1
|
Wang X, Liu Y, Chang H, Tun HM, Xia X, Peng Y, Qin N. Goat Milk-Derived Extracellular Vesicles Alleviate Colitis Potentially Through Improved Gut Microbiota in Mice. Foods 2025; 14:1514. [PMID: 40361597 PMCID: PMC12071645 DOI: 10.3390/foods14091514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Ulcerative colitis (UC) is characterized clinically by intestinal inflammation and gut microbiota dysbiosis. The consumption of biologics, although effective in inflammation control, may lead to adverse effects and is inconvenient for at-home administration. Goat milk-derived extracellular vesicles (GMEVs) have been proposed as a supplement to prevent intestinal inflammation. However, their therapeutic potential for colitis remains elusive. This study aimed to explore the preventive effect of GMEVs on colitis and its underlying mechanisms through the microbiota-immune axis using a dextran sodium sulfate (DSS)-induced colitis mouse model. We found that a pre-treatment of 20 mg/kg/d GMEVs effectively prevented body weight loss, colon shortening, the depletion of colonic goblet cells, and the disappearance of crypts, while enhancing the intestinal mucosal barrier. Consistent with these phenotypes, GMEV pre-treatment increased levels of IL-22 and IL-10 and decreased levels of IL-1β, TNF-α, IL-6, and iNOS. However, GMEVs themselves had no effect on normal mice. Paralleling the alleviation of intestinal inflammation, GMEV pre-treatment also restored the reduction in unclassified Muribaculaceae, Dubosiella, and Lactobacillus and suppressed the expansion of Alistipes and Proteobacteria following DSS treatment. Additionally, GMEV intake significantly downregulated the expression of proteins in the NF-κB signaling pathway induced by DSS. In summary, GMEVs could prevent colitis by regulating intestinal inflammation, the intestinal mucosal barrier, gut microbiota, organ damage, and the immune microenvironment. This study demonstrated that GMEVs have potential application prospects for UC prevention.
Collapse
Affiliation(s)
- Xinru Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hong Chang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hein-Min Tun
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Xiaodong Xia
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ye Peng
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Ningbo Qin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
2
|
Hernández-Rocha C, Turpin W, Borowski K, Stempak JM, Sabic K, Gettler K, Tastad C, Chasteau C, Korie U, Hanna M, Khan A, Mengesha E, Bitton A, Schwartz MB, Barrie A, Datta LW, Lazarev M, Brant SR, Rioux JD, McGovern DPB, Duerr RH, Schumm LP, Cho JH, Silverberg MS. After Surgically Induced Remission, Ileal and Colonic Mucosa-Associated Microbiota Predicts Crohn's Disease Recurrence. Clin Gastroenterol Hepatol 2025; 23:612-620.e10. [PMID: 38969076 PMCID: PMC11979954 DOI: 10.1016/j.cgh.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND & AIMS Investigating the tissue-associated microbiota after surgically induced remission may help to understand the mechanisms initiating intestinal inflammation in Crohn's disease. METHODS Patients with Crohn's disease undergoing ileocolic resection were prospectively recruited in 6 academic centers. Biopsy samples from the neoterminal ileum, colon, and rectosigmoid were obtained from colonoscopies performed after surgery. Microbial DNA was extracted for 16S rRNA gene sequencing. Microbial diversity and taxonomic differential relative abundance were analyzed. A random forest model was applied to analyze the performance of clinical and microbial features to predict recurrence. A Rutgeerts score ≥i2 was deemed as endoscopic recurrence. RESULTS A total of 349 postoperative colonoscopies and 944 biopsy samples from 262 patients with Crohn's disease were analyzed. Ileal inflammation accounted for most of the explained variance of the ileal and colonic mucosa-associated microbiota. Samples obtained from 97 patients who were in surgically induced remission at first postoperative colonoscopy who went on to develop endoscopic recurrence at second colonoscopy showed lower diversity and microbial deviations when compared with patients who remained in endoscopic remission. Depletion of genus Anaerostipes and increase of several genera from class Gammaproteobacteria at the 3 biopsy sites increase the risk of further recurrence. Gut microbiome was able to predict future recurrence better than clinical features. CONCLUSIONS Ileal and colonic mucosa-associated microbiome deviations precede development of new-onset ileal inflammation after surgically induced remission and show good predictive performance for future recurrence. These findings suggest that targeted microbial modulation is a plausible modality to prevent postoperative Crohn's disease recurrence.
Collapse
Affiliation(s)
- Cristian Hernández-Rocha
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica of Chile, Santiago, Chile
| | - Williams Turpin
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Krzysztof Borowski
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Joanne M Stempak
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ksenija Sabic
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kyle Gettler
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Christopher Tastad
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Colleen Chasteau
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ujunwa Korie
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mary Hanna
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Abdul Khan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Emebet Mengesha
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Alain Bitton
- Division of Gastroenterology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Marc B Schwartz
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Arthur Barrie
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lisa W Datta
- Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark Lazarev
- Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven R Brant
- Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School and the Crohn's and Colitis Center of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; Department of Genetics and The Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - John D Rioux
- Research Centre, Montreal Heart Institute, Montréal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Richard H Duerr
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania
| | - L Phil Schumm
- Biostatistics Laboratory & Research Computing Group, Department of Public Health Sciences, University of Chicago, Chicago, Illinois
| | - Judy H Cho
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mark S Silverberg
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Wang H, Xie X, Du M, Wang X, Wang K, Chen X, Yang H. Deciphering the influence of AP1M2 in modulating hepatocellular carcinoma growth and Mobility through JNK/ErK signaling pathway control. Gene 2025; 933:148955. [PMID: 39303819 DOI: 10.1016/j.gene.2024.148955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is the most common digestive system malignancy, with unclear pathogenesis and low survival rates. AP1M2 is associated with tumor progression, but its role and molecular mechanisms in HCC remain poorly understood and require further investigation. METHODS We utilized the Gene Expression Omnibus (GEO) and Expression Analysis Interactive Hub (XENA) databases to assess AP1M2 mRNA expression levels in HCC patients. Additionally, we employed the Cancer Genome Atlas (TCGA) database to identify pathways associated with both AP1M2 and HCC development. To evaluate the effect of AP1M2 on HCC cell proliferation and migration, we employed various techniques including EdU, CCK-8, Colony formation assay, and Transwell assays. Furthermore, Western blot analysis was conducted to examine the signaling pathways influenced by AP1M2. RESULTS AP1M2 expression was significantly increased at the mRNA level in HCC tissues(P<0.001). Importantly, overall survival (OS) analysis confirmed the association between higher AP1M2 expression and a poorer prognosis in HCC patients compared to those with lower AP1M2 expression (P<0.019).Multivariate Cox regression analysis showed that AP1M2 was an independent prognostic factor and a valid predictor for HCC patients. Furthermore, GSEA results indicated differential enrichment of lipid, metal metabolism, and coagulation processes in HCC samples demonstrating a high AP1M2 expression phenotype. In vitro experiments supported these findings by demonstrating that AP1M2 promotes HCC cell proliferation and migration, while activating the JNK/ERK pathway. CONCLUSION Our findings indicate that AP1M2 expression may serve as a potential molecular marker indicating a poor prognosis for HCC patients. Furthermore, we have demonstrated that AP1M2 significantly influences HCC cell proliferation and migration, with the JNK/ERK signaling pathway playing a key role in AP1M2-mediated regulation in the context of HCC.
Collapse
Affiliation(s)
- Huan Wang
- Department of Gastroenterologya Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou 510000, China
| | - Xin Xie
- Department of Gastroenterologya Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou 510000, China
| | - Minwei Du
- Department of Gastroenterologya Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou 510000, China
| | - Xintong Wang
- Department of Gastroenterologya Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou 510000, China
| | - Kunyuan Wang
- Department of Gastroenterologya Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou 510000, China
| | - Xingyuan Chen
- Department of Gastroenterologya Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou 510000, China.
| | - Hui Yang
- Department of Gastroenterologya Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou 510000, China.
| |
Collapse
|
4
|
Matsumoto R, Ogata K, Takahashi D, Kinashi Y, Yamada T, Morita R, Tanaka K, Hattori K, Endo M, Fujimura Y, Sasaki N, Ohno H, Ishihama Y, Kimura S, Hase K. AP-1B regulates interactions of epithelial cells and intraepithelial lymphocytes in the intestine. Cell Mol Life Sci 2024; 81:425. [PMID: 39369131 PMCID: PMC11455912 DOI: 10.1007/s00018-024-05455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
Intraepithelial lymphocytes (IELs) reside in the epithelial layer and protect against foreign pathogens, maintaining the epithelial barrier function in the intestine. Interactions between IEL and epithelial cells are required for IELs to function effectively; however, the underlying molecular machinery remains to be elucidated. In this study, we found that intestinal epithelium-specific deficiency of the clathrin adaptor protein (AP)-1B, which regulates basolateral protein sorting, led to a massive reduction in IELs. Quantitative proteomics demonstrated that dozens of proteins, including known IEL-interacting proteins (E-cadherin, butyrophilin-like 2, and plexin B2), were decreased in the basolateral membrane of AP-1B-deficient epithelial cells. Among these proteins, CD166 interacted with CD6 on the surface of induced IEL. CD166 knockdown, using shRNA in intestinal organoid cultures, significantly inhibited IEL recruitment to the epithelial layer. These findings highlight the essential role of AP-1B-mediated basolateral sorting in IEL maintenance and survival within the epithelial layer. This study reveals a novel function of AP-1B in the intestinal immune system.
Collapse
Affiliation(s)
- Ryohtaroh Matsumoto
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kosuke Ogata
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Yusuke Kinashi
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Takahiro Yamada
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Ryo Morita
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Keisuke Tanaka
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kouya Hattori
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Mayumi Endo
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Yumiko Fujimura
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Nobuo Sasaki
- Laboratory of Mucosal Ecosystem Design, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, Japan
| | - Yasushi Ishihama
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Shunsuke Kimura
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, 332-0012, Japan.
| | - Koji Hase
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan.
- The Institute of Fermentation Sciences (IFeS), Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima, 960-1296, Japan.
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan.
| |
Collapse
|
5
|
He J, Wang D, Guo K, Ji R. Camel milk polar lipids ameliorate dextran sulfate sodium-induced colitis in mice by modulating the gut microbiota. J Dairy Sci 2024; 107:6413-6424. [PMID: 38369112 DOI: 10.3168/jds.2023-23930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024]
Abstract
Milk contains abundant polar lipids, which are vital constituents of biological membranes. These polar lipids are present in the human diet as phospholipids and sphingolipids. Nevertheless, the limited focus has been on the attributes and role of camel milk polar lipids (MPL). In this study, camel MPL were isolated, and the composition of their lipidome was determined using ultra-high-performance liquid chromatography-tandem MS. This study characterized a total of 333 polar lipids, which encompassed glycerophospholipids and sphingolipids. Camel milk is rich in polar lipids, mainly phosphatidylethanolamine, sphingomyelin, and phosphatidylcholine. The results indicated that MPL intervention relieved the clinical symptoms and colon tissue damage in mice with dextran sulfate sodium-induced colitis, along with suppressing the expression of proinflammatory cytokines. Moreover, the administration of MPL partially alleviated mouse gut microbiota dysbiosis by increasing the abundance of probiotics (such as Lachnospiraceae_NK4A136_group and Muribaculaceae) and decreasing the number of harmful bacteria (such as Bacteroides and Parabacteroides). This study was conducted to investigate the potent protective effects of MPL in camel milk treatments on a mouse model of colitis and provided new ideas for the application of camel milk.
Collapse
Affiliation(s)
- Jing He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China; China-Mongolia Joint Laboratory of Biopolymer Application "One Belt One Road," Hohhot 010018, China
| | - DanLin Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Kunjie Guo
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Rimutu Ji
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China; China-Mongolia Joint Laboratory of Biopolymer Application "One Belt One Road," Hohhot 010018, China.
| |
Collapse
|
6
|
Khachatryan L, Xiang Y, Ivanov A, Glaab E, Graham G, Granata I, Giordano M, Maddalena L, Piccirillo M, Manipur I, Baruzzo G, Cappellato M, Avot B, Stan A, Battey J, Lo Sasso G, Boue S, Ivanov NV, Peitsch MC, Hoeng J, Falquet L, Di Camillo B, Guarracino MR, Ulyantsev V, Sierro N, Poussin C. Results and lessons learned from the sbv IMPROVER metagenomics diagnostics for inflammatory bowel disease challenge. Sci Rep 2023; 13:6303. [PMID: 37072468 PMCID: PMC10113391 DOI: 10.1038/s41598-023-33050-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
A growing body of evidence links gut microbiota changes with inflammatory bowel disease (IBD), raising the potential benefit of exploiting metagenomics data for non-invasive IBD diagnostics. The sbv IMPROVER metagenomics diagnosis for inflammatory bowel disease challenge investigated computational metagenomics methods for discriminating IBD and nonIBD subjects. Participants in this challenge were given independent training and test metagenomics data from IBD and nonIBD subjects, which could be wither either raw read data (sub-challenge 1, SC1) or processed Taxonomy- and Function-based profiles (sub-challenge 2, SC2). A total of 81 anonymized submissions were received between September 2019 and March 2020. Most participants' predictions performed better than random predictions in classifying IBD versus nonIBD, Ulcerative Colitis (UC) versus nonIBD, and Crohn's Disease (CD) versus nonIBD. However, discrimination between UC and CD remains challenging, with the classification quality similar to the set of random predictions. We analyzed the class prediction accuracy, the metagenomics features by the teams, and computational methods used. These results will be openly shared with the scientific community to help advance IBD research and illustrate the application of a range of computational methodologies for effective metagenomic classification.
Collapse
Affiliation(s)
- Lusine Khachatryan
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Yang Xiang
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Artem Ivanov
- ITMO University, St. Petersburg, Russian Federation
| | - Enrico Glaab
- University of Luxembourg, Luxembourg, Luxembourg
| | | | | | | | | | | | | | | | | | | | - Adrian Stan
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - James Battey
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Giuseppe Lo Sasso
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Stephanie Boue
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | | | | | | | | | - Nicolas Sierro
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Carine Poussin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| |
Collapse
|
7
|
Wang Q, Xu K, Cai X, Wang C, Cao Y, Xiao J. Rosmarinic Acid Restores Colonic Mucus Secretion in Colitis Mice by Regulating Gut Microbiota-Derived Metabolites and the Activation of Inflammasomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4571-4585. [PMID: 36883243 DOI: 10.1021/acs.jafc.2c08444] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Maintaining a steady state of mucus barrier is an important potential target for polyphenol to exert its anticolitis activity. This study elucidates the pivotal role of polyphenol rosmaric acid (RA) in regulating the mucus barrier function and alleviating inflammation by identifying its gut microbiota-derived metabolites and evaluating its inhibitory effect on inflammasomes in colitis mice. Results demonstrated that RA treatment promoted the proliferation of goblet cells and restored the level of mucus secretion, especially Muc2. RA reshaped the microbiota of colitis mice, particularly the boost of core probiotics, such as p. Bacteroidaceae, f. Muribaculaceae, g. Muribaculaceae, g. Alistipes, and g. Clostridia_UCG-014. Nontargeted metabonomics and targeted metabonomics confirmed a significant increase in the bile acids and their metabolites (7-sulfocholic acid, stercobilin, chenodeoxycholic acid 3-sulfate, chenodeoxycholic acid sulfate, and ursodeoxycholic acid 3-sulfate), indole metabolites ((R)-2,3-dihydro-3,5-dihydroxy-2-oxo-3-indoleacetic acid, frovatriptan, 3-formyl-6-hydroxyindole, and brassicanal A), and short-chain fatty acids (SCFAs) (acetic acid, butyric acid, isobutyric acid, isovaleric acid, and valeric acid) that contributed to the strengthened mucus barrier function. In addition, being absorbed mainly in the lower digestive tract, RA inhibited the overexpression of inflammasomes (especially NLRP6) that occurred in colitis mice to promote the mucus secretion of goblet cells. These data confirmed that RA, as a promising candidate to enhance gut health, restored colonic mucus secretion in colitis mice by mediating the production of gut microbiota-derived metabolites and the overexpression of inflammasomes. The presented study provides scientific evidence explaining the apparent paradox of low bioavailability and high bioactivity in polyphenols.
Collapse
Affiliation(s)
- Qun Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kangjie Xu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xu Cai
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chujing Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Liu J, Tao Y, Haikun W, Lanfang Y, Jingyi L, Ping Y. Triclosan exposure induced disturbance of gut microbiota and exaggerated experimental colitis in mice. BMC Gastroenterol 2022; 22:469. [DOI: 10.1186/s12876-022-02527-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Triclosan, an antimicrobial agent in personal care products, could be absorbed into the human body through the digestive tract. This animal experiment aimed to clarify the effects of triclosan exposure on the microbiome and intestinal immune functions in healthy and ulcerative colitis models.
Methods
Balb/c mice were maintained on an AIN-93G diet containing 80ppm triclosan dissolved in polyethylene as vehicle or vehicle alone for 1 week or 4 weeks. In the end, the mice were sacrificed, blood samples and colon tissues were collected for analysis of inflammation, and fecal samples were collected for 16 S rRNA sequencing of gut microbiota. To establish ulcerative colitis mice model, at the beginning of the 4th week, mice maintained on the diet with or without triclosan were treated with 2% Dextran sulfate sodium(DSS) in drinking water for 1 week. Then mice were sacrificed for analysis of colitis and gut microbiota.
Results
Triclosan exposure to common mice enhanced the levels of p-NF-κb and Toll-like receptor 4 (TLR4), and decreased the Occludin in the colon. Triclosan exposure to DSS-induced mice increased the level of inflammatory cytokines, reduced the levels of Occludin, and exacerbated the degree of damage to intestinal mucosa and crypt, infiltration of inflammatory cells and atypia of glandular cells. Low-grade intraepithelial neoplasia appeared. Both in common and DSS-induced mice, triclosan exposure changed the diversity and composition of gut microbiota. Fecal samples showed higher enrichment of sulfate-reducing bacteria and Bacteroides, and less butyrate-producing bacteria.
Conclusion
Triclosan exposure induced disturbance of gut microbiota and exaggerated experimental colitis in mice. And changes in the composition of gut microbiota were characterized by the increase of harmful bacteria, including sulfate-reducing bacteria and Bacteroides, and the reduction of protective probiotics, butyrate-producing bacteria.
Collapse
|
9
|
Gut microbiota alternation under the intestinal epithelium-specific knockout of mouse Piga gene. Sci Rep 2022; 12:10812. [PMID: 35752737 PMCID: PMC9233684 DOI: 10.1038/s41598-022-15150-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
Crosstalk between the gut microbiota and intestinal epithelium shapes the gut environment and profoundly influences the intestinal immune homeostasis. Glycosylphosphatidylinositol anchored proteins (GPI – APs) contribute to a variety of gut-associated immune functions, including microbial surveillance and defense, and epithelial cell polarity. Properly polarised epithelial cells are essential for the establishment of the barrier function of gut epithelia. The Piga gene is one among seven genes that encode for an enzyme which is involved in the first step of GPI-anchor biosynthesis. This is the first study reporting a knockout of the intestinal epithelial cell-specific Piga gene (Piga-/-) and its association with the gut microbiota in mice using a whole metagenome shotgun-based sequencing approach. An overall reduced microbiota diversity has been observed in the Piga-/- group as compared to the control group (ANOVA p = 0.34). The taxonomic biomarkers, namely: Gammaproteobacteria (class), Enterobacterales (order), Enterobacteriaceae (family), Escherichia (genus), Proteus (genus) and Escherichia coli (species), increased more in the Piga-/- mice as compared to in the control group. Further, the pathogenic E. coli strains, namely E. coli O157:H7 str. EDL 933 (EHEC), E. coli CFT073 (UPEC) and E. coli 536 (UPEC), were found in the Piga-/- mice which also harbored virulence factor transporters. In addition, the taxa responsible for short chain fatty acid production were decreased in the Piga-/- group. The Piga-/- mice gut harbored an increased number of microbial functions responsible for the survival of pathogens in the inflamed gut environment. Our observations clearly indicate that the Piga-/- mice gut might have an overall enhancement in pathogenic behaviour and reduced capabilities beneficial to health.
Collapse
|
10
|
Jangid A, Fukuda S, Suzuki Y, Taylor TD, Ohno H, Prakash T. Shotgun metagenomic sequencing revealed the prebiotic potential of a grain-based diet in mice. Sci Rep 2022; 12:6748. [PMID: 35468931 PMCID: PMC9038746 DOI: 10.1038/s41598-022-10762-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
In the present study, we elucidated the effect of grain-based (GB) diet containing both soluble and insoluble fibers and purified ingredients-based (PIB) diet containing only insoluble fiber, namely cellulose on mice gut microbiome using whole shotgun based metagenomic sequencing. Although the fiber content in both diet types is the same (5%) the presence of soluble fiber only in the GB diet differentiates it from the PIB diet. The taxonomic analysis of sequenced reads reveals a significantly higher enrichment of probiotic Lactobacilli in the GB group as compared to the PIB group. Further, the enhancement of energy expensive cellular processes namely, cell cycle control, cell division, chromosome partitioning, and transcription is observed in the GB group which could be due to the metabolization of the soluble fiber for faster energy production. In contrast, a higher abundance of cellulolytic bacterial community namely, the members of family Lachnospiraceae and Ruminococcaceae and the metabolism functions are found in the PIB group. The PIB group shows a significant increase in host-derived oligosaccharide metabolism functions indicating that they might first target the host-derived oligosaccharides and self-stored glycogen in addition to utilising the available cellulose. In addition to the beneficial microbial community variations, both the groups also exhibited an increased abundance of opportunistic pathobionts which could be due to an overall low amount of fiber in the diet. Furthermore, backtracing analysis identified probiotic members of Lactobacillus, viz., L. crispatus ST1, L. fermentum CECT 5716, L. gasseri ATCC 33323, L. johnsonii NCC 533 and L. reuteri 100-23 in the GB group, while Bilophila wadsworthia 3_1_6, Desulfovibrio piger ATCC 29098, Clostridium symbiosum WAL-14163, and Ruminococcaceae bacterium D16 in the PIB group. These data suggest that Lactobacilli, a probiotic community of microorganisms, are the predominant functional contributors in the gut of GB diet-fed mice, whereas pathobionts too coexisted with commensals in the gut microbiome of the PIB group. Thus at 5% fiber, GB modifies the gut microbial ecology more effectively than PIB and the inclusion of soluble fiber in the GB diet may be one of the primary factors responsible for this impact.
Collapse
Affiliation(s)
- Aditi Jangid
- BioX Centre and School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan.,Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, 210-0821, Japan.,Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Todd D Taylor
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, 210-0821, Japan
| | - Tulika Prakash
- BioX Centre and School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175005, India. .,Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
11
|
Wang Q, Wang C, Tian W, Qiu Z, Song M, Cao Y, Xiao J. Hydroxytyrosol Alleviates Dextran Sulfate Sodium-Induced Colitis by Modulating Inflammatory Responses, Intestinal Barrier, and Microbiome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2241-2252. [PMID: 35133830 DOI: 10.1021/acs.jafc.1c07568] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydroxytyrosol (HT), a polyphenol derived from olive oil, was examined against dextran sulfate sodium (DSS)-induced colitis to study its potential in preventing colitis and the underlying mechanisms involved. The low dose and high dose of HT used in mice were 10 and 50 mg/kg, respectively. Research findings have shown that HT is effective in preventing colitis by alleviating the signs of colitis. HT intervention significantly reduces colitis markers such as myeloperoxidase (MPO) and proinflammatory cytokine (IL-6, IL-1β, and TNF-α). Also, mice treated with a high dose of HT showed increased secretion of antioxidant enzymes (heme oxygenase-1 (HO) and anti-inflammatory cytokine (IL-10) by 2.32- and 2.28-fold, respectively, in comparison to the DSS-treated group. Modulation effects of HT on the antioxidant signal pathway (NRF2) and the inflammatory pathway (NF-κB) were confirmed. Meanwhile, HT promoted the regeneration of the intestinal barrier and maintained intestinal functional homeostasis by boosting the regeneration of goblet cells and the expression of mucin protein (Muc2) and tight junction (TJ) proteins (claudin-1, occludin, and Zonula Occludens-1). Moreover, HT intervention obviously transformed the gut microbiota, leading to a lower abundance of inflammation-related microbes (e.g., Bacteroidaceae and Desulfovibrionaceae) and a higher level of short-chain fatty acids (SCFAs) producing bacteria (e.g., Lachnospiraceae, Muribaculaceae, ASF356, and Colidextribacter). Scientific evidence for the beneficial effect of the "Mediterranean diet" (MD) on intestinal health was achieved by elucidating the alleviation mechanism of hydroxytyrosol on colitis.
Collapse
Affiliation(s)
- Qun Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Chujing Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenni Tian
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenyuan Qiu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
12
|
Impact of dietary fructooligosaccharides (FOS) on murine gut microbiota and intestinal IgA secretion. 3 Biotech 2022; 12:56. [PMID: 35186653 PMCID: PMC8811108 DOI: 10.1007/s13205-022-03116-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/11/2022] [Indexed: 02/03/2023] Open
Abstract
Fructooligosaccharides (FOS) are considered as prebiotics and are well known for their health-promoting properties, including antitumor, allergy-preventive, and infection-protective effects. They exert these effects by modulating the gut microbial composition and dynamics. In the present study, we performed a comparative whole metagenome shotgun sequencing analysis (WMGS) to elucidate the gut microbiota and secretary Immunoglobulin A (SIgA) dynamics as a result of 5% (w/w) FOS supplementation over a period of 7 days (fecal samples were collected every day). A number of taxa including Bacteroides, Lactobacillus, Roseburia, Clostridia, Faecalibaculum, and Enterorhabdus were found to be modulated with SIgA production in the murine gut. The process of SIgA production from FOS metabolization was found to be carried out via the production of short-chain fatty acids in the gut. Species of Bacteroides and Roseburia; namely, B. caccae, B. finegoldii, B. ovatus, B. thetaiotamicron, and Roseburia intestinalis, respectively, are predominantly responsible for FOS metabolization in the murine gut. The abundances of these bacterial species and their corresponding functions involved in FOS metabolization decreased over time even though these prebiotics were administered continuously for seven days. This suggests that there is a decrease in FOS metabolization over time. In addition, the present analysis suggests that the administration of FOS may help to reduce the pathogenic bacteria from the gut via SIgA production. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03116-3.
Collapse
|
13
|
|
14
|
Liu L, Chen C, Liu X, Chen B, Ding C, Liang J. Altered Gut Microbiota Associated With Hemorrhage in Chronic Radiation Proctitis. Front Oncol 2021; 11:637265. [PMID: 34722231 PMCID: PMC8554627 DOI: 10.3389/fonc.2021.637265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Pelvic cancer radiotherapy may cause chronic radiation proctitis (CRP) that adversely affects patient's quality of life, especially in patients with prolonged hematochezia. However, previous studies of radiation enteropathy mainly focused on acute irradiation hazards, and the detailed pathogenesis process and mechanism of prolonged hematochezia associated with radiation-induced toxicity remain unclear. In this study, we characterized the gut microbiota of 32 female CRP patients with or without hematochezia. Differential patterns of dysbiosis were observed. The abundance of Peptostreptococcaceae, Eubacterium, and Allisonella was significantly higher in CRP patients with hematochezia, while the compositions of the Lachnospiraceae, Megasphera, Megamonas, and Ruminococcaceae were lower in the microbiota of non-hematochezia patients. Functional prediction suggested significant difference in the expression of mineral absorption and the arachidonic acid metabolism proteins between hematochezia and non-hematochezia patients, possibly interdependent on radiation-induced inflammation. This study provides new insight into the altered composition and function of gut microbiota in patients with hematochezia, implying the potential use of probiotics and prebiotics for assessment and treatment of CRP.
Collapse
Affiliation(s)
- Liangzhe Liu
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Chaoyun Chen
- Department of Colorectal Surgery, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xia Liu
- Department of Colorectal Surgery, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
- School of Clinical Integrative Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Bingcheng Chen
- Department of Surgery, Maoming Hospital of Traditional Chinese Medicine, Maoming, China
| | - Chen Ding
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Jinjun Liang
- Department of Colorectal Surgery, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
- School of Clinical Integrative Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Abokor AA, McDaniel GH, Golonka RM, Campbell C, Brahmandam S, Yeoh BS, Joe B, Vijay-Kumar M, Saha P. Immunoglobulin A, an Active Liaison for Host-Microbiota Homeostasis. Microorganisms 2021; 9:2117. [PMID: 34683438 PMCID: PMC8539215 DOI: 10.3390/microorganisms9102117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Mucosal surfaces in the gastrointestinal tract are continually exposed to native, commensal antigens and susceptible to foreign, infectious antigens. Immunoglobulin A (IgA) provides dual humoral responses that create a symbiotic environment for the resident gut microbiota and prevent the invasion of enteric pathogens. This review features recent immunological and microbial studies that elucidate the underlying IgA and microbiota-dependent mechanisms for mutualism at physiological conditions. IgA derailment and concurrent microbiota instability in pathological diseases are also discussed in detail. Highlights of this review underscore that the source of IgA and its structural form can dictate microbiota reactivity to sustain a diverse niche where both host and bacteria benefit. Other important studies emphasize IgA insufficiency can result in the bloom of opportunistic pathogens that encroach the intestinal epithelia and disseminate into circulation. The continual growth of knowledge in these subjects can lead to the development of therapeutics targeting IgA and/or the microbiota to treat life threatening diseases.
Collapse
Affiliation(s)
- Ahmed A. Abokor
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Grant H. McDaniel
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Rachel M. Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Connor Campbell
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Sreya Brahmandam
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Bina Joe
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| |
Collapse
|
16
|
Saez A, Gomez-Bris R, Herrero-Fernandez B, Mingorance C, Rius C, Gonzalez-Granado JM. Innate Lymphoid Cells in Intestinal Homeostasis and Inflammatory Bowel Disease. Int J Mol Sci 2021; 22:ijms22147618. [PMID: 34299236 PMCID: PMC8307624 DOI: 10.3390/ijms22147618] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a heterogeneous state of chronic intestinal inflammation of unknown cause encompassing Crohn’s disease (CD) and ulcerative colitis (UC). IBD has been linked to genetic and environmental factors, microbiota dysbiosis, exacerbated innate and adaptive immunity and epithelial intestinal barrier dysfunction. IBD is classically associated with gut accumulation of proinflammatory Th1 and Th17 cells accompanied by insufficient Treg numbers and Tr1 immune suppression. Inflammatory T cells guide innate cells to perpetuate a constant hypersensitivity to microbial antigens, tissue injury and chronic intestinal inflammation. Recent studies of intestinal mucosal homeostasis and IBD suggest involvement of innate lymphoid cells (ILCs). These lymphoid-origin cells are innate counterparts of T cells but lack the antigen receptors expressed on B and T cells. ILCs play important roles in the first line of antimicrobial defense and contribute to organ development, tissue protection and regeneration, and mucosal homeostasis by maintaining the balance between antipathogen immunity and commensal tolerance. Intestinal homeostasis requires strict regulation of the quantity and activity of local ILC subpopulations. Recent studies demonstrated that changes to ILCs during IBD contribute to disease development. A better understanding of ILC behavior in gastrointestinal homeostasis and inflammation will provide valuable insights into new approaches to IBD treatment. This review summarizes recent research into ILCs in intestinal homeostasis and the latest advances in the understanding of the role of ILCs in IBD, with particular emphasis on the interaction between microbiota and ILC populations and functions.
Collapse
Affiliation(s)
- Angela Saez
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Madrid, Spain
| | - Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Claudia Mingorance
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
| | - Cristina Rius
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid (UEM), Villaviciosa de Odón, 28670 Madrid, Spain;
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-913908766
| |
Collapse
|
17
|
Ferrari E, Monzani R, Saverio V, Gagliardi M, Pańczyszyn E, Raia V, Villella VR, Bona G, Pane M, Amoruso A, Corazzari M. Probiotics Supplements Reduce ER Stress and Gut Inflammation Associated with Gliadin Intake in a Mouse Model of Gluten Sensitivity. Nutrients 2021; 13:1221. [PMID: 33917155 PMCID: PMC8067866 DOI: 10.3390/nu13041221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/20/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Exposure to gluten, a protein present in wheat rye and barley, is the major inducer for human Celiac Disease (CD), a chronic autoimmune enteropathy. CD occurs in about 1% worldwide population, in genetically predisposed individuals bearing human leukocyte antigen (HLA) DQ2/DQ8. Gut epithelial cell stress and the innate immune activation are responsible for the breaking oral tolerance to gliadin, a gluten component. To date, the only treatment available for CD is a long-term gluten-free diet. Several studies have shown that an altered composition of the intestinal microbiota (dysbiosis) could play a key role in the pathogenesis of CD through the modulation of intestinal permeability and the regulation of the immune system. Here, we show that gliadin induces a chronic endoplasmic reticulum (ER) stress condition in the small intestine of a gluten-sensitive mouse model and that the coadministration of probiotics efficiently attenuates both the unfolded protein response (UPR) and gut inflammation. Moreover, the composition of probiotics formulations might differ in their activity at molecular level, especially toward the three axes of the UPR. Therefore, probiotics administration might potentially represent a new valuable strategy to treat gluten-sensitive patients, such as those affected by CD.
Collapse
Affiliation(s)
- Eleonora Ferrari
- Department of Health Science, University of Piemonte Orientale, 28100 Novara, Italy; (E.F.); (R.M.); (V.S.); (M.G.); (E.P.)
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Romina Monzani
- Department of Health Science, University of Piemonte Orientale, 28100 Novara, Italy; (E.F.); (R.M.); (V.S.); (M.G.); (E.P.)
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Valentina Saverio
- Department of Health Science, University of Piemonte Orientale, 28100 Novara, Italy; (E.F.); (R.M.); (V.S.); (M.G.); (E.P.)
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Mara Gagliardi
- Department of Health Science, University of Piemonte Orientale, 28100 Novara, Italy; (E.F.); (R.M.); (V.S.); (M.G.); (E.P.)
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Elżbieta Pańczyszyn
- Department of Health Science, University of Piemonte Orientale, 28100 Novara, Italy; (E.F.); (R.M.); (V.S.); (M.G.); (E.P.)
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Valeria Raia
- Regional Cystic Fibrosis Center, Pediatric Unit, Department of Translational Medical Sciences, Federico II University Naples, 80134 Naples, Italy;
- European Institute for Research in Cystic Fibrosis (IERFC-Onlus), San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Valeria Rachela Villella
- European Institute for Research in Cystic Fibrosis (IERFC-Onlus), San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Gianni Bona
- Division of Pediatrics, Department of Health Science, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Marco Pane
- Probiotical Research Srl, 28100 Novara, Italy; (M.P.); (A.A.)
| | - Angela Amoruso
- Probiotical Research Srl, 28100 Novara, Italy; (M.P.); (A.A.)
| | - Marco Corazzari
- Department of Health Science, University of Piemonte Orientale, 28100 Novara, Italy; (E.F.); (R.M.); (V.S.); (M.G.); (E.P.)
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
18
|
Valle-Noguera A, Gómez-Sánchez MJ, Girard-Madoux MJH, Cruz-Adalia A. Optimized Protocol for Characterization of Mouse Gut Innate Lymphoid Cells. Front Immunol 2020; 11:563414. [PMID: 33329525 PMCID: PMC7735015 DOI: 10.3389/fimmu.2020.563414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/19/2020] [Indexed: 12/30/2022] Open
Abstract
Since their discovery, innate lymphoid cells (ILCs) have gradually been gaining greater relevance in the field of immunology due to their multiple functions in the innate immune response. They can mainly be found in mucosal and barrier organs like skin, gut, and lungs, and have been classified into five main types (NKs, ILC1s, ILC2s, ILC3s, and Lti cells) according to their function and development. They all play major roles in functions such as tissue homeostasis, early pathogen defense, regulation of inflammation, or tissue remodeling. ILCs are mostly tissue-resident cells tightly bound to the tissue structure, a fact that requires long and complex protocols that do not always provide sufficient yield for analysis. This suggests the need for optimized approaches aimed at ensuring that enriched and viable ILC samples are obtained, in order to furnish quality results. Herein a detailed protocol is established for obtaining a single-cell suspension highly enriched in lymphoid cells from mouse gut in order to identify the different subsets of ILCs by means of flow cytometry. The cell marker panel and flow cytometry gating strategies for identification and quantification of all the different ILC populations are provided for simultaneous analysis. Moreover, the protocol described includes a procedure for studying the different cytokines produced by ILC3s involved in maintaining the integrity of the gut barrier and defending against extracellular pathogens. As a result, herein an efficient method is presented for studying mouse ILCs within the lamina propria of the small intestine and colon; this can constitute a useful tool for future investigations in the field.
Collapse
Affiliation(s)
- Ana Valle-Noguera
- Department of Immunology, School of Medicine, Complutense University of Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - María José Gómez-Sánchez
- Department of Immunology, School of Medicine, Complutense University of Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain.,Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Mathilde J H Girard-Madoux
- Centre d'Immunologie de Marseille-Luminy, Université d'Aix-Marseille UM2, Inserm, U1104, CNRS UMR7280, Marseille, France
| | - Aranzazu Cruz-Adalia
- Department of Immunology, School of Medicine, Complutense University of Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| |
Collapse
|