1
|
Flores-Treviño S, Bocanegra-Ibarias P, Salas-Treviño D, Ramírez-Elizondo MT, Pérez-Alba E, Camacho-Ortiz A. Microbiota transplantation and administration of live biotherapeutic products for the treatment of dysbiosis-associated diseases. Expert Opin Biol Ther 2025; 25:1-14. [PMID: 40134274 DOI: 10.1080/14712598.2025.2484303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
INTRODUCTION The microbiota composition in humans varies according to the anatomical site and is crucial for maintaining homeostasis and an overall healthy state. Several gastrointestinal, vaginal, respiratory, and skin diseases are associated with dysbiosis. Alternative therapies such as microbiota transplantation can help restore microbiota normal composition and can be implemented to treat clinically relevant diseases. AREAS COVERED Current microbiota transplantation therapies conducted in clinical trials were included in this review (after searching on MEDLINE database from years 2017 to 2025) such as fecal microbiota transplantation (FMT) against recurrent Clostridioides difficile infection (rCDI) and vaginal microbiota transplantation (VMT) against bacterial vaginosis. Washed microbiota transplantation (WMT) and live biotherapeutic products (LBPs) were also reviewed. EXPERT OPINION In microbiota-based transplantation therapy, selecting optimal donors is a limitation. A stool or a vaginal microbiota bank should be implemented to overcome the time-consuming and expensive process of donor recruitment. Microbiota-based LBPs are also promising treatment alternatives for rCDI and other dysbiosis-associated diseases. Specific LBPs could be engineered out of donor fluids-derived strains to achieve the selection of specific beneficial microorganisms for the treatment of specific dysbiosis-associated diseases. Personalized microbiota-based treatments are promising solutions for dysbiosis-associated diseases, which remains an important necessity in clinical practice.
Collapse
Affiliation(s)
- Samantha Flores-Treviño
- Department of Infectious Diseases, University Hospital "Dr. José Eleuterio González", Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Paola Bocanegra-Ibarias
- Department of Infectious Diseases, University Hospital "Dr. José Eleuterio González", Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Daniel Salas-Treviño
- Department of Infectious Diseases, University Hospital "Dr. José Eleuterio González", Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - María Teresa Ramírez-Elizondo
- Department of Infectious Diseases, University Hospital "Dr. José Eleuterio González", Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Eduardo Pérez-Alba
- Department of Infectious Diseases, University Hospital "Dr. José Eleuterio González", Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Adrián Camacho-Ortiz
- Department of Infectious Diseases, University Hospital "Dr. José Eleuterio González", Autonomous University of Nuevo Leon, Monterrey, Mexico
| |
Collapse
|
2
|
Heidrich V, Valles-Colomer M, Segata N. Human microbiome acquisition and transmission. Nat Rev Microbiol 2025:10.1038/s41579-025-01166-x. [PMID: 40119155 DOI: 10.1038/s41579-025-01166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2025] [Indexed: 03/24/2025]
Abstract
As humans, we host personal microbiomes intricately connected to our biology and health. Far from being isolated entities, our microbiomes are dynamically shaped by microbial exchange with the surroundings, in lifelong microbiome acquisition and transmission processes. In this Review, we explore recent studies on how our microbiomes are transmitted, beginning at birth and during interactions with other humans and the environment. We also describe the key methodological aspects of transmission inference, based on the uniqueness of the building blocks of the microbiome - single microbial strains. A better understanding of human microbiome transmission will have implications for studies of microbial host regulation, of microbiome-associated diseases, and for effective microbiome-targeting strategies. Besides exchanging strains with other humans, there is also preliminary evidence we acquire microorganisms from animals and food, and thus a complete understanding of microbiome acquisition and transmission can only be attained by adopting a One Health perspective.
Collapse
Affiliation(s)
| | | | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK.
| |
Collapse
|
3
|
Abida O, Ramiro R, Bahloul E, Frikha R, Charfi S, Turki H, Gonçalves CP, Masmoudi H. Distinct anti-microbial peptides expression patterns and microbiome profiles in skin of Tunisian endemic Pemphigus foliaceus patients. Arch Dermatol Res 2025; 317:497. [PMID: 40009223 DOI: 10.1007/s00403-025-04000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Pemphigus foliaceus (PF) is a multifactorial skin disease. Substantial evidence for microbiota dysbiosis in skin disorders was gradually revealed. In PF patients' skin lesions, we characterized the profile of microbial communities and the expression of microbial peptides. Using real-time reverse transcriptase PCR and immunohistochemistry, skin lesions were analyzed for gene and protein expression of human β-defensin (hBD) 1, 2, and 3, cathelicidin (LL-37), RNAse-7, and psoriasin. Bacterial 16S rRNA gene sequencing was used for assessing skin microbial communities in 15 samples from PF patients' lesioned skin and 11 PF patients' non-lesioned skin. Gene expression of hBD 2 and 3 and psoriasin were significantly downregulated in skin samples from remittent patients compared to chronic or de novo diagnosed patients. Protein expression of hBD 2, Psoriasin, and LL-37 was increased in skin from de novo patients compared to skin from healthy donors showing markedly different distribution patterns. The skin microbial analysis revealed a substantial difference in microbiome diversity between lesioned and non-lesioned skin of de novo PF patients and, non-lesioned skin of remittent patients. In addition, microbiome diversity within samples of lesioned skin from de novo PF patients showed lower diversity with a lower abundance of specific bacterial genera, namely Dermabacter, Psychrobacter, and Bradyrhizobium. Thus, there is a noticeable over-representation of Staphylococcus and decreased richness in the bacterial communities of PF-active skin lesions. Our data supports the hypothesis that active skin lesions in PF patients exhibit alterations in skin bacterial diversity interlinked with increased expression of AMPs.
Collapse
Affiliation(s)
- Olfa Abida
- "Autoimmunity, Cancer and Immunogenetics" research laboratory (LR18SP12), Immunology Department, Habib Bourguiba Hospital, University of Sfax, Sfax, 3029, Tunisia.
| | | | - Emna Bahloul
- Dermatology Department, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Rim Frikha
- "Autoimmunity, Cancer and Immunogenetics" research laboratory (LR18SP12), Immunology Department, Habib Bourguiba Hospital, University of Sfax, Sfax, 3029, Tunisia
| | - Slim Charfi
- Anatomy and Pathology Department, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Hamida Turki
- Dermatology Department, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | | | - Hatem Masmoudi
- "Autoimmunity, Cancer and Immunogenetics" research laboratory (LR18SP12), Immunology Department, Habib Bourguiba Hospital, University of Sfax, Sfax, 3029, Tunisia
| |
Collapse
|
4
|
Haykal D, Cartier H, Dréno B. Dermatological Health in the Light of Skin Microbiome Evolution. J Cosmet Dermatol 2024; 23:3836-3846. [PMID: 39248208 PMCID: PMC11626341 DOI: 10.1111/jocd.16557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND The complex ecosystem of the skin microbiome is essential for skin health by acting as a primary defense against infections, regulating immune responses, and maintaining barrier integrity. This literature review aims to consolidate existing information on the skin microbiome, focusing on its composition, functionality, importance, and its impact on skin aging. METHODS An exhaustive exploration of scholarly literature was performed utilizing electronic databases including PubMed, Google Scholar, and ResearchGate, focusing on studies published between 2011 and 2024. Keywords included "skin microbiome," "skin microbiota," and "aging skin." Studies involving human subjects that focused on the skin microbiome's relationship with skin health were included. Out of 100 initially identified studies, 70 met the inclusion criteria and were reviewed. RESULTS Studies showed that aging is associated with a reduction in the variety of microorganisms of the skin microbiome, leading to an increased susceptibility to skin conditions. Consequently, this underlines the interest in bacteriotherapy, mainly topical probiotics, to reinforce the skin microbiome in older adults, suggesting improvements in skin health and a reduction in age-related skin conditions. Further exploration is needed into the microbiome's role in skin health and the development of innovative, microbe-based skincare products. Biotherapeutic approaches, including the use of phages, endolysins, probiotics, prebiotics, postbiotics, and microbiome transplantation, can restore balance and enhance skin health. This article also addresses regulatory standards in the EU and the USA that ensure the safety and effectiveness of microbial skincare products. CONCLUSION This review underscores the need to advance research on the skin microbiome's role in cosmetic enhancements and tailored skincare solutions, highlighting a great interest in leveraging microbial communities for dermatological benefits.
Collapse
Affiliation(s)
| | | | - Brigitte Dréno
- Department of Dermato‐CancerologyCHU Nantes—Hôtel‐Dieu CRCINANantesFrance
| |
Collapse
|
5
|
Roslan MAM, Omar MN, Sharif NAM, Raston NHA, Arzmi MH, Neoh HM, Ramzi AB. Recent advances in single-cell engineered live biotherapeutic products research for skin repair and disease treatment. NPJ Biofilms Microbiomes 2023; 9:95. [PMID: 38065982 PMCID: PMC10709320 DOI: 10.1038/s41522-023-00463-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The human microbiome has emerged as a key player in maintaining skin health, and dysbiosis has been linked to various skin disorders. Amidst growing concerns regarding the side effects of antibiotic treatments, the potential of live biotherapeutic products (LBPs) in restoring a healthy microbiome has garnered significant attention. This review aims to evaluate the current state of the art of the genetically or metabolically engineered LBPs, termed single-cell engineered LBPs (eLBPs), for skin repair and disease treatment. While some studies demonstrate promising outcomes, the translation of eLBPs into clinical applications remains a significant hurdle. Substantial concerns arise regarding the practical implementation and scalability of eLBPs, despite the evident potential they hold in targeting specific cells and delivering therapeutic agents. This review underscores the need for further research, robust clinical trials, and the exploration of current advances in eLBP-based bioengineered bacterial chassis and new outlooks to substantiate the viability and effectiveness of eLBPs as a transformative approach in skin repair and disease intervention.
Collapse
Affiliation(s)
| | - Mohd Norfikri Omar
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nur Azlina Mohd Sharif
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nurul Hanun Ahmad Raston
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Mohd Hafiz Arzmi
- Department of Fundamental Dental & Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
- Melbourne Dental School, The University of Melbourne, 3053, Melbourne, Victoria, Australia
| | - Hui-Min Neoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Ahmad Bazli Ramzi
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| |
Collapse
|
6
|
Zhang S, Li S, Huang J, Ding X, Qiu Y, Luo X, Meng J, Hu Y, Zhou H, Fan H, Cao Y, Gao F, Xue Y, Zou M. Gram-Negative Bacteria and Lipopolysaccharides as Risk Factors for the Occurrence of Diabetic Foot. J Clin Endocrinol Metab 2023; 108:2604-2614. [PMID: 36974462 PMCID: PMC10505552 DOI: 10.1210/clinem/dgad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/03/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
CONTEXT Imbalance of the skin microbial community could impair skin immune homeostasis and thus trigger skin lesions. Dysbiosis of skin microbiome may be involved in the early pathogenesis of diabetic foot (DF). However, the potential mechanism remains unclear. OBJECTIVE To investigate the dynamic composition and function of the foot skin microbiome with risk stratification for DF and assess whether dysbiosis of the skin microbiome induces diabetic skin lesions. METHODS We enrolled 90 consecutive subjects who were divided into 5 groups based on DF risk stratification: very low, low, moderate, and high risk for ulcers and a healthy control group. Integrated analysis of 16S ribosomal RNA and metagenomic sequencing of cotton swab samples was applied to identify the foot skin microbiome composition and functions in subjects. Then a mouse model of microbiota transplantation was used to evaluate the effects of the skin microbiome on diabetic skin lesions. RESULTS The results demonstrated that, with the progression of diabetic complications, the proportion of gram-negative bacteria in plantar skin increased. At the species level, metagenome sequencing analyses showed Moraxella osloensis to be a representative core strain in the high-risk group. The major microbial metabolites affecting diabetic skin lesions were increased amino acid metabolites, and antibiotic resistance genes in microorganisms were abundant. Skin microbiota from high-risk patients induced more inflammatory cell infiltration, similar to the lipopolysaccharide (LPS)-stimulated response, which was inhibited by Toll-like receptor 4 (TLR4) antagonists. CONCLUSIONS The skin microbiome in patients with diabetes undergoes dynamic changes at taxonomic and functional levels with the progression of diabetic complications. The increase in gram-negative bacteria on the skin surface through LPS-TLR4 signal transduction could induce inflammatory response in early diabetic skin lesions.
Collapse
Affiliation(s)
- Shili Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shuxian Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiali Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinyi Ding
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yan Qiu
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiangrong Luo
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianfu Meng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - YanJun Hu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hao Zhou
- Department of Hospital Infection Management, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongying Fan
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ying Cao
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fang Gao
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengchen Zou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
Niwa R, Chen D, Seong YA, Jo K, Ito K. Direct contact of fermented rice bran beds promotes food-to-hand transmission of lactic acid bacteria. FEMS Microbiol Lett 2023; 370:fnad120. [PMID: 37960971 PMCID: PMC10697408 DOI: 10.1093/femsle/fnad120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023] Open
Abstract
The skin microbiome, which varies widely between individuals, plays a crucial role in human health. It also interacts with the environment in various ways, including during the preparation of fermented food. Nukadoko is a pickle and traditional fermented food in Japan that utilizes lactic acid bacteria to ferment vegetables. When preparing or maintaining Nukadoko, it is mixed with bare hands. Despite the known interaction between Nukadoko and human skin, no studies have explored its impact on Nukadoko quality or skin microbiome changes. This study examines these effects during Nukadoko maintenance. Three participants were asked to stir commercially available late-stage Nukadoko for 14 days and not stir it for the remaining 14 days to examine microbial settlement and shedding. Microbiome analysis was performed on human skin and Nukadoko. We found that microorganisms from rice bran beds can temporarily settle on human skin but are shed quickly. Stirring rice bran beds by hand may have short-term effects on the skin microbiome. This study provides insights into the communication between human and food microbiomes in traditional Japanese fermented foods.
Collapse
Affiliation(s)
- Ryo Niwa
- BIOTA Inc., Tokyo, 101-0022, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Dominique Chen
- Faculty of Letters, Arts and Sciences, Waseda University, Tokyo, 162-8644, Japan
| | - Young ah Seong
- Faculty of Design & Engineering, Hosei University, Tokyo, 162-0843, Japan
| | - Kazuhiro Jo
- Faculty of Design, Kyushu University, Fukuoka, 815-8540, Japan
| | | |
Collapse
|
8
|
Ito Y, Amagai M. Controlling skin microbiome as a new bacteriotherapy for inflammatory skin diseases. Inflamm Regen 2022; 42:26. [PMID: 36045395 PMCID: PMC9434865 DOI: 10.1186/s41232-022-00212-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022] Open
Abstract
The skin serves as the interface between the human body and the environment and interacts with the microbial community. The skin microbiota consists of microorganisms, such as bacteria, fungi, mites, and viruses, and they fluctuate depending on the microenvironment defined by anatomical location and physiological function. The balance of interactions between the host and microbiota plays a pivotal role in the orchestration of skin homeostasis; however, the disturbance of the balance due to an alteration in the microbial communities, namely, dysbiosis, leads to various skin disorders. Recent developments in sequencing technology have provided new insights into the structure and function of skin microbial communities. Based on high-throughput sequencing analysis, a growing body of evidence indicates that a new treatment using live bacteria, termed bacteriotherapy, is a feasible therapeutic option for cutaneous diseases caused by dysbiosis. In particular, the administration of specific bacterial strains has been investigated as an exclusionary treatment strategy against pathogens associated with chronic skin disorders, whereas the safety, efficacy, and sustainability of this therapeutic approach using isolated live bacteria need to be further explored. In this review, we summarize our current understanding of the skin microbiota, as well as therapeutic strategies using characterized strains of live bacteria for skin inflammatory diseases. The ecosystem formed by interactions between the host and skin microbial consortium is still largely unexplored; however, advances in our understanding of the function of the skin microbiota at the strain level will lead to the development of new therapeutic methods.
Collapse
Affiliation(s)
- Yoshihiro Ito
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
9
|
Dagnelie MA, Poinas A, Dréno B. What is new in adult acne for the last 2 years: focus on acne pathophysiology and treatments. Int J Dermatol 2022; 61:1205-1212. [PMID: 35521784 DOI: 10.1111/ijd.16220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/07/2022] [Accepted: 03/22/2022] [Indexed: 11/27/2022]
Abstract
Acne affects more than 640 million people worldwide, including about 85% of adolescents. This inflammatory dermatosis affects the entire population, from teenagers to adults, which reinforces the need to investigate it. Furthermore, in adults, acne has serious consequences, including a psychological impact, low self-esteem, social isolation, and depression. Over the last years, the understanding of acne pathophysiology has improved, mainly thanks to the identification of the pivotal role of the microbiota. The aim of this review was to screen the most recent scientific literature on adult acne and the newly tested treatments. Clinically, therapeutic innovations for the treatment of acne have been recently developed, including pre/probiotics, new molecules, and innovative formulations associated, however, with fewer side effects. Moreover, clinical trials are underway to use off-label molecules that seem to be proving their value in the fight against adult acne.
Collapse
Affiliation(s)
- Marie-Ange Dagnelie
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes, France
| | - Alexandra Poinas
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes, France
| | - Brigitte Dréno
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes, France
| |
Collapse
|
10
|
Chen YJ, Weng YC. Skin microbiome in acne vulgaris, skin aging, and rosacea: An evidence-based review. DERMATOL SIN 2022. [DOI: 10.4103/ds.ds_28_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Baquero F, Saralegui C, Marcos-Mencía D, Ballestero L, Vañó-Galván S, Moreno-Arrones ÓM, Del Campo R. Epidermis as a Platform for Bacterial Transmission. Front Immunol 2021; 12:774018. [PMID: 34925344 PMCID: PMC8671829 DOI: 10.3389/fimmu.2021.774018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
The epidermis constitutes a continuous external layer covering the body, offering protection against bacteria, the most abundant living organisms that come into contact with this barrier. The epidermis is heavily colonized by commensal bacterial organisms that help protect against pathogenic bacteria. The highly regulated and dynamic interaction between the epidermis and commensals involves the host’s production of nutritional factors promoting bacterial growth together to chemical and immunological bacterial inhibitors. Signal trafficking ensures the system’s homeostasis; conditions that favor colonization by pathogens frequently foster commensal growth, thereby increasing the bacterial population size and inducing the skin’s antibacterial response, eliminating the pathogens and re-establishing the normal density of commensals. The microecological conditions of the epidermis favors Gram-positive organisms and are unsuitable for long-term Gram-negative colonization. However, the epidermis acts as the most important host-to-host transmission platform for bacteria, including those that colonize human mucous membranes. Bacteria are frequently shared by relatives, partners, and coworkers. The epidermal bacterial transmission platform of healthcare workers and visitors can contaminate hospitalized patients, eventually contributing to cross-infections. Epidermal transmission occurs mostly via the hands and particularly through fingers. The three-dimensional physical structure of the epidermis, particularly the fingertips, which have frictional ridges, multiplies the possibilities for bacterial adhesion and release. Research into the biology of bacterial transmission via the hands is still in its infancy; however, tribology, the science of interacting surfaces in relative motion, including friction, wear and lubrication, will certainly be an important part of it. Experiments on finger-to-finger transmission of microorganisms have shown significant interindividual differences in the ability to transmit microorganisms, presumably due to genetics, age, sex, and the gland density, which determines the physical, chemical, adhesive, nutritional, and immunological status of the epidermal surface. These studies are needed to optimize interventions and strategies for preventing the hand transmission of microorganisms.
Collapse
Affiliation(s)
- Fernando Baquero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Claudia Saralegui
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Daniel Marcos-Mencía
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Luna Ballestero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Sergio Vañó-Galván
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Madrid, Spain
| | - Óscar M Moreno-Arrones
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Madrid, Spain
| | - Rosa Del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Health Sciences, Universidad Alfonso X El Sabio, Madrid, Spain.,Centro de Investigación en Red en Enfermedades Infecciosas (CIBER-EEII), Madrid, Spain
| |
Collapse
|
12
|
Boxberger M, Cenizo V, Cassir N, La Scola B. Challenges in exploring and manipulating the human skin microbiome. MICROBIOME 2021; 9:125. [PMID: 34053468 PMCID: PMC8166136 DOI: 10.1186/s40168-021-01062-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/25/2021] [Indexed: 05/08/2023]
Abstract
The skin is the exterior interface of the human body with the environment. Despite its harsh physical landscape, the skin is colonized by diverse commensal microbes. In this review, we discuss recent insights into skin microbial populations, including their composition and role in health and disease and their modulation by intrinsic and extrinsic factors, with a focus on the pathobiological basis of skin aging. We also describe the most recent tools for investigating the skin microbiota composition and microbe-skin relationships and perspectives regarding the challenges of skin microbiome manipulation. Video abstract.
Collapse
Affiliation(s)
- Manon Boxberger
- IRD, AP-HM, MEPHI, Aix Marseille Université, Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | - Valérie Cenizo
- Groupe L’Occitane, R&D Department, Zone Industrielle Saint Maurice, 4100 Manosque, Alpes-de Haute-Provence France
| | - Nadim Cassir
- IRD, AP-HM, MEPHI, Aix Marseille Université, Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | - Bernard La Scola
- IRD, AP-HM, MEPHI, Aix Marseille Université, Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
- IRD, AP-HM, SSA, VITROME, Aix Marseille Université, Marseille, France
| |
Collapse
|
13
|
Lousada MB, Lachnit T, Edelkamp J, Rouillé T, Ajdic D, Uchida Y, Di Nardo A, Bosch TCG, Paus R. Exploring the human hair follicle microbiome. Br J Dermatol 2021; 184:802-815. [PMID: 32762039 DOI: 10.1111/bjd.19461] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2020] [Indexed: 12/31/2022]
Abstract
Human hair follicles (HFs) carry complex microbial communities that differ from the skin surface microbiota. This likely reflects that the HF epithelium differs from the epidermal barrier in that it provides a moist, less acidic, and relatively ultraviolet light-protected environment, part of which is immune-privileged, thus facilitating microbial survival. Here we review the current understanding of the human HF microbiome and its potential physiological and pathological functions, including in folliculitis, acne vulgaris, hidradenitis suppurativa, alopecia areata and cicatricial alopecias. While reviewing the main human HF bacteria (such as Propionibacteria, Corynebacteria, Staphylococci and Streptococci), viruses, fungi and parasites as human HF microbiome constituents, we advocate a broad view of the HF as an integral part of the human holobiont. Specifically, we explore how the human HF may manage its microbiome via the regulated production of antimicrobial peptides (such as cathelicidin, psoriasin, RNAse7 and dermcidin) by HF keratinocytes, how the microbiome may impact on cytokine and chemokine release from the HF, and examine hair growth-modulatory effects of antibiotics, and ask whether the microbiome affects hair growth in turn. We highlight major open questions and potential novel approaches to the management of hair diseases by targeting the HF microbiome.
Collapse
Affiliation(s)
- M B Lousada
- Monasterium Laboratory, Münster, Germany
- Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - T Lachnit
- Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - J Edelkamp
- Monasterium Laboratory, Münster, Germany
| | - T Rouillé
- Monasterium Laboratory, Münster, Germany
| | - D Ajdic
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Y Uchida
- Monasterium Laboratory, Münster, Germany
| | - A Di Nardo
- Department of Dermatology, University of California, San Diego, CA, USA
| | - T C G Bosch
- Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - R Paus
- Monasterium Laboratory, Münster, Germany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| |
Collapse
|
14
|
Skowron K, Bauza-Kaszewska J, Kraszewska Z, Wiktorczyk-Kapischke N, Grudlewska-Buda K, Kwiecińska-Piróg J, Wałecka-Zacharska E, Radtke L, Gospodarek-Komkowska E. Human Skin Microbiome: Impact of Intrinsic and Extrinsic Factors on Skin Microbiota. Microorganisms 2021; 9:543. [PMID: 33808031 PMCID: PMC7998121 DOI: 10.3390/microorganisms9030543] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
The skin is the largest organ of the human body and it protects the body from the external environment. It has become the topic of interest of researchers from various scientific fields. Microorganisms ensure the proper functioning of the skin. Of great importance, are the mutual relations between such microorganisms and their responses to environmental impacts, as dysbiosis may contribute to serious skin diseases. Molecular methods, used for microorganism identification, allow us to gain a better understanding of the skin microbiome. The presented article contains the latest reports on the skin microbiota in health and disease. The review discusses the relationship between a properly functioning microbiome and the body's immune system, as well as the impact of internal and external factors on the human skin microbiome.
Collapse
Affiliation(s)
- Krzysztof Skowron
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (Z.K.); (N.W.-K.); (K.G.-B.); (J.K.-P.); (E.G.-K.)
| | - Justyna Bauza-Kaszewska
- Department of Microbiology and Food Technology, UTP University of Science and Technology, 85-029 Bydgoszcz, Poland;
| | - Zuzanna Kraszewska
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (Z.K.); (N.W.-K.); (K.G.-B.); (J.K.-P.); (E.G.-K.)
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (Z.K.); (N.W.-K.); (K.G.-B.); (J.K.-P.); (E.G.-K.)
| | - Katarzyna Grudlewska-Buda
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (Z.K.); (N.W.-K.); (K.G.-B.); (J.K.-P.); (E.G.-K.)
| | - Joanna Kwiecińska-Piróg
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (Z.K.); (N.W.-K.); (K.G.-B.); (J.K.-P.); (E.G.-K.)
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, 31 C.K. Norwida St., 50-375 Wrocław, Poland;
| | - Laura Radtke
- Faculty of Civil and Environmental Engineering and Architecture, UTP University of Science and Technology in Bydgoszcz, Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland;
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (Z.K.); (N.W.-K.); (K.G.-B.); (J.K.-P.); (E.G.-K.)
| |
Collapse
|
15
|
Callewaert C, Knödlseder N, Karoglan A, Güell M, Paetzold B. Skin microbiome transplantation and manipulation: Current state of the art. Comput Struct Biotechnol J 2021; 19:624-631. [PMID: 33510866 PMCID: PMC7806958 DOI: 10.1016/j.csbj.2021.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/02/2021] [Accepted: 01/02/2021] [Indexed: 12/13/2022] Open
Abstract
Many skin conditions are associated with an imbalance in the skin microbiome. In recent years, the skin microbiome has become a hot topic, for both therapeutic and cosmetic purposes. The possibility of manipulating the human skin microbiome to address skin conditions has opened exciting new paths for therapy. Here we review the skin microbiome manipulation strategies, ranging from skin microbiome transplantation, over skin bacteriotherapy to the use of prebiotics, probiotics and postbiotics. We summarize all efforts undertaken to exchange, manipulate, transplant or selectively apply the skin microbiome to date. Multiple microbial groups have been targeted, since they have been proven to be beneficial for skin health. We focus on the most common skin disorders and their associated skin microbiome dysbiosis and we review the existing scientific data and clinical trials undertaken to combat these skin conditions. The skin microbiome represents a novel platform for therapy. Transplantation of a complete microbiome or application of single strains has demonstrated beneficial therapeutic application.
Collapse
Affiliation(s)
- Chris Callewaert
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, Ghent, Belgium
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Nastassia Knödlseder
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Ante Karoglan
- Department of Dermatology, University Hospital Magdeburg, University of Magdeburg, Magdeburg, Germany
| | - Marc Güell
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain
| | | |
Collapse
|
16
|
Magnifico I, Petronio Petronio G, Venditti N, Cutuli MA, Pietrangelo L, Vergalito F, Mangano K, Zella D, Di Marco R. Atopic Dermatitis as a Multifactorial Skin Disorder. Can the Analysis of Pathophysiological Targets Represent the Winning Therapeutic Strategy? Pharmaceuticals (Basel) 2020; 13:E411. [PMID: 33266440 PMCID: PMC7700401 DOI: 10.3390/ph13110411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Atopic dermatitis (AD) is a pathological skin condition with complex aetiological mechanisms that are difficult to fully understand. Scientific evidence suggests that of all the causes, the impairment of the skin barrier and cutaneous dysbiosis together with immunological dysfunction can be considered as the two main factors involved in this pathological skin condition. The loss of the skin barrier function is often linked to dysbiosis and immunological dysfunction, with an imbalance in the ratio between the pathogen Staphylococcus aureus and/or other microorganisms residing in the skin. The bibliographic research was conducted on PubMed, using the following keywords: 'atopic dermatitis', 'bacterial therapy', 'drug delivery system' and 'alternative therapy'. The main studies concerning microbial therapy, such as the use of bacteria and/or part thereof with microbiota transplantation, and drug delivery systems to recover skin barrier function have been summarized. The studies examined show great potential in the development of effective therapeutic strategies for AD and AD-like symptoms. Despite this promise, however, future investigative efforts should focus both on the replication of some of these studies on a larger scale, with clinical and demographic characteristics that reflect the general AD population, and on the process of standardisation, in order to produce reliable data.
Collapse
Affiliation(s)
- Irene Magnifico
- Department of Health and Medical Sciences “V. Tiberio” Università degli Studi del Molise, 8600 Campobasso, Italy; (I.M.); (N.V.); (M.A.C.); (L.P.); (R.D.M.)
| | - Giulio Petronio Petronio
- Department of Health and Medical Sciences “V. Tiberio” Università degli Studi del Molise, 8600 Campobasso, Italy; (I.M.); (N.V.); (M.A.C.); (L.P.); (R.D.M.)
| | - Noemi Venditti
- Department of Health and Medical Sciences “V. Tiberio” Università degli Studi del Molise, 8600 Campobasso, Italy; (I.M.); (N.V.); (M.A.C.); (L.P.); (R.D.M.)
| | - Marco Alfio Cutuli
- Department of Health and Medical Sciences “V. Tiberio” Università degli Studi del Molise, 8600 Campobasso, Italy; (I.M.); (N.V.); (M.A.C.); (L.P.); (R.D.M.)
| | - Laura Pietrangelo
- Department of Health and Medical Sciences “V. Tiberio” Università degli Studi del Molise, 8600 Campobasso, Italy; (I.M.); (N.V.); (M.A.C.); (L.P.); (R.D.M.)
| | - Franca Vergalito
- Department of Agricultural, Environmental and Food Sciences (DiAAA), Università degli Studi del Molise, 86100 Campobasso, Italy;
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, Universitá degli Studi di Catania, 95123 Catania, Italy;
| | - Davide Zella
- Department of Biochemistry and Molecular Biology, School of Medicine, Institute of Human Virology, University of Maryland, Baltimore, MD 21201, USA;
| | - Roberto Di Marco
- Department of Health and Medical Sciences “V. Tiberio” Università degli Studi del Molise, 8600 Campobasso, Italy; (I.M.); (N.V.); (M.A.C.); (L.P.); (R.D.M.)
| |
Collapse
|