1
|
Servadei F, Bonfiglio R, Sisto R, Casciardi S, Giacobbi E, Scioli MP, Palumbo V, Buonomo CO, Melino G, Mauriello A, Scimeca M. Mercury Bioaccumulation in Female Breast Cancer Is Associated to CXCR4 Expression. Int J Mol Sci 2025; 26:4427. [PMID: 40362664 PMCID: PMC12073024 DOI: 10.3390/ijms26094427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025] Open
Abstract
The growing incidence of breast cancer over time suggests that environmental factors might contribute to the underlying causes of the disease. Mercury, a toxic metal classified as a Substance of Very High Concern, accumulates in the body through contaminated food, air, water, and soil, raising concerns about its role in tumor biology. The main aim of this study was to identify the possible associations between in situ mercury bioaccumulation and the molecular features of breast cancer. To achieve this, a total of 26 breast cancer cases were analyzed using an integrated approach that combined DNA and RNA sequencing, histological analysis, and inductively coupled plasma mass spectrometry (ICP-MS) to assess mercury bioaccumulation. Mercury was detected in 72% of the cases. A significant positive correlation was found between mercury bioaccumulation and CXCR4 expression in breast cancer tissues. Bioinformatic analysis further revealed that CXCR4 expression was significantly higher in metastatic tissues compared to primary tumors. These findings suggest that mercury accumulation may influence tumor biology through the CXCR4-CXCL12 signaling pathway, highlighting a potential mechanism by which mercury contributes to breast cancer progression.
Collapse
Affiliation(s)
- Francesca Servadei
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.S.); (R.B.); (E.G.); (M.S.)
| | - Rita Bonfiglio
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.S.); (R.B.); (E.G.); (M.S.)
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, 00078 Rome, Italy; (R.S.); (S.C.)
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, 00078 Rome, Italy; (R.S.); (S.C.)
| | - Erica Giacobbi
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.S.); (R.B.); (E.G.); (M.S.)
| | - Maria Paola Scioli
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.S.); (R.B.); (E.G.); (M.S.)
| | - Valeria Palumbo
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.S.); (R.B.); (E.G.); (M.S.)
| | - Claudio Oreste Buonomo
- Breast Unit, Department of Surgical Science, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.S.); (R.B.); (E.G.); (M.S.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.S.); (R.B.); (E.G.); (M.S.)
| | - Manuel Scimeca
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.S.); (R.B.); (E.G.); (M.S.)
| |
Collapse
|
2
|
Lockwood TE, Bordin DCM, Westerhausen MT, Bishop DP. Preparation of gelatine calibration standards for LA-ICP-MS bioimaging with 266 nm laser ablation systems. Talanta 2025; 283:127150. [PMID: 39504864 DOI: 10.1016/j.talanta.2024.127150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/17/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Gelatine is the external standard matrix of choice for quantitative biomaging of elements and metal tags in tissue. Its ablation characteristics closely match that of tissue when using 193 and 213 nm lasers, but this has not been demonstrated at 266 nm. With the interest in 266 nm laser ablation systems growing due to the selective ablation of tissue over glass substrates, this gap needed to be investigated. Optical profilometry was used to map the line crater volumes of gelatine and murine brain and quadriceps tissues ablated with a 266 nm laser. Raw gelatine did not ablate in a similar manner to either tissue type and ultra-violet absorbent chemical additives were required to match ablation volumes. Addition of either 4 g L-1l-tryptophan or 3 g L-1 gallic acid was used to match the ablation volume of murine quadriceps. Murine brain tissue had an increased ablation volume over the quadriceps tissue (1400 ± 130 versus 1100 ± 160 μm3 at 1.5 J cm-2), and the addition of 5 g L-1 gallic acid and the use of low laser energy (≤1.5 J cm-2) was required to match the ablation of brain tissue. The modified standards were tested on a 213 nm laser, and the addition of either additive to gelatine did not affect ablation volume. The effect of additives on fractionation and two-phase sample transport was investigated, no fractionation was observed, and a decrease in two-phase sample transport of up to 60 % was obtained with the modified gelatine. This decrease was caused by the reduced laser energy required for ablation. Finally, the potential uses of optical profilometry as a standardisation tool are discussed.
Collapse
Affiliation(s)
- Thomas E Lockwood
- Hyphenated Mass Spectrometry Laboratory, University of Technology Sydney, Ultimo, NSW, Australia
| | - Dayanne C M Bordin
- Hyphenated Mass Spectrometry Laboratory, University of Technology Sydney, Ultimo, NSW, Australia
| | - Mika T Westerhausen
- Hyphenated Mass Spectrometry Laboratory, University of Technology Sydney, Ultimo, NSW, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
3
|
Hangan T, Bjorklund G, Chirila S. Exploring the Potential Link between Aluminum-Containing Deodorants/Antiperspirants and Breast Cancer: A Comprehensive Review. Curr Med Chem 2025; 32:417-433. [PMID: 38173070 DOI: 10.2174/0109298673269343231025070053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/31/2023] [Accepted: 09/22/2023] [Indexed: 01/05/2024]
Abstract
The potential association between aluminum-containing deodorants/antiperspirants and breast cancer has been investigated and debated. This paper comprehensively analyzes existing literature to examine the evidence and provide insights into this relationship. This comprehensive review discusses aspects related to the absorption and distribution of aluminum compounds, its effects on the induction of oxidative stress, the estrogenic activity of aluminum, and potential disruption of hormonal pathways, and the potential role in breast cancer induction. Currently, available research, consisting of epidemiological studies as well as clinical trials, together with meta-analyses and previously published reviews conducted on identifying the relationship between aluminum-containing deodorants/antiperspirants and the risk of breast cancer were also analyzed and discussed. Societal factors, personal hygiene considerations, and lifestyle changes contribute to the increased usage of antiperspirants, but they do not establish a direct causal connection with breast cancer. Further research employing larger-scale studies and rigorous methodologies must validate the existing findings and explore the underlying mechanisms involved. Continued multidisciplinary research efforts and collaboration between researchers, regulatory bodies, and public health authorities are vital to developing a more definitive understanding of this complex topic.
Collapse
Affiliation(s)
- Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| | - Geir Bjorklund
- Department of Research, Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Sergiu Chirila
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| |
Collapse
|
4
|
Pamphlett R, Bishop DP. Elemental biomapping of human tissues suggests toxic metals such as mercury play a role in the pathogenesis of cancer. Front Oncol 2024; 14:1420451. [PMID: 38974240 PMCID: PMC11224479 DOI: 10.3389/fonc.2024.1420451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Toxic metals such as mercury, lead, and cadmium have multiple carcinogenic capacities, including the ability to damage DNA and incite inflammation. Environmental toxic metals have long been suspected to play a role in the pathogenesis of cancer, but convincing evidence from epidemiological studies that toxic metals are risk factors for common neoplasms has been difficult to gain. Another approach is to map the location of potentially toxic elements in normal human cells where common cancers originate, as well as in the cancers themselves. In this Perspective, studies are summarized that have used elemental biomapping to detect toxic metals such as mercury in human cells. Two elemental biomapping techniques, autometallography and laser ablation-inductively coupled-mass spectrometry imaging, have shown that multiple toxic metals exist in normal human cells that are particularly prone to developing cancer, and are also seen in neoplastic cells of breast and pancreatic tumors. Biomapping studies of animals exposed to toxic metals show that these animals take up toxic metals in the same cells as humans. The finding of toxic metals such as mercury in human cells prone to cancer could explain the increasing global incidence of many cancers since toxic metals continue to accumulate in the environment. The role of toxic metals in cancer remains to be confirmed experimentally, but to decrease cancer risk a precautionary approach would be to reduce emissions of mercury and other toxic metals into the environment from industrial and mining activities and from the burning of fossil fuels.
Collapse
Affiliation(s)
- Roger Pamphlett
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - David P. Bishop
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Defourny SV, Caioni G, Bellocci M, Melai V, Scortichini G, Salini R, Martino M, Di Teodoro G, Cocco A, Cantelmi MC, Merola C, Petrini A. Domestic dogs as environmental sentinel in comparative toxicologic pathology: Assessment of metals and rare earth elements concentrations in healthy and neoplastic mammary glands. One Health 2024; 18:100749. [PMID: 38765761 PMCID: PMC11101696 DOI: 10.1016/j.onehlt.2024.100749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/04/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024] Open
Abstract
Quantification of trace element concentrations in human and animal tissues has acquired great importance in the last few years, considering the pivotal role of these elements in several physiological and pathological processes. Variations in their concentrations appear to have a role in the development and advancement of diseases in both humans and animals, for example, cancer. The purpose of this study was to investigate the concentration of rare earth elements and metals in healthy and neoplastic Formalin-Fixed Paraffin-Embedded (FFPE) mammary gland tissue of dogs. All samples were processed to have a quantitative determination of inorganic elements including metals of known toxicological interest such as Pb, Cd, Tl, As, Hg, the trace elements Mn, Fe, Co, Cu, Zn, Se, and other elements including Cr, V, Mo, Ni, Sb, W, Sn. Moreover, rare earth elements (REEs) (Sc, Y, Lu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) were also investigated. Cu and Mo concentrations in mammary cancerous tissue were greater than those in normal mammary glands (p < 0.05). In non-neoplastic tissue increased concentrations of Cd, Co, Ni, Tl, and V were also reported (p < 0.05). The mammary tissue of healthy individuals had greater concentrations of REEs than the neoplastic mammary glands (p < 0.05). The results of our study confirmed differences in mammary inorganic element concentrations between healthy and neoplastic groups, highlighting the potential relevance of these fluctuations in toxicologic pathology.
Collapse
Affiliation(s)
- Sabrina V.P. Defourny
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Giulia Caioni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Mirella Bellocci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Valeria Melai
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Giampiero Scortichini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Romolo Salini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Michele Martino
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Giovanni Di Teodoro
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Antonio Cocco
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Maria Chiara Cantelmi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Carmine Merola
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Antonio Petrini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| |
Collapse
|
6
|
Pamphlett R, Bishop DP. The toxic metal hypothesis for neurological disorders. Front Neurol 2023; 14:1173779. [PMID: 37426441 PMCID: PMC10328356 DOI: 10.3389/fneur.2023.1173779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Multiple sclerosis and the major sporadic neurogenerative disorders, amyotrophic lateral sclerosis, Parkinson disease, and Alzheimer disease are considered to have both genetic and environmental components. Advances have been made in finding genetic predispositions to these disorders, but it has been difficult to pin down environmental agents that trigger them. Environmental toxic metals have been implicated in neurological disorders, since human exposure to toxic metals is common from anthropogenic and natural sources, and toxic metals have damaging properties that are suspected to underlie many of these disorders. Questions remain, however, as to how toxic metals enter the nervous system, if one or combinations of metals are sufficient to precipitate disease, and how toxic metal exposure results in different patterns of neuronal and white matter loss. The hypothesis presented here is that damage to selective locus ceruleus neurons from toxic metals causes dysfunction of the blood-brain barrier. This allows circulating toxicants to enter astrocytes, from where they are transferred to, and damage, oligodendrocytes, and neurons. The type of neurological disorder that arises depends on (i) which locus ceruleus neurons are damaged, (ii) genetic variants that give rise to susceptibility to toxic metal uptake, cytotoxicity, or clearance, (iii) the age, frequency, and duration of toxicant exposure, and (iv) the uptake of various mixtures of toxic metals. Evidence supporting this hypothesis is presented, concentrating on studies that have examined the distribution of toxic metals in the human nervous system. Clinicopathological features shared between neurological disorders are listed that can be linked to toxic metals. Details are provided on how the hypothesis applies to multiple sclerosis and the major neurodegenerative disorders. Further avenues to explore the toxic metal hypothesis for neurological disorders are suggested. In conclusion, environmental toxic metals may play a part in several common neurological disorders. While further evidence to support this hypothesis is needed, to protect the nervous system it would be prudent to take steps to reduce environmental toxic metal pollution from industrial, mining, and manufacturing sources, and from the burning of fossil fuels.
Collapse
Affiliation(s)
- Roger Pamphlett
- Department of Pathology, Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - David P. Bishop
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Wright AL, Earley ET, Austin C, Arora M. Equine odontoclastic tooth resorption and hypercementosis (EOTRH): microspatial distribution of trace elements in hypercementosis-affected and unaffected hard dental tissues. Sci Rep 2023; 13:5048. [PMID: 36977746 PMCID: PMC10050172 DOI: 10.1038/s41598-023-32016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Equine Odontoclastic Tooth Resorption and Hypercementosis (EOTRH) is a common, painful and poorly understood disease. Enamel, dentin and cementum accumulate both essential and toxic trace elements during mineralization. Characterization of the spatial accumulation pattern of trace elements may provide insight into the role that toxic elements play and inform biological processes affecting these hard dental tissues for future research. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to map the distribution of multiple trace elements and heavy metals across equine healthy and diseased (hypercementosis-affected) hard dental tissues among four teeth extracted from horses with EOTRH. Results showed banding patterns of some trace elements (lead, strontium, barium), reflecting the temporal component of accumulation of trace elements during dentin mineralization. Essential elements zinc and magnesium did not show banding patterns. Comparison to the unaffected cementum and dentin adjacent to the hypercementosis region showed that there is an underlying incremental pattern in the uptake of some metals with spatial irregularities. This supports a possible metabolic change involved in hypercementosis lesion development. This represents the first use of LA-ICP-MS to study the microspatial distribution of trace elements in equine teeth, establishing a baseline for elemental distribution in normal and EOTRH impacted dental hard tissue.
Collapse
Affiliation(s)
- Alexandra L Wright
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 930 Campus Rd, Ithaca, NY, 14850, USA.
| | - Edward T Earley
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 930 Campus Rd, Ithaca, NY, 14850, USA
| | - Christine Austin
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manish Arora
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Fagbohun OF, Gillies CR, Murphy KPJ, Rupasinghe HPV. Role of Antioxidant Vitamins and Other Micronutrients on Regulations of Specific Genes and Signaling Pathways in the Prevention and Treatment of Cancer. Int J Mol Sci 2023; 24:ijms24076092. [PMID: 37047063 PMCID: PMC10093825 DOI: 10.3390/ijms24076092] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Cancer is an escalating global issue, with 19.3 million new cases and 9.9 million deaths in 2020. Therefore, effective approaches to prevent cancer are urgently required. Diet plays a significant role in determining cancer risk. Nutrients and food bioactives influence specific signaling pathways in the body. Recently, there have been significant advances in cancer prevention research through nutrigenomics or with the effects of dietary components on the genome. Google Scholar, PubMed, and Scopus databases were used to search for peer-reviewed articles between 2017 and 2023. Criteria used were vitamins, minerals, tumors, cancer, genes, inflammation, signaling pathways, and nutrigenomics. Among the total of 1857 articles available, the highest relevant 90 articles that specifically discussed signaling pathways and genes on cancer cell lines and human cancer patients were selected and reviewed. Food sources are rich in antioxidant micronutrients, which are effective in activating or regulating signaling pathways involved in pathogenesis and cancer therapy by activating enzymes such as mitogen-activated protein kinase (MAPK), protein kinase C (PKC), and phosphatidylinositol 3-kinase (PI3K). The micronutrients are involved in the regulation of β-catenin (WNT/β-catenin) including mutations in Kras and epidermal growth factor receptor (EGFR) alongside inhibition of the NF-kB pathway. The most common mechanism of cancer prevention by these micronutrients is their antioxidative, anti-inflammation, and anti-apoptosis effects. This review discusses how nutrigenomics is essential and beneficial for developing cancer prevention and treatment approaches.
Collapse
Affiliation(s)
- Oladapo F Fagbohun
- Department Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 2R8, Canada
| | - Caroline R Gillies
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 2R8, Canada
| | - Kieran P J Murphy
- Department of Medical Imaging, Faculty of Medicine, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - H P Vasantha Rupasinghe
- Department Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 2R8, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
9
|
Potentially toxic elements in the brains of people with multiple sclerosis. Sci Rep 2023; 13:655. [PMID: 36635465 PMCID: PMC9837144 DOI: 10.1038/s41598-022-27169-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
Potentially toxic elements such as lead and aluminium have been proposed to play a role in the pathogenesis of multiple sclerosis (MS), since their neurotoxic mechanisms mimic many of the pathogenetic processes in MS. We therefore examined the distribution of several potentially toxic elements in the autopsied brains of people with and without MS, using two methods of elemental bio-imaging. Toxicants detected in the locus ceruleus were used as indicators of past exposures. Autometallography of paraffin sections from multiple brain regions of 21 MS patients and 109 controls detected inorganic mercury, silver, or bismuth in many locus ceruleus neurons of both groups, and in widespread blood vessels, oligodendrocytes, astrocytes, and neurons of four MS patients and one control. Laser ablation-inductively coupled plasma-mass spectrometry imaging of pons paraffin sections from all MS patients and 12 controls showed that combinations of iron, silver, lead, aluminium, mercury, nickel, and bismuth were present more often in the locus ceruleus of MS patients and were located predominantly in white matter tracts. Based on these results, we propose that metal toxicants in locus ceruleus neurons weaken the blood-brain barrier, enabling multiple interacting toxicants to pass through blood vessels and enter astrocytes and oligodendroglia, leading to demyelination.
Collapse
|
10
|
Łuczkowski M, Padjasek M, Ba Tran J, Hemmingsen L, Kerber O, Habjanič J, Freisinger E, Krężel A. An Extremely Stable Interprotein Tetrahedral Hg(Cys) 4 Core Forms in the Zinc Hook Domain of Rad50 Protein at Physiological pH. Chemistry 2022; 28:e202202738. [PMID: 36222310 PMCID: PMC9828754 DOI: 10.1002/chem.202202738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 11/09/2022]
Abstract
In nature, thiolate-based systems are the primary targets of divalent mercury (HgII ) toxicity. The formation of Hg(Cys)x cores in catalytic and structural protein centers mediates mercury's toxic effects and ultimately leads to cellular damage. Multiple studies have revealed distinct HgII -thiolate coordination preferences, among which linear HgII complexes are the most commonly observed in solution at physiological pH. Trigonal or tetrahedral geometries are formed at basic pH or in tight intraprotein Cys-rich metal sites. So far, no interprotein tetrahedral HgII complex formed at neutral pH has been reported. Rad50 protein is a part of the multiprotein MRN complex, a major player in DNA damage-repair processes. Its central region consists of a conserved CXXC motif that enables dimerization of two Rad50 molecules by coordinating ZnII . Dimerized motifs form a unique interprotein zinc hook domain (Hk) that is critical for the biological activity of the MRN. Using a series of length-differentiated peptide models of the Pyrococcus furiosus zinc hook domain, we investigated its interaction with HgII . Using UV-Vis, CD, PAC, and 199 Hg NMR spectroscopies as well as anisotropy decay, we discovered that all Rad50 fragments preferentially form homodimeric Hg(Hk)2 species with a distorted tetrahedral HgS4 coordination environment at physiological pH; this is the first example of an interprotein mercury site displaying tetrahedral geometry in solution. At higher HgII content, monomeric HgHk complexes with linear geometry are formed. The Hg(Cys)4 core of Rad50 is extremely stable and does not compete with cyanides, NAC, or DTT. Applying ITC, we found that the stability constant of the Rad50 Hg(Hk)2 complex is approximately three orders of magnitude higher than those of the strongest HgII complexes known to date.
Collapse
Affiliation(s)
- Marek Łuczkowski
- Department of Chemical BiologyFaculty of BiotechnologyUniversity of WrocławJoliot-Curie 14a50-383WrocławPoland
| | - Michał Padjasek
- Department of Chemical BiologyFaculty of BiotechnologyUniversity of WrocławJoliot-Curie 14a50-383WrocławPoland
| | - Józef Ba Tran
- Department of Chemical BiologyFaculty of BiotechnologyUniversity of WrocławJoliot-Curie 14a50-383WrocławPoland
| | - Lars Hemmingsen
- Department of ChemistryUniversity of CopenhagenUniversitetsparken 52100København ØDenmark
| | - Olga Kerber
- Department of Chemical BiologyFaculty of BiotechnologyUniversity of WrocławJoliot-Curie 14a50-383WrocławPoland
| | - Jelena Habjanič
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZürichSwitzerland
| | - Eva Freisinger
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZürichSwitzerland
| | - Artur Krężel
- Department of Chemical BiologyFaculty of BiotechnologyUniversity of WrocławJoliot-Curie 14a50-383WrocławPoland
| |
Collapse
|
11
|
Mercury and cancer: Where are we now after two decades of research? Food Chem Toxicol 2022; 164:113001. [DOI: 10.1016/j.fct.2022.113001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022]
|
12
|
Nickel's Role in Pancreatic Ductal Adenocarcinoma: Potential Involvement of microRNAs. TOXICS 2022; 10:toxics10030148. [PMID: 35324773 PMCID: PMC8952337 DOI: 10.3390/toxics10030148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancer types with a limited overall survival rate due to the asymptomatic progression of symptoms in metastatic stages of the malignancy and the lack of an early reliable diagnostic biomarker. MicroRNAs (miRs/miRNAs) are small (~18–24 nucleotides), endogenous, non-coding RNAs, which are closely linked to the development of numerous malignancies comprising PDAC. Recent studies have described the role of environmental pollutants such as nickel (Ni) in PDAC, but the mechanisms of Ni-mediated toxicity in cancer are still not completely understood. Specifically, Ni has been found to alter the expression and function of miRs in several malignancies, leading to changes in target gene expression. In this study, we found that levels of Ni were significantly higher in cancerous tissue, thus implicating Ni in pancreatic carcinogenesis. Hence, in vitro studies followed by using both normal and pancreatic tumor cell lines and increasing Ni concentration increased lethality. Comparing LC50 values, Ni-acetate groups demonstrated lower values needed than in NiCl2 groups, suggesting greater Ni-acetate. Panc-10.05 cell line appeared the most sensitive to Ni compounds. Exposure to Ni-acetate resulted in an increased phospho-AKT, and decreased FOXO1 expression in Panc-10.05 cells, while NiCl2 also increased PTEN expression in Panc-10.05 cells. Specifically, following NiCl2 exposure to PDAC cells, the expression levels of miR-221 and miR-155 were significantly upregulated, while the expression levels of miR-126 were significantly decreased. Hence, our study has suggested pilot insights to indicate that the environmental pollutant Ni plays an important role in the progression of PDAC by promoting an association between miRs and Ni exposure during PDAC pathogenesis.
Collapse
|
13
|
Altered Elemental Distribution in Male Rat Brain Tissue as a Predictor of Glioblastoma Multiforme Growth-Studies Using SR-XRF Microscopy. Int J Mol Sci 2022; 23:ijms23020703. [PMID: 35054889 PMCID: PMC8775692 DOI: 10.3390/ijms23020703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/04/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a particularly malignant primary brain tumor. Despite enormous advances in the surgical treatment of cancer, radio- and chemotherapy, the average survival of patients suffering from this cancer does not usually exceed several months. For obvious ethical reasons, the search and testing of the new drugs and therapies of GBM cannot be carried out on humans, and for this purpose, animal models of the disease are most often used. However, to assess the efficacy and safety of the therapy basing on these models, a deep knowledge of the pathological changes associated with tumor development in the animal brain is necessary. Therefore, as part of our study, the synchrotron radiation-based X-ray fluorescence microscopy was applied for multi-elemental micro-imaging of the rat brain in which glioblastoma develops. Elemental changes occurring in animals after the implantation of two human glioma cell lines as well as the cells taken directly from a patient suffering from GBM were compared. Both the extent and intensity of elemental changes strongly correlated with the regions of glioma growth. The obtained results showed that the observation of elemental anomalies accompanying tumor development within an animal's brain might facilitate our understanding of the pathogenesis and progress of GBM and also determine potential biomarkers of its extension. The tumors appearing in a rat's brain were characterized by an increased accumulation of Fe and Se, whilst the tissue directly surrounding the tumor presented a higher accumulation of Cu. Furthermore, the results of the study allow us to consider Se as a potential elemental marker of GBM progression.
Collapse
|
14
|
The prevalence of inorganic mercury in human cells increases during aging but decreases in the very old. Sci Rep 2021; 11:16714. [PMID: 34408264 PMCID: PMC8373952 DOI: 10.1038/s41598-021-96359-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/30/2021] [Indexed: 11/09/2022] Open
Abstract
Successful aging is likely to involve both genetic and environmental factors, but environmental toxicants that accelerate aging are not known. Human exposure to mercury is common, and mercury has genotoxic, autoimmune, and free radical effects which could contribute to age-related disorders. The presence of inorganic mercury was therefore assessed in the organs of 170 people aged 1-104 years to determine the prevalence of mercury in human tissues at different ages. Mercury was found commonly in cells of the brain, kidney, thyroid, anterior pituitary, adrenal medulla and pancreas. The prevalence of mercury in these organs increased during aging but decreased in people aged over 80 years. People with mercury in one organ usually also had mercury in several others. In conclusion, the prevalence of inorganic mercury in human organs increases with age. The relative lack of tissue mercury in the very old could account for the flattened mortality rate and reduced incidence of cancer in this advanced age group. Since mercury may accelerate aging, efforts to reduce atmospheric mercury pollution could improve the chances of future successful aging.
Collapse
|
15
|
Doble PA, de Vega RG, Bishop DP, Hare DJ, Clases D. Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Imaging in Biology. Chem Rev 2021; 121:11769-11822. [PMID: 34019411 DOI: 10.1021/acs.chemrev.0c01219] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elemental imaging gives insight into the fundamental chemical makeup of living organisms. Every cell on Earth is comprised of a complex and dynamic mixture of the chemical elements that define structure and function. Many disease states feature a disturbance in elemental homeostasis, and understanding how, and most importantly where, has driven the development of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) as the principal elemental imaging technique for biologists. This review provides an outline of ICP-MS technology, laser ablation cell designs, imaging workflows, and methods of quantification. Detailed examples of imaging applications including analyses of cancers, elemental uptake and accumulation, plant bioimaging, nanomaterials in the environment, and exposure science and neuroscience are presented and discussed. Recent incorporation of immunohistochemical workflows for imaging biomolecules, complementary and multimodal imaging techniques, and image processing methods is also reviewed.
Collapse
Affiliation(s)
- Philip A Doble
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Raquel Gonzalez de Vega
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - David P Bishop
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Dominic J Hare
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia.,School of BioSciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - David Clases
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| |
Collapse
|
16
|
Pamphlett R, Doble PA, Bishop DP. The Prevalence of Inorganic Mercury in Human Kidneys Suggests a Role for Toxic Metals in Essential Hypertension. TOXICS 2021; 9:67. [PMID: 33801008 PMCID: PMC8004013 DOI: 10.3390/toxics9030067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
The kidney plays a dominant role in the pathogenesis of essential hypertension, but the initial pathogenic events in the kidney leading to hypertension are not known. Exposure to mercury has been linked to many diseases including hypertension in epidemiological and experimental studies, so we studied the distribution and prevalence of mercury in the human kidney. Paraffin sections of kidneys were available from 129 people ranging in age from 1 to 104 years who had forensic/coronial autopsies. One individual had injected himself with metallic mercury, the other 128 were from varied clinicopathological backgrounds without known exposure to mercury. Sections were stained for inorganic mercury using autometallography. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used on six samples to confirm the presence of autometallography-detected mercury and to look for other toxic metals. In the 128 people without known mercury exposure, mercury was found in: (1) proximal tubules of the cortex and Henle thin loops of the medulla, in 25% of kidneys (and also in the man who injected himself with mercury), (2) proximal tubules only in 16% of kidneys, and (3) Henle thin loops only in 23% of kidneys. The age-related proportion of people who had any mercury in their kidney was 0% at 1-20 years, 66% at 21-40 years, 77% at 41-60 years, 84% at 61-80 years, and 64% at 81-104 years. LA-ICP-MS confirmed the presence of mercury in samples staining with autometallography and showed cadmium, lead, iron, nickel, and silver in some kidneys. In conclusion, mercury is found commonly in the adult human kidney, where it appears to accumulate in proximal tubules and Henle thin loops until an advanced age. Dysfunctions of both these cortical and medullary regions have been implicated in the pathogenesis of essential hypertension, so these findings suggest that further studies of the effects of mercury on blood pressure are warranted.
Collapse
Affiliation(s)
- Roger Pamphlett
- Discipline of Pathology, Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney 2050, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney 2050, Australia
| | - Philip A. Doble
- Elemental Bio-Imaging Facility, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney 2007, Australia; (P.A.D.); (D.P.B.)
| | - David P. Bishop
- Elemental Bio-Imaging Facility, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney 2007, Australia; (P.A.D.); (D.P.B.)
| |
Collapse
|
17
|
Pamphlett R, Doble PA, Bishop DP. Mercury in the human thyroid gland: Potential implications for thyroid cancer, autoimmune thyroiditis, and hypothyroidism. PLoS One 2021; 16:e0246748. [PMID: 33561145 PMCID: PMC7872292 DOI: 10.1371/journal.pone.0246748] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
Objective Mercury and other toxic metals have been suggested to be involved in thyroid disorders, but the distribution and prevalence of mercury in the human thyroid gland is not known. We therefore used two elemental bio-imaging techniques to look at the distribution of mercury and other toxic metals in the thyroid glands of people over a wide range of ages. Materials and methods Formalin-fixed paraffin-embedded thyroid tissue blocks were obtained from 115 people aged 1–104 years old, with varied clinicopathological conditions, who had thyroid samples removed during forensic/coronial autopsies. Seven-micron sections from these tissue blocks were used to detect intracellular inorganic mercury using autometallography. The presence of mercury was confirmed using laser ablation-inductively coupled plasma-mass spectrometry which can detect multiple elements. Results Mercury was found on autometallography in the thyroid follicular cells of 4% of people aged 1–29 years, 9% aged 30–59 years, and 38% aged 60–104 years. Laser ablation-inductively coupled plasma-mass spectrometry confirmed the presence of mercury in samples staining with autometallography, and detected cadmium, lead, iron, nickel and silver in selected samples. Conclusions The proportion of people with mercury in their thyroid follicular cells increases with age, until it is present in over one-third of people aged 60 years and over. Other toxic metals in thyroid cells could enhance mercury toxicity. Mercury can trigger genotoxicity, autoimmune reactions, and oxidative damage, which raises the possibility that mercury could play a role in the pathogenesis of thyroid cancers, autoimmune thyroiditis, and hypothyroidism.
Collapse
Affiliation(s)
- Roger Pamphlett
- Discipline of Pathology, Sydney Medical School, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- * E-mail:
| | - Philip A. Doble
- Elemental Bio-Imaging Facility, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - David P. Bishop
- Elemental Bio-Imaging Facility, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Pamphlett R, Colebatch AJ, Doble PA, Bishop DP. Mercury in Pancreatic Cells of People with and without Pancreatic Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17238990. [PMID: 33276658 PMCID: PMC7731371 DOI: 10.3390/ijerph17238990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022]
Abstract
Toxic metals have been implicated in the pathogenesis of pancreatic cancer. Human exposure to mercury is widespread, but it is not known how often mercury is present in the human pancreas and which cells might contain mercury. We therefore aimed to determine, in people with and without pancreatic cancer, the distribution and prevalence of mercury in pancreatic cells. Paraffin-embedded sections of normal pancreatic tissue were obtained from pancreatectomy samples of 45 people who had pancreatic adenocarcinoma, and from autopsy samples of 38 people without pancreatic cancer. Mercury was identified using two methods of elemental bio-imaging: (1) With autometallography, inorganic mercury was seen in islet cells in 14 of 30 males (47%) with pancreatic cancer compared to two of 17 males (12%) without pancreatic cancer (p = 0.024), and in 10 of 15 females (67%) with pancreatic cancer compared to four of 21 females (19%) without pancreatic cancer (p = 0.006). Autometallographic mercury was present in acinar cells in 24% and in periductal cells in 11% of people with pancreatic cancer, but not in those without pancreatic cancer. (2) Laser ablation-inductively coupled plasma-mass spectrometry confirmed the presence of mercury in islets that stained with autometallography and detected cadmium, lead, chromium, iron, nickel and aluminium in some samples. In conclusion, the genotoxic metal mercury is found in normal pancreatic cells in more people with, than without, pancreatic cancer. These findings support the hypothesis that toxic metals such as mercury contribute to the pathogenesis of pancreatic cancer.
Collapse
Affiliation(s)
- Roger Pamphlett
- Discipline of Pathology, Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney 2050, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney 2050, Australia
- Correspondence:
| | - Andrew J. Colebatch
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney 2050, Australia;
| | - Philip A. Doble
- Elemental Bio-Imaging Facility, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney 2007, Australia; (P.A.D.); (D.P.B.)
| | - David P. Bishop
- Elemental Bio-Imaging Facility, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney 2007, Australia; (P.A.D.); (D.P.B.)
| |
Collapse
|
19
|
Voloaca OM, Greenhalgh CJ, Cole LM, Clench MR, Managh AJ, Haywood-Small SL. Laser ablation inductively coupled plasma mass spectrometry as a novel clinical imaging tool to detect asbestos fibres in malignant mesothelioma. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8906. [PMID: 32700418 DOI: 10.1002/rcm.8906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Malignant pleural mesothelioma is an extremely aggressive and incurable malignancy associated with prior exposure to asbestos fibres. Difficulties remain in relation to early diagnosis, notably due to impeded identification of asbestos in lung tissue. This study describes a novel laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging approach to identify asbestos within mesothelioma models with clinical significance. METHODS Human mesothelioma cells were exposed to different types of asbestos fibres and prepared on plastic slides for LA-ICP-MS analysis. No further sample preparation was required prior to analysis, which was performed using an NWR Image 266 nm laser ablation system coupled to an Element XR sector-field ICP mass spectrometer, with a lateral resolution of 2 μm. Data was processed using LA-ICP-MS ImageTool v1.7 with the final graphic production made using DPlot software. RESULTS Four different mineral fibres were successfully identified within the mesothelioma samples based on some of the most abundant elements that make up these fibres (Si, Mg and Fe). Using LA-ICP-MS as an imaging tool provided information on the spatial distribution of the fibres at cellular level, which is essential in asbestos detection within tissue samples. Based on the metal counts generated by the different types of asbestos, different fibres can be identified based on shape, size, and elemental composition. Detection of Ca was attempted but requires further optimisation. CONCLUSIONS Detection of asbestos fibres in lung tissues is very useful, if not necessary, to complete the pathological dt9iagnosis of asbestos-related malignancies in the medicolegal field. For the first time, this study demonstrates the successful application of LA-ICP-MS imaging to identify asbestos fibres and other mineral fibres within mesothelioma samples. Ultimately, high-resolution, fast-speed LA-ICP-MS analysis has the potential to be integrated into clinical workflow to aid earlier detection and stratification of mesothelioma patient samples.
Collapse
Affiliation(s)
- Oana M Voloaca
- Biomolecular Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield, S1 1WB, UK
| | - Calum J Greenhalgh
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| | - Laura M Cole
- Biomolecular Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield, S1 1WB, UK
| | - Malcolm R Clench
- Biomolecular Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield, S1 1WB, UK
| | - Amy J Managh
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| | - Sarah L Haywood-Small
- Biomolecular Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield, S1 1WB, UK
| |
Collapse
|
20
|
The distribution of toxic metals in the human retina and optic nerve head: Implications for age-related macular degeneration. PLoS One 2020; 15:e0241054. [PMID: 33119674 PMCID: PMC7595417 DOI: 10.1371/journal.pone.0241054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/07/2020] [Indexed: 01/14/2023] Open
Abstract
Objective Toxic metals are suspected to play a role in the pathogenesis of age-related macular degeneration. However, difficulties in detecting the presence of multiple toxic metals within the intact human retina, and in separating primary metal toxicity from the secondary uptake of metals in damaged tissue, have hindered progress in this field. We therefore looked for the presence of several toxic metals in the posterior segment of normal adult eyes using elemental bioimaging. Methods Paraffin sections of the posterior segment of the eye from seven tissue donors (age range 54–74 years) to an eye bank were examined for toxic metals in situ using laser ablation-inductively coupled plasma-mass spectrometry, a technique that detects multiple elements in tissues, as well as the histochemical technique of autometallography that demonstrates inorganic mercury, silver, and bismuth. No donor had a visual impairment, and no significant retinal abnormalities were seen on post mortem fundoscopy and histology. Results Metals found by laser ablation-inductively coupled plasma-mass spectrometry in the retinal pigment epithelium and choriocapillaris were lead (n = 7), nickel (n = 7), iron (n = 7), cadmium (n = 6), mercury (n = 6), bismuth (n = 5), aluminium (n = 3), and silver (n = 1). In the neural retina, mercury was present in six samples, and iron in one. Metals detected in the optic nerve head were iron (N = 7), mercury (N = 7), nickel (N = 4), and aluminium (N = 1). No gold or chromium was seen. Autometallography demonstrated probable inorganic mercury in the retinal pigment epithelium of one donor. Conclusion Several toxic metals are taken up by the human retina and optic nerve head. Injury to the retinal pigment epithelium from toxic metals could damage the neuroprotective functions of the retinal pigment epithelium and allow toxic metals to enter the outer neural retina. These findings support the hypothesis that accumulations of toxic metals in the retina could contribute to the pathogenesis of age-related macular degeneration.
Collapse
|