (O.) savignyi complex ticks known to be present in the country, O. (O.) kalahariensis and O. (O.) noorsveldensis, were collected at single locations and found negative for virus. The only member of the Pavlovskyella subgenus of Ornithodoros ticks known to occur in South Africa, O. (P.) zumpti, was collected from warthog burrows for the first time, in Addo National Park in the Eastern Cape Province where ASFV had never been recorded, and it tested negative for the viral nucleic acid. While it is confirmed that there is sylvatic circulation of ASFV outside the controlled area in South Africa, there is a need for more extensive surveillance and for vector competence studies with various species of Ornithodoros ticks.
Collapse
Affiliation(s)
- Anthony F. Craig
- Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa; (A.F.C.); (M.L.S.-W.); (L.v.S.); (J.E.C.); (R.S.)
| | - Mathilde L. Schade-Weskott
- Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa; (A.F.C.); (M.L.S.-W.); (L.v.S.); (J.E.C.); (R.S.)
| | - Thapelo Rametse
- Agricultural Research Council-Onderstepoort Veterinary Research Transboundary Animal Diseases Laboratory, Onderstepoort, Pretoria 0110, South Africa; (T.R.); (L.H.)
| | - Livio Heath
- Agricultural Research Council-Onderstepoort Veterinary Research Transboundary Animal Diseases Laboratory, Onderstepoort, Pretoria 0110, South Africa; (T.R.); (L.H.)
| | - Gideon J. P. Kriel
- Provincial Veterinary Services, Department of Agriculture, Land Reform and Rural Development, Kimberley 8300, South Africa;
| | - Lin-Mari de Klerk-Lorist
- Office of the State Veterinarian, Department of Agriculture, Land Reform and Rural Development, Kruger National Park, P.O. Box 12, Skukuza 1350, South Africa;
| | - Louis van Schalkwyk
- Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa; (A.F.C.); (M.L.S.-W.); (L.v.S.); (J.E.C.); (R.S.)
- Office of the State Veterinarian, Department of Agriculture, Land Reform and Rural Development, Kruger National Park, P.O. Box 12, Skukuza 1350, South Africa;
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, D-78315 Radolfzell, Germany
| | - Jessie D. Trujillo
- Diagnostic Medicine/Pathobiology, Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA;
| | - Jan E. Crafford
- Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa; (A.F.C.); (M.L.S.-W.); (L.v.S.); (J.E.C.); (R.S.)
| | - Juergen A. Richt
- Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa; (A.F.C.); (M.L.S.-W.); (L.v.S.); (J.E.C.); (R.S.)
- Diagnostic Medicine/Pathobiology, Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA;
| | - Robert Swanepoel
- Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa; (A.F.C.); (M.L.S.-W.); (L.v.S.); (J.E.C.); (R.S.)
| |
Collapse
|
17
|
Migné CV, Braga de Seixas H, Heckmann A, Galon C, Mohd Jaafar F, Monsion B, Attoui H, Moutailler S. Evaluation of Vector Competence of Ixodes Ticks for Kemerovo Virus. Viruses 2022; 14:1102. [PMID: 35632845 PMCID: PMC9147894 DOI: 10.3390/v14051102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/25/2023] Open
Abstract
Tick-borne viruses are responsible for various symptoms in humans and animals, ranging from simple fever to neurological disorders or haemorrhagic fevers. The Kemerovo virus (KEMV) is a tick-borne orbivirus, and it has been suspected to be responsible for human encephalitis cases in Russia and central Europe. It has been isolated from Ixodes persulcatus and Ixodes ricinus ticks. In a previous study, we assessed the vector competence of I. ricinus larvae from Slovakia for KEMV, using an artificial feeding system. In the current study, we used the same system to infect different tick population/species, including I. ricinus larvae from France and nymphs from Slovakia, and I. persulcatus larvae from Russia. We successfully confirmed the first two criteria of vector competence, namely, virus acquisition and trans-stadial transmission, for both tick species that we tested. The estimated infection rates of engorged and moulted ticks suggest specificities between viral strains and tick species/developmental stages.
Collapse
Affiliation(s)
- Camille Victoire Migné
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (C.V.M.); (H.B.d.S.); (A.H.); (C.G.)
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR 1161 Virologie, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (F.M.J.); (B.M.)
| | - Hélène Braga de Seixas
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (C.V.M.); (H.B.d.S.); (A.H.); (C.G.)
| | - Aurélie Heckmann
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (C.V.M.); (H.B.d.S.); (A.H.); (C.G.)
| | - Clémence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (C.V.M.); (H.B.d.S.); (A.H.); (C.G.)
| | - Fauziah Mohd Jaafar
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR 1161 Virologie, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (F.M.J.); (B.M.)
| | - Baptiste Monsion
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR 1161 Virologie, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (F.M.J.); (B.M.)
| | - Houssam Attoui
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR 1161 Virologie, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (F.M.J.); (B.M.)
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (C.V.M.); (H.B.d.S.); (A.H.); (C.G.)
| |
Collapse
|
18
|
Pereira De Oliveira R, Vial L, Le Potier MF. Quantification of ASFV DNA and RNA in Ornithodoros Soft Ticks. Methods Mol Biol 2022; 2503:105-118. [PMID: 35575889 DOI: 10.1007/978-1-0716-2333-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular biology methods are highly sensitive to detect the genome of pathogens and to study their biology. Polymerase chain reaction (PCR) and reverse transcription followed by a polymerase chain reaction (RT-PCR) permit the detection of the presence and the replication of African swine fever virus in soft ticks. Here, we described our techniques to detect and quantify DNA and RNA of African swine fever virus in soft ticks including a housekeeping gene of soft ticks as internal control.
Collapse
Affiliation(s)
- Rémi Pereira De Oliveira
- UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE-Université de Montpellier, Montpellier, France.
- Laboratoire de Ploufragan/Plouzané/Niort, ANSES, Ploufragan, France.
| | - Laurence Vial
- UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE-Université de Montpellier, Montpellier, France
| | | |
Collapse
|
19
|
Wang J, Ji M, Yuan B, Luo A, Jiang Z, Zhu T, Liu Y, Kamau PM, Jin L, Lai R. Peptide OPTX-1 From Ornithodoros papillipes Tick Inhibits the pS273R Protease of African Swine Fever Virus. Front Microbiol 2021; 12:778309. [PMID: 34925282 PMCID: PMC8678048 DOI: 10.3389/fmicb.2021.778309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/12/2021] [Indexed: 11/22/2022] Open
Abstract
African swine fever virus (ASFV) is a large double-stranded DNA virus and causes high mortality in swine. ASFV can be transmitted by biological vectors, including soft ticks in genus Ornithodoros but not hard ticks. However, the underlying mechanisms evolved in the vectorial capacity of soft ticks are not well-understood. Here, we found that a defensin-like peptide toxin OPTX-1 identified from Ornithodoros papillipes inhibits the enzyme activity of the ASFV pS273R protease with a Ki =0.821±0.526μM and shows inhibitory activity on the replication of ASFV. The analogs of OPTX-1 from hard ticks show more inhibitory efficient on pS273R protease. Considering that ticks are blood-sucking animals, we tested the effects of OPTX-1 and its analogs on the coagulation system. At last, top 3D structures represented surface analyses of the binding sites of pS273R with different inhibitors that were obtained by molecular docking based on known structural information. In summary, our study provides evidence that different inhibitory efficiencies between soft tick-derived OPTX-1 and hard tick-derived defensin-like peptides may determine the vector and reservoir competence of ticks.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Mengyao Ji
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Bingqian Yuan
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Anna Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhenyuan Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Tengyu Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Lin Jin
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Ren Lai
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Tianjin University, Tianjin, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
20
|
European Food Safety Authority (EFSA), Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Depner K, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Schmidt C, Herskin M, Michel V, Pasquali P, Roberts HC, Sihvonen LH, Spoolder H, Stahl K, Velarde A, Winckler C, Blome S, Boklund A, Bøtner A, Dhollander S, Rapagnà C, Van der Stede Y, Miranda Chueca MA. Research priorities to fill knowledge gaps in the control of African swine fever: possible transmission of African swine fever virus by vectors. EFSA J 2021; 19:e06676. [PMID: 34188718 PMCID: PMC8215588 DOI: 10.2903/j.efsa.2021.6676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The European Commission requested that EFSA provide study designs for the investigation of four research domains according to major gaps in knowledge identified by EFSA in a report published in 2019: (i) the patterns of seasonality of African Swine Fever (ASF) in wild boar and domestic pigs in the EU; (ii) the epidemiology of ASF in wild boar; (iii) survival of ASF virus (ASFV) in the environment and (iv) transmission of ASFV by vectors. In this Scientific Opinion, the fourth research domain on ASFV transmission by vectors is addressed. Eleven research objectives were proposed by the EFSA working group and broader ASF expert networks, such as ASF stop, ENETWILD, VectorNet, AHAW network and the AHAW Panel Experts. Of the 11 research objectives, six were prioritised based on the following set of criteria: (1) the impact on ASF management; (2) the feasibility or practicality to carry out the study; (3) the potential implementation of study results in practice; (4) a possible short time-frame study (< 1 year); (5) the novelty of the study and (6) if it was a priority for risk managers. The prioritised research objectives were: (I) Studies on the potential vector fauna at the pig-wild boar interface and the feeding preference of blood-feeding potential vectors in ASF-affected areas; (II) Assessment of the efficacy of insect screens on indoor/outdoor pig holdings to prevent the entry of blood-sucking vectors (i.e. Stomoxys) in ASF endemic areas; (III) Assess the role of mechanical vectors in the virus transmission in ASF-affected areas; (IV) Distribution of the potential mechanical transmission vectors in ASF-affected areas of the EU; (V) ASFV transmission by synanthropic birds; and (VI) Assessment on the presence/absence of the soft tick Ornithodoros erraticus in ASF-affected areas in Europe. For each of the selected research objectives, a research protocol has been proposed considering the potential impact on ASF management and the period of 1 year for the research activities.
Collapse
|
21
|
Mapendere C, Jori F, Etter EMC, Ferguson JHW. Do wild suids from Ndumo Game Reserve, South Africa, play a role in the maintenance and transmission of African swine fever to domestic pigs? Transbound Emerg Dis 2021; 68:2774-2786. [PMID: 33877746 DOI: 10.1111/tbed.14090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
Warthogs (Phacochoerus africanus) and bushpigs (Potamochoerus larvatus) are considered as the wild reservoirs of ASF. They are both present in Ndumo Game Reserve (NGR), located in the Northern South African Province of KwaZulu on the border with Mozambique. In that area, the occurrence of tick-warthog sylvatic cycle of ASF has been suspected for years. To assess if wild suids represent a risk of ASF virus spillover to domestic pigs, wild suid abundance and incursions outside NGR boundaries were estimated using transect counts, fence patrols and camera traps. Also, the presence of Ornithodoros ticks was explored in 35 warthog burrows within NGR. In addition, blood samples were taken from 67 domestic pig farms located outside NGR to be tested for ASF antibodies. Information on interactions between domestic and wild suids and ASF occurrence was gathered using interviews with pig farmers (n = 254) in the study area. In conclusion, the bushpigs and warthog's population estimates in NGR are 5 and 3-5 individuals/km2 , respectively. Both species move out of the reserve regularly (15.4 warthogs/day and 6.35 bushpigs/day), with movements significantly increasing in the dry season. Some farmers observed warthogs and bushpigs as far as 8 and 19 km from NGR, respectively, but no reports of direct wild-domestic suids interactions or ASF outbreaks. Also, no soft ticks were detected in all warthog burrows and all the pig blood samples were negative for ASF antibodies. The absence of ticks in warthog burrows, the absence of antibodies in pigs sampled, the absence of reported outbreaks, and no familiarity with ASF in the study area, suggest that a sylvatic cycle of ASF is, at present, unlikely in NGR. This conclusion must be confirmed by a larger survey of warthog burrows and monitoring potential antibodies in warthogs from NGR.
Collapse
Affiliation(s)
- Cynthia Mapendere
- Centre for Environmental Studies, Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa
| | - Ferran Jori
- CIRAD, UMR Animal, Santé, Risque et Ecosystèmes (ASTRE), Montpellier, France.,ASTRE, CIRAD, INRA, University of Montpellier, Montpellier, France.,Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Eric M C Etter
- CIRAD, UMR Animal, Santé, Risque et Ecosystèmes (ASTRE), Montpellier, France.,ASTRE, CIRAD, INRA, University of Montpellier, Montpellier, France.,Department of Production Animal Studies, Faculty of Veterinary Sciences, University of Pretoria, Pretoria, South Africa
| | - Jan Helenus W Ferguson
- Centre for Environmental Studies, Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
22
|
Wang F, Zhang H, Hou L, Yang C, Wen Y. Advance of African swine fever virus in recent years. Res Vet Sci 2021; 136:535-539. [PMID: 33882382 DOI: 10.1016/j.rvsc.2021.04.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022]
Abstract
African swine fever (ASF) is one of the most devastating hemorrhagic infectious diseases that affect pigs and wild suids due to the lack of a vaccine or an effective treatment. The large dsDNA genome of African swine fever virus (ASFV) contains up to 167 ORFs that are predicted to encode proteins. Since its introduction to China in 2018, this genome has aroused the enthusiasm of researchers throughout the world. Here, we review the research progress on ASFV in recent years. Given the importance of this disease, this review will highlight recent discoveries in basic virology, focusing mainly on epidemiology, virulence, pathogenic mechanisms, diagnosis, vaccine development, and treatment; this will help in understanding virus-host interactions and disease prevention regarding ASFV.
Collapse
Affiliation(s)
- Fengxue Wang
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases at the Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, People's Republic of China.
| | - He Zhang
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases at the Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, People's Republic of China
| | - Lina Hou
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases at the Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, People's Republic of China
| | - Chao Yang
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases at the Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, People's Republic of China
| | - Yongjun Wen
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases at the Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, People's Republic of China
| |
Collapse
|
23
|
Qin W, Gao Z, Wu S, Bao W. Preliminary analysis of whether mosquitoes can carry and transmit African swine fever. BMC Vet Res 2021; 17:152. [PMID: 33836768 PMCID: PMC8034110 DOI: 10.1186/s12917-021-02865-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/26/2021] [Indexed: 11/24/2022] Open
Abstract
Background Mosquitoes are important insect vectors, but whether they can carry and transmit African swine fever virus (ASFV) in large-scale pig farms in China is unknown. Results In this study, probe-based qPCR analysis was performed on mosquitoes from five pig farms with ASF virus (ASFV). Analysis of ASFV in 463 mosquitoes yielded negative cycle threshold (CT) value), and detection remained negative after mixing samples from all five pig farms. Conclusions Therefore, mosquitoes appear unlikely to transmit ASFV, and pose little threat to large-scale pig farms. Thus, farms should continue to follow normal mosquito control procedures when formulating strategies for the prevention and control of ASF.
Collapse
Affiliation(s)
- Weiyun Qin
- College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, China
| | - Zhongcheng Gao
- College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, China
| | - Shenglong Wu
- College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, 225009, Yangzhou, China
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, 225009, Yangzhou, China.
| |
Collapse
|
24
|
European Food Safety Authority (EFSA), Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Depner K, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortazar Schmidt C, Herskin M, Michel V, Miranda Chueca MÁ, Pasquali P, Roberts HC, Sihvonen LH, Spoolder H, Stahl K, Velarde A, Winckler C, Abrahantes JC, Dhollander S, Ivanciu C, Papanikolaou A, Van der Stede Y, Blome S, Guberti V, Loi F, More S, Olsevskis E, Thulke HH, Viltrop A. ASF Exit Strategy: Providing cumulative evidence of the absence of African swine fever virus circulation in wild boar populations using standard surveillance measures. EFSA J 2021; 19:e06419. [PMID: 33717352 PMCID: PMC7926520 DOI: 10.2903/j.efsa.2021.6419] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
EFSA assessed the role of seropositive wild boar in African swine fever (ASF) persistence. Surveillance data from Estonia and Latvia investigated with a generalised equation method demonstrated a significantly slower decline in seroprevalence in adult animals compared with subadults. The seroprevalence in adults, taking more than 24 months to approach zero after the last detection of ASFV circulation, would be a poor indicator to demonstrate the absence of virus circulation. A narrative literature review updated the knowledge on the mortality rate, the duration of protective immunity and maternal antibodies and transmission parameters. In addition, parameters potentially leading to prolonged virus circulation (persistence) in wild boar populations were reviewed. A stochastic explicit model was used to evaluate the dynamics of virus prevalence, seroprevalence and the number of carcasses attributed to ASF. Secondly, the impact of four scenarios on the duration of ASF virus (ASFV) persistence was evaluated with the model, namely a: (1) prolonged, lifelong infectious period, (2) reduction in the case-fatality rate and prolonged transient infectiousness; (3) change in duration of protective immunity and (4) change in the duration of protection from maternal antibodies. Only the lifelong infectious period scenario had an important prolonging effect on the persistence of ASF. Finally, the model tested the performance of different proposed surveillance strategies to provide evidence of the absence of virus circulation (Exit Strategy). A two-phase approach (Screening Phase, Confirmation Phase) was suggested for the Exit Strategy. The accuracy of the Exit Strategy increases with increasing numbers of carcasses collected and tested. The inclusion of active surveillance based on hunting has limited impact on the performance of the Exit Strategy compared with lengthening of the monitoring period. This performance improvement should be reasonably balanced against an unnecessary prolonged 'time free' with only a marginal gain in performance. Recommendations are provided for minimum monitoring periods leading to minimal failure rates of the Exit Strategy. The proposed Exit Strategy would fail with the presence of lifelong infectious wild boar. That said, it should be emphasised that the existence of such animals is speculative, based on current knowledge.
Collapse
|
25
|
Pereira De Oliveira R, Hutet E, Lancelot R, Paboeuf F, Duhayon M, Boinas F, Pérez de León AA, Filatov S, Le Potier MF, Vial L. Differential vector competence of Ornithodoros soft ticks for African swine fever virus: What if it involves more than just crossing organic barriers in ticks? Parasit Vectors 2020; 13:618. [PMID: 33298119 PMCID: PMC7725119 DOI: 10.1186/s13071-020-04497-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/23/2020] [Indexed: 11/26/2022] Open
Abstract
Background Several species of soft ticks in genus Ornithodoros are known vectors and reservoirs of African swine fever virus (ASFV). However, the underlying mechanisms of vector competence for ASFV across Ornithodoros species remain to be fully understood. To that end, this study compared ASFV replication and dissemination as well as virus vertical transmission to descendants between Ornithodorosmoubata, O. erraticus, and O. verrucosus in relation to what is known about the ability of these soft tick species to transmit ASFV to pigs. To mimic the natural situation, a more realistic model was used where soft ticks were exposed to ASFV by allowing them to engorge on viremic pigs. Methods Ornithodoros moubata ticks were infected with the ASFV strains Liv13/33 (genotype I) or Georgia2007/1 (genotype II), O. erraticus with OurT88/1 (genotype I) or Georgia2007/1 (genotype II), and O. verrucosus with Ukr12/Zapo (genotype II), resulting in five different tick–virus pairs. Quantitative PCR (qPCR) assays targeting the VP72 ASFV gene was carried out over several months on crushed ticks to study viral replication kinetics. Viral titration assays were also carried out on crushed ticks 2 months post infection to confirm virus survival in soft ticks. Ticks were dissected. and DNA was individually extracted from the following organs to study ASFV dissemination: intestine, salivary glands, and reproductive organs. DNA extracts from each organ were tested by qPCR. Lastly, larval or first nymph-stage progeny emerging from hatching eggs were tested by qPCR to assess ASFV vertical transmission. Results Comparative analyses revealed higher rates of ASFV replication and dissemination in O. moubata infected with Liv13/33, while the opposite was observed for O. erraticus infected with Georgia2007/1 and for O. verrucosus with Ukr12/Zapo. Intermediate profiles were found for O. moubata infected with Georgia2007/1 and for O. erraticus with OurT88/1. Vertical transmission occurred efficiently in O. moubata infected with Liv13/33, and at very low rates in O. erraticus infected with OurT88/1. Conclusions This study provides molecular data indicating that viral replication and dissemination in Ornithodoros ticks are major mechanisms underlying ASFV horizontal and vertical transmission. However, our results indicate that other determinants beyond viral replication also influence ASFV vector competence. Further research is required to fully understand this process in soft ticks.
Collapse
Affiliation(s)
- Rémi Pereira De Oliveira
- UMR Animals, Health, Territories, Risks and Ecosystems (ASTRE), French Agricultural Research Center for International Development (CIRAD), Montpellier, France.,UMR ASTRE, CIRAD, National Research Institute for Agriculture, Food and the Environment (INRAE), University of Montpellier, Montpellier, France.,Swine Virology and Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Evelyne Hutet
- Swine Virology and Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Renaud Lancelot
- UMR Animals, Health, Territories, Risks and Ecosystems (ASTRE), French Agricultural Research Center for International Development (CIRAD), Montpellier, France.,UMR ASTRE, CIRAD, National Research Institute for Agriculture, Food and the Environment (INRAE), University of Montpellier, Montpellier, France
| | - Frédéric Paboeuf
- Swine Virology and Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Maxime Duhayon
- UMR Animals, Health, Territories, Risks and Ecosystems (ASTRE), French Agricultural Research Center for International Development (CIRAD), Montpellier, France.,UMR ASTRE, CIRAD, National Research Institute for Agriculture, Food and the Environment (INRAE), University of Montpellier, Montpellier, France
| | - Fernando Boinas
- Center for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, Lisbon, 1300-477, Portugal
| | - Adalberto A Pérez de León
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, US Department of Agriculture-Agriculture Research Service (USDA-ARS), Kerrville, TX, USA
| | - Serhii Filatov
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine (NSC IECVM), Kharkiv, Ukraine
| | - Marie-Frédérique Le Potier
- Swine Virology and Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Laurence Vial
- UMR Animals, Health, Territories, Risks and Ecosystems (ASTRE), French Agricultural Research Center for International Development (CIRAD), Montpellier, France. .,UMR ASTRE, CIRAD, National Research Institute for Agriculture, Food and the Environment (INRAE), University of Montpellier, Montpellier, France.
| |
Collapse
|
26
|
Forth JH, Forth LF, Lycett S, Bell-Sakyi L, Keil GM, Blome S, Calvignac-Spencer S, Wissgott A, Krause J, Höper D, Kampen H, Beer M. Identification of African swine fever virus-like elements in the soft tick genome provides insights into the virus' evolution. BMC Biol 2020; 18:136. [PMID: 33032594 PMCID: PMC7542975 DOI: 10.1186/s12915-020-00865-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND African swine fever virus (ASFV) is a most devastating pathogen affecting swine. In 2007, ASFV was introduced into Eastern Europe where it continuously circulates and recently reached Western Europe and Asia, leading to a socio-economic crisis of global proportion. In Africa, where ASFV was first described in 1921, it is transmitted between warthogs and soft ticks of the genus Ornithodoros in a so-called sylvatic cycle. However, analyses into this virus' evolution are aggravated by the absence of any closely related viruses. Even ancient endogenous viral elements, viral sequences integrated into a host's genome many thousand years ago that have proven extremely valuable to analyse virus evolution, remain to be identified. Therefore, the evolution of ASFV, the only known DNA virus transmitted by arthropods, remains a mystery. RESULTS For the identification of ASFV-like sequences, we sequenced DNA from different recent Ornithodoros tick species, e.g. O. moubata and O. porcinus, O. moubata tick cells and also 100-year-old O. moubata and O. porcinus ticks using high-throughput sequencing. We used BLAST analyses for the identification of ASFV-like sequences and further analysed the data through phylogenetic reconstruction and molecular clock analyses. In addition, we performed tick infection experiments as well as additional small RNA sequencing of O. moubata and O. porcinus soft ticks. CONCLUSION Here, we show that soft ticks of the Ornithodoros moubata group, the natural arthropod vector of ASFV, harbour African swine fever virus-like integrated (ASFLI) elements corresponding to up to 10% (over 20 kb) of the ASFV genome. Through orthologous dating and molecular clock analyses, we provide data suggesting that integration could have occurred over 1.47 million years ago. Furthermore, we provide data showing ASFLI-element specific siRNA and piRNA in ticks and tick cells allowing for speculations on a possible role of ASFLI-elements in RNA interference-based protection against ASFV in ticks. We suggest that these elements, shaped through many years of co-evolution, could be part of an evolutionary virus-vector 'arms race', a finding that has not only high impact on our understanding of the co-evolution of viruses with their hosts but also provides a glimpse into the evolution of ASFV.
Collapse
Affiliation(s)
- Jan H Forth
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Leonie F Forth
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Samantha Lycett
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - Lesley Bell-Sakyi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| | - Günther M Keil
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | | | - Antje Wissgott
- Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745, Jena, Germany
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745, Jena, Germany
| | - Dirk Höper
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
27
|
Vergne T, Andraud M, Bonnet S, De Regge N, Desquesnes M, Fite J, Etore F, Garigliany MM, Jori F, Lempereur L, Le Potier MF, Quillery E, Saegerman C, Vial L, Bouhsira E. Mechanical transmission of African swine fever virus by Stomoxys calcitrans: Insights from a mechanistic model. Transbound Emerg Dis 2020; 68:1541-1549. [PMID: 32910533 DOI: 10.1111/tbed.13824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/18/2020] [Accepted: 09/03/2020] [Indexed: 11/30/2022]
Abstract
African swine fever (ASF) represents a global threat with huge economic consequences for the swine industry. Even though direct contact is likely to be the main transmission route from infected to susceptible hosts, recent epidemiological investigations have raised questions regarding the role of haematophagous arthropods, in particular the stable fly (Stomoxys calcitrans). In this study, we developed a mechanistic vector-borne transmission model for ASF virus (ASFV) within an outdoor domestic pig farm in order to assess the relative contribution of stable flies to the spread of the virus. The model was fitted to the ecology of the vector, its blood-feeding behaviour and pig-to-pig transmission dynamic. Model outputs suggested that in a context of low abundance (<5 flies per pig), stable flies would play a minor role in the spread of ASFV, as they are expected to be responsible for around 10% of transmission events. However, with abundances of 20 and 50 stable flies per pig, the vector-borne transmission would likely be responsible for almost 30% and 50% of transmission events, respectively. In these situations, time to reach a pig mortality of 10% would be reduced by around 26% and 40%, respectively. The sensitivity analysis emphasized that the expected relative contribution of stable flies was strongly dependent on the volume of blood they regurgitated and the infectious dose for pigs. This study identified crucial knowledge gaps that need to be filled in order to assess more precisely the potential contribution of stable flies to the spread of ASFV, including a quantitative description of the populations of haematophagous arthropods that could be found in pig farms, a better understanding of blood-feeding behaviours of stable flies and the quantification of the probability that stable flies partially fed with infectious blood transmit the virus to a susceptible pig during a subsequent blood-feeding attempt.
Collapse
Affiliation(s)
- Timothée Vergne
- UMR ENVT-INRAE IHAP, National Veterinary School of Toulouse, France
| | - Mathieu Andraud
- Unité d'Epidémiologie et de Bien-être Animal, Laboratoire de Ploufragan/Plouzané/Niort, Anses, France
| | - Sarah Bonnet
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort Cedex, France
| | - Nick De Regge
- Sciensano, Scientific Direction Infectious Diseases in Animals, Brussels, Belgium
| | - Marc Desquesnes
- InterTryp, University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Johanna Fite
- French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort Cedex, France
| | - Florence Etore
- French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort Cedex, France
| | - Mutien-Marie Garigliany
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège
| | - Ferran Jori
- UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE Montpellier, Montpellier, France
| | | | | | - Elsa Quillery
- UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE Montpellier, Montpellier, France
| | - Claude Saegerman
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège
| | - Laurence Vial
- UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE Montpellier, Montpellier, France
| | - Emilie Bouhsira
- UMR ENVT-INRAE InTheRes, National Veterinary School of Toulouse, Toulouse, France
| |
Collapse
|
28
|
Saegerman C, Bonnet S, Bouhsira E, De Regge N, Fite J, Etoré F, Garigliany MM, Jori F, Lempereur L, Le Potier MF, Quillery E, Vergne T, Vial L. An expert opinion assessment of blood-feeding arthropods based on their capacity to transmit African swine fever virus in Metropolitan France. Transbound Emerg Dis 2020; 68:1190-1204. [PMID: 32750188 DOI: 10.1111/tbed.13769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022]
Abstract
To deal with the limited literature data on the vectorial capacity of blood-feeding arthropods (BFAs) and their role in the transmission of African swine fever virus (ASFV) in Metropolitan France, a dedicated working group of the French Agency for Food, Environmental and Occupational Health & Safety performed an expert knowledge elicitation. In total, 15 different BFAs were selected as potential vectors by the ad hoc working group involved. Ten criteria were considered to define the vectorial capacity: vectorial competence, current abundance, expected temporal abundance, spatial distribution, longevity, biting rate, active dispersal capacity, trophic preferences for Suidae, probability of contact with domestic pigs and probability of contact with wild boar. Fourteen experts participated to the elicitation. For each BFA, experts proposed a score (between 0 and 3) for each of the above criteria with an index of uncertainty (between 1 and 4). Overall, all experts gave a weight for all criteria (by distributing 100 marbles). A global weighted sum of score per BFA was calculated permitting to rank the different BFAs in decreasing order. Finally, a regression tree analysis was used to group those BFAs with comparable likelihood to play a role in ASF transmission. Out of the ten considered criteria, the experts indicated vectorial competence, abundance and biting rate as the most important criteria. In the context of Metropolitan France, the stable fly (Stomoxys calcitrans) was ranked as the most probable BFA to be a vector of ASFV, followed by lice (Haematopinus suis), mosquitoes (Aedes, Culex and Anopheles), Culicoides and Tabanidea. Since scientific knowledge on their vectorial competence for ASF is scarce and associated uncertainty on expert elicitation moderate to high, more studies are however requested to investigate the potential vector role of these BFAs could have in ASFV spread, starting with Stomoxys calcitrans.
Collapse
Affiliation(s)
- Claude Saegerman
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège, Belgium
| | - Sarah Bonnet
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort Cedex, France
| | - Emilie Bouhsira
- UMR ENVT-INRA IHAP, National Veterinary School of Toulouse, Toulouse, France
| | - Nick De Regge
- Sciensano, Scientific Direction Infectious Diseases in Animals, Bruxelles, Belgium
| | - Johanna Fite
- French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort Cedex, France
| | - Florence Etoré
- French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort Cedex, France
| | - Mutien-Marie Garigliany
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège, Belgium
| | - Ferran Jori
- UMR Animal, Santé, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE-Université de Montpellier, Montpellier, France
| | - Laetitia Lempereur
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège, Belgium
| | - Marie-Frédérique Le Potier
- Unité de Virologie Immunologie Porcines, Laboratoire de Ploufragan/Plouzané/Niort, Anses, Ploufragan, France
| | - Elsa Quillery
- French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort Cedex, France
| | - Timothée Vergne
- UMR ENVT-INRA IHAP, National Veterinary School of Toulouse, Toulouse, France
| | - Laurence Vial
- UMR Animal, Santé, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE-Université de Montpellier, Montpellier, France
| |
Collapse
|
29
|
Putative Role of Arthropod Vectors in African Swine Fever Virus Transmission in Relation to Their Bio-Ecological Properties. Viruses 2020; 12:v12070778. [PMID: 32698448 PMCID: PMC7412232 DOI: 10.3390/v12070778] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/18/2022] Open
Abstract
African swine fever (ASF) is one of the most important diseases in Suidae due to its significant health and socioeconomic consequences and represents a major threat to the European pig industry, especially in the absence of any available treatment or vaccine. In fact, with its high mortality rate and the subsequent trade restrictions imposed on affected countries, ASF can dramatically disrupt the pig industry in afflicted countries. In September 2018, ASF was unexpectedly identified in wild boars from southern Belgium in the province of Luxembourg, not far from the Franco-Belgian border. The French authorities rapidly commissioned an expert opinion on the risk of ASF introduction and dissemination into metropolitan France. In Europe, the main transmission routes of the virus comprise direct contact between infected and susceptible animals and indirect transmission through contaminated material or feed. However, the seasonality of the disease in some pig farms in Baltic countries, including outbreaks in farms with high biosecurity levels, have led to questions on the possible involvement of arthropods in the transmission of the virus. This review explores the current body of knowledge on the most common arthropod families present in metropolitan France. We examine their potential role in spreading ASF-by active biological or mechanical transmission or by passive transport or ingestion-in relation to their bio-ecological properties. It also highlights the existence of significant gaps in our knowledge on vector ecology in domestic and wild boar environments and in vector competence for ASFV transmission. Filling these gaps is essential to further understanding ASF transmission in order to thus implement appropriate management measures.
Collapse
|
30
|
Chastagner A, Pereira de Oliveira R, Hutet E, Le Dimna M, Paboeuf F, Lucas P, Blanchard Y, Dixon L, Vial L, Le Potier MF. Coding-Complete Genome Sequence of an African Swine Fever Virus Strain Liv13/33 Isolate from Experimental Transmission between Pigs and Ornithodoros moubata Ticks. Microbiol Resour Announc 2020; 9:e00185-20. [PMID: 32327506 PMCID: PMC7180279 DOI: 10.1128/mra.00185-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/02/2020] [Indexed: 11/25/2022] Open
Abstract
Here, we report the coding-complete genome sequence of African swine fever (ASF) virus strain Liv13/33, isolated from experimentally infected pigs and Ornithodoros moubata ticks. The 11 sequences that we obtained harbored no notable differences to each other, and all of them were closely related to the genome sequence of the Mkuzi 1979 strain of genotype I.
Collapse
Affiliation(s)
- Amélie Chastagner
- Swine Virology and Immunology Unit, ANSES Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Rémi Pereira de Oliveira
- Swine Virology and Immunology Unit, ANSES Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
- UMR ASTRE, CIRAD, Montpellier, France
- UMR ASTRE, CIRAD, INRAE, University Montpellier, Montpellier, France
| | - Evelyne Hutet
- Swine Virology and Immunology Unit, ANSES Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Mireille Le Dimna
- Swine Virology and Immunology Unit, ANSES Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Frédéric Paboeuf
- SPF Pig Production and Experimentation Unit, ANSES Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Pierrick Lucas
- Viral Genetic and Biosecurity Unit, ANSES Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Yannick Blanchard
- Viral Genetic and Biosecurity Unit, ANSES Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Linda Dixon
- OIE Reference Laboratory, The Pirbright Institute, Surrey, United Kingdom
| | - Laurence Vial
- UMR ASTRE, CIRAD, Montpellier, France
- UMR ASTRE, CIRAD, INRAE, University Montpellier, Montpellier, France
| | | |
Collapse
|
31
|
Olesen AS, Belsham GJ, Bruun Rasmussen T, Lohse L, Bødker R, Halasa T, Boklund A, Bøtner A. Potential routes for indirect transmission of African swine fever virus into domestic pig herds. Transbound Emerg Dis 2020; 67:1472-1484. [PMID: 32150785 DOI: 10.1111/tbed.13538] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/18/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
Following its introduction into Georgia in 2007, African swine fever virus (ASFV) has become widespread on the European continent and in Asia. In many cases, the exact route of introduction into domestic pig herds cannot be determined, but most introductions are attributed to indirect virus transmission. In this review, we describe knowledge gained about different matrices that may allow introduction of the virus into pig herds. These matrices include uncooked pig meat, processed pig-derived products, feed, matrices contaminated with the virus and blood-feeding invertebrates. Knowledge gaps still exist, and both field studies and laboratory research are needed to enhance understanding of the risks for ASFV introductions, especially via virus-contaminated materials, including bedding and feed, and via blood-feeding, flying insects. Knowledge obtained from such studies can be applied to epidemiological risk assessments for the different transmission routes. Such assessments can be utilized to help predict the most effective biosecurity and control strategies.
Collapse
Affiliation(s)
- Ann Sofie Olesen
- Section of Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Graham J Belsham
- Section of Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Thomas Bruun Rasmussen
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Louise Lohse
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - René Bødker
- Section of Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tariq Halasa
- Section of Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anette Boklund
- Section of Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anette Bøtner
- Section of Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark.,Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
32
|
Successful Infection of Domestic Pigs by Ingestion of the European Soft Tick O. Erraticus That Fed on African Swine Fever Virus Infected Pig. Viruses 2020; 12:v12030300. [PMID: 32168820 PMCID: PMC7150827 DOI: 10.3390/v12030300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 01/05/2023] Open
Abstract
African swine fever is a highly lethal hemorrhagic fever of Suidae, threatening pig production globally. Suidae can be infected by different ways like ingestion of contaminated feed, direct contact with infected animals or fomites, and biting by infected soft tick bites. As already described, European soft ticks (Ornithodoros erraticus and Ornithodoros verrucosus) were not able to transmit African swine fever virus by biting pigs although these ticks maintained the infectious virus during several months; therefore, the possibility for pigs to become infected through the ingestion of infected ticks was questioned but not already explored. To determine if such oral ingestion is an alternative pathway of transmission, O. erraticus ticks were infected by blood-feeding on a viremic pig infected with the European African swine fever virus strain Georgia2007/1, then frozen at zero and two months post-engorgement, then after, were embedded in the food to pigs. Pig infection was successful, with superior efficiency with ticks frozen just after the infectious blood meal. These results confirmed the potential role of O. erraticus ticks as an ASFV reservoir and demonstrated the efficiency of non-conventional pathways of transmission.
Collapse
|
33
|
No Experimental Evidence of Co-Feeding Transmission of African Swine Fever Virus between Ornithodoros Soft Ticks. Pathogens 2020; 9:pathogens9030168. [PMID: 32121078 PMCID: PMC7157692 DOI: 10.3390/pathogens9030168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 11/18/2022] Open
Abstract
Ornithodoros soft ticks are the only known vector and reservoir of the African swine fever virus, a major lethal infectious disease of Suidae. The co-feeding event for virus transmission and maintenance among soft tick populations has been poorly documented. We infected Ornithodoros moubata, a known tick vector in Africa, with an African swine fever virus strain originated in Africa, to test its ability to infect O. moubata through co-feeding on domestic pigs. In our experimental conditions, tick-to-tick virus transmission through co-feeding failed, although pigs became infected through the infectious tick bite.
Collapse
|