1
|
Falling LJ. A Vision for the Future of Materials Innovation and How to Fast-Track It with Services. ACS PHYSICAL CHEMISTRY AU 2024; 4:420-429. [PMID: 39346604 PMCID: PMC11428258 DOI: 10.1021/acsphyschemau.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 10/01/2024]
Abstract
Today, we witness how our scientific ecosystem tries to accommodate a new form of intelligence, artificial intelligence (AI). To make the most of AI in materials science, we need to make the data from computational and laboratory experiments machine-readable, but while that works well for computational experiments, integrating laboratory hardware into a digital workflow seems to be a formidable barrier toward that goal. This paper explores measurement services as a way to lower this barrier. I envision the Entity for Multivariate Material Analysis (EMMA), a centralized service that offers measurement bundles tailored for common research needs. EMMA's true strength, however, lies in its software ecosystem to treat, simulate, and store the measured data. Its close integration of measurements and their simulation not only produces metadata-rich experimental data but also provides a self-consistent framework that links the sample with a snapshot of its digital twin. If EMMA was to materialize, its database of experimental data connected to digital twins could serve as the fuel for physics-informed machine learning and a trustworthy horizon of expectations for material properties. This drives material innovation since knowing the statistics helps find the exceptional. This is the EMMA approach: fast-tracking material innovation by integrated measurement and software services.
Collapse
Affiliation(s)
- Lorenz J Falling
- School of Natural Sciences, Technical University Munich, 85748 Munich, Germany
| |
Collapse
|
2
|
Tom G, Schmid SP, Baird SG, Cao Y, Darvish K, Hao H, Lo S, Pablo-García S, Rajaonson EM, Skreta M, Yoshikawa N, Corapi S, Akkoc GD, Strieth-Kalthoff F, Seifrid M, Aspuru-Guzik A. Self-Driving Laboratories for Chemistry and Materials Science. Chem Rev 2024; 124:9633-9732. [PMID: 39137296 PMCID: PMC11363023 DOI: 10.1021/acs.chemrev.4c00055] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Self-driving laboratories (SDLs) promise an accelerated application of the scientific method. Through the automation of experimental workflows, along with autonomous experimental planning, SDLs hold the potential to greatly accelerate research in chemistry and materials discovery. This review provides an in-depth analysis of the state-of-the-art in SDL technology, its applications across various scientific disciplines, and the potential implications for research and industry. This review additionally provides an overview of the enabling technologies for SDLs, including their hardware, software, and integration with laboratory infrastructure. Most importantly, this review explores the diverse range of scientific domains where SDLs have made significant contributions, from drug discovery and materials science to genomics and chemistry. We provide a comprehensive review of existing real-world examples of SDLs, their different levels of automation, and the challenges and limitations associated with each domain.
Collapse
Affiliation(s)
- Gary Tom
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Vector Institute
for Artificial Intelligence, 661 University Ave Suite 710, Toronto, Ontario M5G 1M1, Canada
| | - Stefan P. Schmid
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland
| | - Sterling G. Baird
- Acceleration
Consortium, 80 St. George
St, Toronto, Ontario M5S 3H6, Canada
| | - Yang Cao
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Acceleration
Consortium, 80 St. George
St, Toronto, Ontario M5S 3H6, Canada
| | - Kourosh Darvish
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Vector Institute
for Artificial Intelligence, 661 University Ave Suite 710, Toronto, Ontario M5G 1M1, Canada
- Acceleration
Consortium, 80 St. George
St, Toronto, Ontario M5S 3H6, Canada
| | - Han Hao
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Acceleration
Consortium, 80 St. George
St, Toronto, Ontario M5S 3H6, Canada
| | - Stanley Lo
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
| | - Sergio Pablo-García
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
| | - Ella M. Rajaonson
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Vector Institute
for Artificial Intelligence, 661 University Ave Suite 710, Toronto, Ontario M5G 1M1, Canada
| | - Marta Skreta
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Vector Institute
for Artificial Intelligence, 661 University Ave Suite 710, Toronto, Ontario M5G 1M1, Canada
| | - Naruki Yoshikawa
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Vector Institute
for Artificial Intelligence, 661 University Ave Suite 710, Toronto, Ontario M5G 1M1, Canada
| | - Samantha Corapi
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
| | - Gun Deniz Akkoc
- Forschungszentrum
Jülich GmbH, Helmholtz Institute
for Renewable Energy Erlangen-Nürnberg, Cauerstr. 1, 91058 Erlangen, Germany
- Department
of Chemical and Biological Engineering, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Felix Strieth-Kalthoff
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- School of
Mathematics and Natural Sciences, University
of Wuppertal, Gaußstraße
20, 42119 Wuppertal, Germany
| | - Martin Seifrid
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Department
of Materials Science and Engineering, North
Carolina State University, Raleigh, North Carolina 27695, United States of America
| | - Alán Aspuru-Guzik
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Vector Institute
for Artificial Intelligence, 661 University Ave Suite 710, Toronto, Ontario M5G 1M1, Canada
- Acceleration
Consortium, 80 St. George
St, Toronto, Ontario M5S 3H6, Canada
- Department
of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Department
of Materials Science & Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
- Lebovic
Fellow, Canadian Institute for Advanced
Research (CIFAR), 661
University Ave, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
3
|
Bao Z, Yung F, Hickman RJ, Aspuru-Guzik A, Bannigan P, Allen C. Data-driven development of an oral lipid-based nanoparticle formulation of a hydrophobic drug. Drug Deliv Transl Res 2024; 14:1872-1887. [PMID: 38158474 DOI: 10.1007/s13346-023-01491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Due to its cost-effectiveness, convenience, and high patient adherence, oral drug administration normally remains the preferred approach. Yet, the effective delivery of hydrophobic drugs via the oral route is often hindered by their limited water solubility and first-pass metabolism. To mitigate these challenges, advanced delivery systems such as solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have been developed to encapsulate hydrophobic drugs and enhance their bioavailability. However, traditional design methodologies for these complex formulations often present intricate challenges because they are restricted to a relatively narrow design space. Here, we present a data-driven approach for the accelerated design of SLNs/NLCs encapsulating a model hydrophobic drug, cannabidiol, that combines experimental automation and machine learning. A small subset of formulations, comprising 10% of all formulations in the design space, was prepared in-house, leveraging miniaturized experimental automation to improve throughput and decrease the quantity of drug and materials required. Machine learning models were then trained on the data generated from these formulations and used to predict properties of all SLNs/NLCs within this design space (i.e., 1215 formulations). Notably, formulations predicted to be high-performers via this approach were confirmed to significantly enhance the solubility of the drug by up to 3000-fold and prevented degradation of drug. Moreover, the high-performance formulations significantly enhanced the oral bioavailability of the drug compared to both its free form and an over-the-counter version. Furthermore, this bioavailability matched that of a formulation equivalent in composition to the FDA-approved product, Epidiolex®.
Collapse
Affiliation(s)
- Zeqing Bao
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Fion Yung
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Riley J Hickman
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 2E4, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, M5S 1M1, Canada
| | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 2E4, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, M5S 1M1, Canada
- Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR), Toronto, ON, M5S 1M1, Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, M5S 3E4, Canada
- CIFAR Artificial Intelligence Research Chair, Vector Institute, Toronto, ON, M5S 1M1, Canada
- Acceleration Consortium, Toronto, ON, M5S 3H6, Canada
| | - Pauric Bannigan
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada.
- Acceleration Consortium, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
4
|
da Silva RGL. The advancement of artificial intelligence in biomedical research and health innovation: challenges and opportunities in emerging economies. Global Health 2024; 20:44. [PMID: 38773458 PMCID: PMC11107016 DOI: 10.1186/s12992-024-01049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
The advancement of artificial intelligence (AI), algorithm optimization and high-throughput experiments has enabled scientists to accelerate the discovery of new chemicals and materials with unprecedented efficiency, resilience and precision. Over the recent years, the so-called autonomous experimentation (AE) systems are featured as key AI innovation to enhance and accelerate research and development (R&D). Also known as self-driving laboratories or materials acceleration platforms, AE systems are digital platforms capable of running a large number of experiments autonomously. Those systems are rapidly impacting biomedical research and clinical innovation, in areas such as drug discovery, nanomedicine, precision oncology, and others. As it is expected that AE will impact healthcare innovation from local to global levels, its implications for science and technology in emerging economies should be examined. By examining the increasing relevance of AE in contemporary R&D activities, this article aims to explore the advancement of artificial intelligence in biomedical research and health innovation, highlighting its implications, challenges and opportunities in emerging economies. AE presents an opportunity for stakeholders from emerging economies to co-produce the global knowledge landscape of AI in health. However, asymmetries in R&D capabilities should be acknowledged since emerging economies suffers from inadequacies and discontinuities in resources and funding. The establishment of decentralized AE infrastructures could support stakeholders to overcome local restrictions and opens venues for more culturally diverse, equitable, and trustworthy development of AI in health-related R&D through meaningful partnerships and engagement. Collaborations with innovators from emerging economies could facilitate anticipation of fiscal pressures in science and technology policies, obsolescence of knowledge infrastructures, ethical and regulatory policy lag, and other issues present in the Global South. Also, improving cultural and geographical representativeness of AE contributes to foster the diffusion and acceptance of AI in health-related R&D worldwide. Institutional preparedness is critical and could enable stakeholders to navigate opportunities of AI in biomedical research and health innovation in the coming years.
Collapse
Affiliation(s)
- Renan Gonçalves Leonel da Silva
- Health Ethics and Policy Lab, Department of Health Sciences and Technology, ETH Zurich, Hottingerstrasse 10, HOA 17, Zurich, 8092, Switzerland.
| |
Collapse
|
5
|
Strieth-Kalthoff F, Hao H, Rathore V, Derasp J, Gaudin T, Angello NH, Seifrid M, Trushina E, Guy M, Liu J, Tang X, Mamada M, Wang W, Tsagaantsooj T, Lavigne C, Pollice R, Wu TC, Hotta K, Bodo L, Li S, Haddadnia M, Wołos A, Roszak R, Ser CT, Bozal-Ginesta C, Hickman RJ, Vestfrid J, Aguilar-Granda A, Klimareva EL, Sigerson RC, Hou W, Gahler D, Lach S, Warzybok A, Borodin O, Rohrbach S, Sanchez-Lengeling B, Adachi C, Grzybowski BA, Cronin L, Hein JE, Burke MD, Aspuru-Guzik A. Delocalized, asynchronous, closed-loop discovery of organic laser emitters. Science 2024; 384:eadk9227. [PMID: 38753786 DOI: 10.1126/science.adk9227] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024]
Abstract
Contemporary materials discovery requires intricate sequences of synthesis, formulation, and characterization that often span multiple locations with specialized expertise or instrumentation. To accelerate these workflows, we present a cloud-based strategy that enabled delocalized and asynchronous design-make-test-analyze cycles. We showcased this approach through the exploration of molecular gain materials for organic solid-state lasers as a frontier application in molecular optoelectronics. Distributed robotic synthesis and in-line property characterization, orchestrated by a cloud-based artificial intelligence experiment planner, resulted in the discovery of 21 new state-of-the-art materials. Gram-scale synthesis ultimately allowed for the verification of best-in-class stimulated emission in a thin-film device. Demonstrating the asynchronous integration of five laboratories across the globe, this workflow provides a blueprint for delocalizing-and democratizing-scientific discovery.
Collapse
Affiliation(s)
- Felix Strieth-Kalthoff
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Han Hao
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
| | - Vandana Rathore
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Molecule Maker Lab, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joshua Derasp
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Théophile Gaudin
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Nicholas H Angello
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Molecule Maker Lab, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Molecule Maker Lab Institute, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Martin Seifrid
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | | | - Mason Guy
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Junliang Liu
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Xun Tang
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan
| | - Masashi Mamada
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan
| | - Wesley Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Molecule Maker Lab, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Molecule Maker Lab Institute, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Tuul Tsagaantsooj
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan
| | - Cyrille Lavigne
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Robert Pollice
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Tony C Wu
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Kazuhiro Hotta
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Mitsubishi Chemical Corporation Science & Innovation Center, Kanagawa, Japan
| | - Leticia Bodo
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Shangyu Li
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Mohammad Haddadnia
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Agnieszka Wołos
- Allchemy Inc., Highland, IN, USA
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Rafał Roszak
- Allchemy Inc., Highland, IN, USA
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Cher Tian Ser
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Carlota Bozal-Ginesta
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Catalonia Institute for Energy Research, Barcelona, Spain
| | - Riley J Hickman
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Jenya Vestfrid
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Andrés Aguilar-Granda
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | | | | | - Wenduan Hou
- School of Chemistry, University of Glasgow, Glasgow, UK
| | - Daniel Gahler
- School of Chemistry, University of Glasgow, Glasgow, UK
| | - Slawomir Lach
- School of Chemistry, University of Glasgow, Glasgow, UK
| | - Adrian Warzybok
- School of Chemistry, University of Glasgow, Glasgow, UK
- Department of Chemical Physics, Jagiellonian University, Krakow, Poland
| | - Oleg Borodin
- School of Chemistry, University of Glasgow, Glasgow, UK
| | | | | | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan
| | - Bartosz A Grzybowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science, Ulsan, Republic of Korea
- Department of Chemistry, Ulsan Institute of Science and Technology, Ulsan, Republic of Korea
| | - Leroy Cronin
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
- School of Chemistry, University of Glasgow, Glasgow, UK
| | - Jason E Hein
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
- Department of Chemistry, University of Bergen, Bergen, Norway
| | - Martin D Burke
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Molecule Maker Lab, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Molecule Maker Lab Institute, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada
- Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada
| |
Collapse
|
6
|
Montoya JH, Grimley C, Aykol M, Ophus C, Sternlicht H, Savitzky BH, Minor AM, Torrisi SB, Goedjen J, Chung CC, Comstock AH, Sun S. How the AI-assisted discovery and synthesis of a ternary oxide highlights capability gaps in materials science. Chem Sci 2024; 15:5660-5673. [PMID: 38638212 PMCID: PMC11023063 DOI: 10.1039/d3sc04823c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/27/2024] [Indexed: 04/20/2024] Open
Abstract
Exploratory synthesis has been the main generator of new inorganic materials for decades. However, our Edisonian and bias-prone processes of synthetic exploration alone are no longer sufficient in an age that demands rapid advances in materials development. In this work, we demonstrate an end-to-end attempt towards systematic, computer-aided discovery and laboratory synthesis of inorganic crystalline compounds as a modern alternative to purely exploratory synthesis. Our approach initializes materials discovery campaigns by autonomously mapping the synthetic feasibility of a chemical system using density functional theory with AI feedback. Following expert-driven down-selection of newly generated phases, we use solid-state synthesis and in situ characterization via hot-stage X-ray diffraction in order to realize new ternary oxide phases experimentally. We applied this strategy in six ternary transition-metal oxide chemistries previously considered well-explored, one of which culminated in the discovery of two novel phases of calcium ruthenates. Detailed characterization using room temperature X-ray powder diffraction, 4D-STEM and SQUID measurements identifies the structure and composition and confirms distinct properties, including distinct defect concentrations, of one of the new phases formed in our experimental campaigns. While the discovery of a new material guided by AI and DFT theory represents a milestone, our procedure and results also highlight a number of critical gaps in the process that can inform future efforts towards the improvement of AI-coupled methodologies.
Collapse
Affiliation(s)
- Joseph H Montoya
- Toyota Research Institute, Energy and Materials Division, Accelerated Materials Design and Discovery USA
| | | | - Muratahan Aykol
- Toyota Research Institute, Energy and Materials Division, Accelerated Materials Design and Discovery USA
| | - Colin Ophus
- National Center for Electron Microscopy (NCEM), Molecular Foundry, Lawrence Berkeley Lab USA
| | - Hadas Sternlicht
- National Center for Electron Microscopy (NCEM), Molecular Foundry, Lawrence Berkeley Lab USA
- Department of Materials Science and Engineering, University of California Berkeley USA
| | - Benjamin H Savitzky
- National Center for Electron Microscopy (NCEM), Molecular Foundry, Lawrence Berkeley Lab USA
| | - Andrew M Minor
- National Center for Electron Microscopy (NCEM), Molecular Foundry, Lawrence Berkeley Lab USA
- Department of Materials Science and Engineering, University of California Berkeley USA
| | - Steven B Torrisi
- Toyota Research Institute, Energy and Materials Division, Accelerated Materials Design and Discovery USA
| | | | | | | | - Shijing Sun
- Toyota Research Institute, Energy and Materials Division, Accelerated Materials Design and Discovery USA
| |
Collapse
|
7
|
Back S, Aspuru-Guzik A, Ceriotti M, Gryn'ova G, Grzybowski B, Gu GH, Hein J, Hippalgaonkar K, Hormázabal R, Jung Y, Kim S, Kim WY, Moosavi SM, Noh J, Park C, Schrier J, Schwaller P, Tsuda K, Vegge T, von Lilienfeld OA, Walsh A. Accelerated chemical science with AI. DIGITAL DISCOVERY 2024; 3:23-33. [PMID: 38239898 PMCID: PMC10793638 DOI: 10.1039/d3dd00213f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024]
Abstract
In light of the pressing need for practical materials and molecular solutions to renewable energy and health problems, to name just two examples, one wonders how to accelerate research and development in the chemical sciences, so as to address the time it takes to bring materials from initial discovery to commercialization. Artificial intelligence (AI)-based techniques, in particular, are having a transformative and accelerating impact on many if not most, technological domains. To shed light on these questions, the authors and participants gathered in person for the ASLLA Symposium on the theme of 'Accelerated Chemical Science with AI' at Gangneung, Republic of Korea. We present the findings, ideas, comments, and often contentious opinions expressed during four panel discussions related to the respective general topics: 'Data', 'New applications', 'Machine learning algorithms', and 'Education'. All discussions were recorded, transcribed into text using Open AI's Whisper, and summarized using LG AI Research's EXAONE LLM, followed by revision by all authors. For the broader benefit of current researchers, educators in higher education, and academic bodies such as associations, publishers, librarians, and companies, we provide chemistry-specific recommendations and summarize the resulting conclusions.
Collapse
Affiliation(s)
- Seoin Back
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University Seoul Republic of Korea
| | - Alán Aspuru-Guzik
- Departments of Chemistry, Computer Science, University of Toronto St. George Campus Toronto ON Canada
- Acceleration Consortium and Vector Institute for Artificial Intelligence Toronto ON M5S 1M1 Canada
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling (COSMO), École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Ganna Gryn'ova
- Heidelberg Institute for Theoretical Studies (HITS gGmbH) 69118 Heidelberg Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University 69120 Heidelberg Germany
| | - Bartosz Grzybowski
- Center for Algorithmic and Robotized Synthesis (CARS), Institute for Basic Science (IBS) Ulsan Republic of Korea
- Institute of Organic Chemistry, Polish Academy of Sciences Warsaw Poland
- Department of Chemistry, Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Geun Ho Gu
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH) Naju 58330 Republic of Korea
| | - Jason Hein
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| | - Kedar Hippalgaonkar
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
- Institute of Materials Research and Engineering, Agency for Science Technology and Research 2 Fusionopolis Way, 08-03 Singapore 138634 Singapore
| | | | - Yousung Jung
- Department of Chemical and Biomolecular Engineering, KAIST Daejeon Republic of Korea
- School of Chemical and Biological Engineering, Interdisciplinary Program in Artificial Intelligence, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Seonah Kim
- Department of Chemistry, Colorado State University 1301 Center Avenue Fort Collins CO 80523 USA
| | - Woo Youn Kim
- Department of Chemistry, KAIST Daejeon Republic of Korea
| | - Seyed Mohamad Moosavi
- Chemical Engineering & Applied Chemistry, University of Toronto Toronto Ontario M5S 3E5 Canada
| | - Juhwan Noh
- Chemical Data-Driven Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | | | - Joshua Schrier
- Department of Chemistry, Fordham University The Bronx NY 10458 USA
| | - Philippe Schwaller
- Laboratory of Artificial Chemical Intelligence (LIAC) & National Centre of Competence in Research (NCCR) Catalysis, École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Koji Tsuda
- Graduate School of Frontier Sciences, The University of Tokyo Kashiwa Chiba 277-8561 Japan
- Center for Basic Research on Materials, National Institute for Materials Science Tsukuba Ibaraki 305-0044 Japan
- RIKEN Center for Advanced Intelligence Project Tokyo 103-0027 Japan
| | - Tejs Vegge
- Department of Energy Conversion and Storage, Technical University of Denmark 301 Anker Engelunds vej, Kongens Lyngby Copenhagen 2800 Denmark
| | - O Anatole von Lilienfeld
- Acceleration Consortium and Vector Institute for Artificial Intelligence Toronto ON M5S 1M1 Canada
- Departments of Chemistry, Materials Science and Engineering, and Physics, University of Toronto, St George Campus Toronto ON Canada
- Machine Learning Group, Technische Universität Berlin and Berlin Institute for the Foundations of Learning and Data 10587 Berlin Germany
| | - Aron Walsh
- Department of Materials, Imperial College London London SW7 2AZ UK
- Department of Physics, Ewha Women's University Seoul Republic of Korea
| |
Collapse
|
8
|
Koscher BA, Canty RB, McDonald MA, Greenman KP, McGill CJ, Bilodeau CL, Jin W, Wu H, Vermeire FH, Jin B, Hart T, Kulesza T, Li SC, Jaakkola TS, Barzilay R, Gómez-Bombarelli R, Green WH, Jensen KF. Autonomous, multiproperty-driven molecular discovery: From predictions to measurements and back. Science 2023; 382:eadi1407. [PMID: 38127734 DOI: 10.1126/science.adi1407] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023]
Abstract
A closed-loop, autonomous molecular discovery platform driven by integrated machine learning tools was developed to accelerate the design of molecules with desired properties. We demonstrated two case studies on dye-like molecules, targeting absorption wavelength, lipophilicity, and photooxidative stability. In the first study, the platform experimentally realized 294 unreported molecules across three automatic iterations of molecular design-make-test-analyze cycles while exploring the structure-function space of four rarely reported scaffolds. In each iteration, the property prediction models that guided exploration learned the structure-property space of diverse scaffold derivatives, which were realized with multistep syntheses and a variety of reactions. The second study exploited property models trained on the explored chemical space and previously reported molecules to discover nine top-performing molecules within a lightly explored structure-property space.
Collapse
Affiliation(s)
- Brent A Koscher
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Richard B Canty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew A McDonald
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kevin P Greenman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles J McGill
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Camille L Bilodeau
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wengong Jin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Haoyang Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Florence H Vermeire
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brooke Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Travis Hart
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Timothy Kulesza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shih-Cheng Li
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tommi S Jaakkola
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Regina Barzilay
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rafael Gómez-Bombarelli
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William H Green
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Klavs F Jensen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
9
|
Ojelade OA. CO 2 Hydrogenation to Gasoline and Aromatics: Mechanistic and Predictive Insights from DFT, DRIFTS and Machine Learning. Chempluschem 2023; 88:e202300301. [PMID: 37580947 DOI: 10.1002/cplu.202300301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
The emission of CO2 from fossil fuels is the largest driver of global climate change. To realize the target of a carbon-neutrality by 2050, CO2 capture and utilization is crucial. The efficient conversion of CO2 to C5+ gasoline and aromatics remains elusive mainly due to CO2 thermodynamic stability and the high energy barrier of the C-C coupling step. Herein, advances in mechanistic understanding via Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), density functional theory (DFT), and microkinetic modeling are discussed. It further emphasizes the power of machine learning (ML) to accelerate the search for optimal catalysts. A significant effort has been invested into this field of research with volumes of experimental and characterization data, this study discusses how they can be used as input features for machine learning prediction in a bid to better understand catalytic properties capable of accelerating breakthroughs in the process.
Collapse
Affiliation(s)
- Opeyemi A Ojelade
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
10
|
Mahjour B, Zhang R, Shen Y, McGrath A, Zhao R, Mohamed OG, Lin Y, Zhang Z, Douthwaite JL, Tripathi A, Cernak T. Rapid planning and analysis of high-throughput experiment arrays for reaction discovery. Nat Commun 2023; 14:3924. [PMID: 37400469 DOI: 10.1038/s41467-023-39531-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
High-throughput experimentation (HTE) is an increasingly important tool in reaction discovery. While the hardware for running HTE in the chemical laboratory has evolved significantly in recent years, there remains a need for software solutions to navigate data-rich experiments. Here we have developed phactor™, a software that facilitates the performance and analysis of HTE in a chemical laboratory. phactor™ allows experimentalists to rapidly design arrays of chemical reactions or direct-to-biology experiments in 24, 96, 384, or 1,536 wellplates. Users can access online reagent data, such as a chemical inventory, to virtually populate wells with experiments and produce instructions to perform the reaction array manually, or with the assistance of a liquid handling robot. After completion of the reaction array, analytical results can be uploaded for facile evaluation, and to guide the next series of experiments. All chemical data, metadata, and results are stored in machine-readable formats that are readily translatable to various software. We also demonstrate the use of phactor™ in the discovery of several chemistries, including the identification of a low micromolar inhibitor of the SARS-CoV-2 main protease. Furthermore, phactor™ has been made available for free academic use in 24- and 96-well formats via an online interface.
Collapse
Affiliation(s)
- Babak Mahjour
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Rui Zhang
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Yuning Shen
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Andrew McGrath
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Ruheng Zhao
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Osama G Mohamed
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yingfu Lin
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Zirong Zhang
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - James L Douthwaite
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Ashootosh Tripathi
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Tim Cernak
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Martin TB, Audus DJ. Emerging Trends in Machine Learning: A Polymer Perspective. ACS POLYMERS AU 2023; 3:239-258. [PMID: 37334191 PMCID: PMC10273415 DOI: 10.1021/acspolymersau.2c00053] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023]
Abstract
In the last five years, there has been tremendous growth in machine learning and artificial intelligence as applied to polymer science. Here, we highlight the unique challenges presented by polymers and how the field is addressing them. We focus on emerging trends with an emphasis on topics that have received less attention in the review literature. Finally, we provide an outlook for the field, outline important growth areas in machine learning and artificial intelligence for polymer science and discuss important advances from the greater material science community.
Collapse
Affiliation(s)
- Tyler B. Martin
- National Institute of Standards
and Technology, Gaithersburg, Maryland20899, United States
| | - Debra J. Audus
- National Institute of Standards
and Technology, Gaithersburg, Maryland20899, United States
| |
Collapse
|
12
|
Peng X, Wang X. Next-generation intelligent laboratories for materials design and manufacturing. MRS BULLETIN 2023; 48:179-185. [PMID: 36960275 PMCID: PMC9970134 DOI: 10.1557/s43577-023-00481-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The contradiction between the importance of materials to modern society and their slow development process has led to the development of multiple methods to accelerate materials discovery. The recently emerged concept of intelligent laboratories integrates the developments in fields of high-throughput experimentation, automation, theoretical computing, and artificial intelligence to form a system that can autonomously carry out designed experiments and make scientific discoveries. We present the basic concepts and the foundations of this new research paradigm, demonstrate its typical application scenarios through case studies, and envision a collaborative human-machine meta laboratory in the future.
Collapse
Affiliation(s)
- Xiting Peng
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Xiaonan Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Industrial Biocatalysis (Tsinghua University), Ministry of Education, Beijing, China
| |
Collapse
|
13
|
Haas C, Lübbesmeyer M, Jin EH, McDonald MA, Koscher BA, Guimond N, Di Rocco L, Kayser H, Leweke S, Niedenführ S, Nicholls R, Greeves E, Barber DM, Hillenbrand J, Volpin G, Jensen KF. Open-Source Chromatographic Data Analysis for Reaction Optimization and Screening. ACS CENTRAL SCIENCE 2023; 9:307-317. [PMID: 36844498 PMCID: PMC9951288 DOI: 10.1021/acscentsci.2c01042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 06/18/2023]
Abstract
Automation and digitalization solutions in the field of small molecule synthesis face new challenges for chemical reaction analysis, especially in the field of high-performance liquid chromatography (HPLC). Chromatographic data remains locked in vendors' hardware and software components, limiting their potential in automated workflows and data science applications. In this work, we present an open-source Python project called MOCCA for the analysis of HPLC-DAD (photodiode array detector) raw data. MOCCA provides a comprehensive set of data analysis features, including an automated peak deconvolution routine of known signals, even if overlapped with signals of unexpected impurities or side products. We highlight the broad applicability of MOCCA in four studies: (i) a simulation study to validate MOCCA's data analysis features; (ii) a reaction kinetics study on a Knoevenagel condensation reaction demonstrating MOCCA's peak deconvolution feature; (iii) a closed-loop optimization study for the alkylation of 2-pyridone without human control during data analysis; (iv) a well plate screening of categorical reaction parameters for a novel palladium-catalyzed cyanation of aryl halides employing O-protected cyanohydrins. By publishing MOCCA as a Python package with this work, we envision an open-source community project for chromatographic data analysis with the potential of further advancing its scope and capabilities.
Collapse
Affiliation(s)
- Christian
P. Haas
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research
and Development, Small Molecules Technologies, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Maximilian Lübbesmeyer
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research
and Development, Small Molecules Technologies, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Edward H. Jin
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Matthew A. McDonald
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Brent A. Koscher
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Nicolas Guimond
- Research
and Development, Small Molecules Technologies, Bayer AG, Crop Science Division, Alfred-Nobel-Straße 50, 40789 Monheim am Rhein, Germany
| | - Laura Di Rocco
- Chemical
& Pharmaceutical Development, Bayer
AG, Pharmaceuticals Division, Müllerstraße 178, 13353 Berlin, Germany
| | - Henning Kayser
- Research
and Development, Small Molecules Technologies, Bayer AG, Crop Science Division, Alfred-Nobel-Straße 50, 40789 Monheim am Rhein, Germany
| | - Samuel Leweke
- Applied
Mathematics, Bayer AG, Enabling Functions
Division, Kaiser-Wilhelm-Allee
1, 51368 Leverkusen, Germany
| | - Sebastian Niedenführ
- Research
and Development, Computational Life Science, Bayer AG, Crop Science Division, Alfred-Nobel-Straße 50, 40789 Monheim am Rhein, Germany
| | - Rachel Nicholls
- Research
and Development, Computational Life Science, Bayer AG, Crop Science Division, Alfred-Nobel-Straße 50, 40789 Monheim am Rhein, Germany
| | - Emily Greeves
- Research
and Development, Small Molecules Technologies, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - David M. Barber
- Research
and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Julius Hillenbrand
- Chemical
& Pharmaceutical Development, Bayer
AG, Pharmaceuticals Division, Friedrich-Ebert-Straße 475, 42117 Wuppertal, Germany
| | - Giulio Volpin
- Research
and Development, Small Molecules Technologies, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Klavs F. Jensen
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Song Q, Bai Y, Chen Q. The Spring of Processing Chemistry in Perovskite Solar Cells-Bayesian Optimization. J Phys Chem Lett 2022; 13:10741-10750. [PMID: 36374257 DOI: 10.1021/acs.jpclett.2c02635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Perovskite solar cells (PSCs) have achieved great development since 2009 because of their unique optoelectronic properties. However, the critical challenges in perovskite photovoltaics still hinder their practical application. The performance of PSCs is governed by a number of indivisible factors during device fabrication, some of which are implicit and receive little attention. Conventional research often follows an iterative trial and error manner to optimize the PSCs, wherein the underlying mechanisms for major processing are not clear. Bayesian Optimization (BO) shows great potential for accelerating the development of processing chemistry for PSCs, which have received success in resolving the black-box problems in artificial intelligence (AI). In this Perspective, we briefly introduce the BO algorithm and review and discuss the applications of BO in the field of perovskite photovoltaics. Outlooks of the BO applications in processing chemistry of PSCs are proposed briefly.
Collapse
Affiliation(s)
- Qizhen Song
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, P. R. China
| | - Yang Bai
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, P. R. China
| | - Qi Chen
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, P. R. China
| |
Collapse
|
15
|
Yao Z, Lum Y, Johnston A, Mejia-Mendoza LM, Zhou X, Wen Y, Aspuru-Guzik A, Sargent EH, Seh ZW. Machine learning for a sustainable energy future. NATURE REVIEWS. MATERIALS 2022; 8:202-215. [PMID: 36277083 PMCID: PMC9579620 DOI: 10.1038/s41578-022-00490-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 05/28/2023]
Abstract
Transitioning from fossil fuels to renewable energy sources is a critical global challenge; it demands advances - at the materials, devices and systems levels - for the efficient harvesting, storage, conversion and management of renewable energy. Energy researchers have begun to incorporate machine learning (ML) techniques to accelerate these advances. In this Perspective, we highlight recent advances in ML-driven energy research, outline current and future challenges, and describe what is required to make the best use of ML techniques. We introduce a set of key performance indicators with which to compare the benefits of different ML-accelerated workflows for energy research. We discuss and evaluate the latest advances in applying ML to the development of energy harvesting (photovoltaics), storage (batteries), conversion (electrocatalysis) and management (smart grids). Finally, we offer an overview of potential research areas in the energy field that stand to benefit further from the application of ML.
Collapse
Affiliation(s)
- Zhenpeng Yao
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Chemical Physics Theory Group, Department of Chemistry and Department of Computer Science, University of Toronto, Toronto, Ontario Canada
- Innovation Center for Future Materials, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yanwei Lum
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Innovis, Singapore, Singapore
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario Canada
| | - Andrew Johnston
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario Canada
| | - Luis Martin Mejia-Mendoza
- Chemical Physics Theory Group, Department of Chemistry and Department of Computer Science, University of Toronto, Toronto, Ontario Canada
| | - Xin Zhou
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yonggang Wen
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Alán Aspuru-Guzik
- Chemical Physics Theory Group, Department of Chemistry and Department of Computer Science, University of Toronto, Toronto, Ontario Canada
- Vector Institute for Artificial Intelligence, Toronto, Ontario Canada
| | - Edward H. Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario Canada
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Innovis, Singapore, Singapore
| |
Collapse
|
16
|
Keesey R, LeSuer R, Schrier J. Sidekick: A Low-Cost Open-Source 3D-printed liquid dispensing robot. HARDWAREX 2022; 12:e00319. [PMID: 35677813 PMCID: PMC9168727 DOI: 10.1016/j.ohx.2022.e00319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/23/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
The Sidekick is a desktop liquid dispenser, compatible with standard SBS microplates and designed for accessible laboratory automation. It features an armature-based motion system and a fully 3D-printed chassis to reduce overall mechanical complexity and accommodate user modification. Liquid dispensing is achieved with four commercially available solenoid driven positive displacement pumps that deliver liquid in 10 µL increments. A Raspberry Pi Pico RP2040 processor programmed in MicroPython is used for control, and exposes a USB serial interface for users to submit commands using either a simple vocabulary of commands or a subset of G-Code. At a total cost of $710 USD, the Sidekick offers laboratories an easy to build, easily maintained, open-source liquid dispensing system for both research and pedagogical introductions to lab automation.
Collapse
Affiliation(s)
- Rodolfo Keesey
- Department of Chemistry, Fordham University, 441 E. Fordham Road, The Bronx, NY 10458, USA
| | - Robert LeSuer
- Department of Chemistry and Biochemistry, SUNY Brockport, 350 New Campus Drive, Brockport, NY 14420, USA
| | - Joshua Schrier
- Department of Chemistry, Fordham University, 441 E. Fordham Road, The Bronx, NY 10458, USA
| |
Collapse
|
17
|
Seifrid M, Pollice R, Aguilar-Granda A, Morgan Chan Z, Hotta K, Ser CT, Vestfrid J, Wu TC, Aspuru-Guzik A. Autonomous Chemical Experiments: Challenges and Perspectives on Establishing a Self-Driving Lab. Acc Chem Res 2022; 55:2454-2466. [PMID: 35948428 PMCID: PMC9454899 DOI: 10.1021/acs.accounts.2c00220] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 01/19/2023]
Abstract
We must accelerate the pace at which we make technological advancements to address climate change and disease risks worldwide. This swifter pace of discovery requires faster research and development cycles enabled by better integration between hypothesis generation, design, experimentation, and data analysis. Typical research cycles take months to years. However, data-driven automated laboratories, or self-driving laboratories, can significantly accelerate molecular and materials discovery. Recently, substantial advancements have been made in the areas of machine learning and optimization algorithms that have allowed researchers to extract valuable knowledge from multidimensional data sets. Machine learning models can be trained on large data sets from the literature or databases, but their performance can often be hampered by a lack of negative results or metadata. In contrast, data generated by self-driving laboratories can be information-rich, containing precise details of the experimental conditions and metadata. Consequently, much larger amounts of high-quality data are gathered in self-driving laboratories. When placed in open repositories, this data can be used by the research community to reproduce experiments, for more in-depth analysis, or as the basis for further investigation. Accordingly, high-quality open data sets will increase the accessibility and reproducibility of science, which is sorely needed.In this Account, we describe our efforts to build a self-driving lab for the development of a new class of materials: organic semiconductor lasers (OSLs). Since they have only recently been demonstrated, little is known about the molecular and material design rules for thin-film, electrically-pumped OSL devices as compared to other technologies such as organic light-emitting diodes or organic photovoltaics. To realize high-performing OSL materials, we are developing a flexible system for automated synthesis via iterative Suzuki-Miyaura cross-coupling reactions. This automated synthesis platform is directly coupled to the analysis and purification capabilities. Subsequently, the molecules of interest can be transferred to an optical characterization setup. We are currently limited to optical measurements of the OSL molecules in solution. However, material properties are ultimately most important in the solid state (e.g., as a thin-film device). To that end and for a different scientific goal, we are developing a self-driving lab for inorganic thin-film materials focused on the oxygen evolution reaction.While the future of self-driving laboratories is very promising, numerous challenges still need to be overcome. These challenges can be split into cognition and motor function. Generally, the cognitive challenges are related to optimization with constraints or unexpected outcomes for which general algorithmic solutions have yet to be developed. A more practical challenge that could be resolved in the near future is that of software control and integration because few instrument manufacturers design their products with self-driving laboratories in mind. Challenges in motor function are largely related to handling heterogeneous systems, such as dispensing solids or performing extractions. As a result, it is critical to understand that adapting experimental procedures that were designed for human experimenters is not as simple as transferring those same actions to an automated system, and there may be more efficient ways to achieve the same goal in an automated fashion. Accordingly, for self-driving laboratories, we need to carefully rethink the translation of manual experimental protocols.
Collapse
Affiliation(s)
- Martin Seifrid
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Robert Pollice
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | | | - Zamyla Morgan Chan
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Acceleration
Consortium, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Kazuhiro Hotta
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Science
& Innovation Center, Mitsubishi Chemical
Corporation, 1000 Kamoshidacho, Aoba, Yokohama, Kanagawa 227-8502, Japan
| | - Cher Tian Ser
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jenya Vestfrid
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Tony C. Wu
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Alán Aspuru-Guzik
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department
of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Department
of Materials Science, University of Toronto, Toronto, Ontario M5S 3E4, Canada
- Vector
Institute for Artificial Intelligence, Toronto, Ontario M5S 1M1, Canada
- Lebovic
Fellow, Canadian Institute for Advanced
Research, Toronto, Ontario M5S 1M1, Canada
| |
Collapse
|
18
|
Guo M, Shou W, Makatura L, Erps T, Foshey M, Matusik W. Polygrammar: Grammar for Digital Polymer Representation and Generation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2101864. [PMID: 35678650 PMCID: PMC9376847 DOI: 10.1002/advs.202101864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 12/04/2021] [Indexed: 05/22/2023]
Abstract
Polymers are widely studied materials with diverse properties and applications determined by molecular structures. It is essential to represent these structures clearly and explore the full space of achievable chemical designs. However, existing approaches cannot offer comprehensive design models for polymers because of their inherent scale and structural complexity. Here, a parametric, context-sensitive grammar designed specifically for polymers (PolyGrammar) is proposed. Using the symbolic hypergraph representation and 14 simple production rules, PolyGrammar can represent and generate all valid polyurethane structures. An algorithm is presented to translate any polyurethane structure from the popular Simplified Molecular-Input Line-entry System (SMILES) string format into the PolyGrammar representation. The representative power of PolyGrammar is tested by translating a dataset of over 600 polyurethane samples collected from the literature. Furthermore, it is shown that PolyGrammar can be easily extended to other copolymers and homopolymers. By offering a complete, explicit representation scheme and an explainable generative model with validity guarantees, PolyGrammar takes an essential step toward a more comprehensive and practical system for polymer discovery and exploration. As the first bridge between formal languages and chemistry, PolyGrammar also serves as a critical blueprint to inform the design of similar grammars for other chemistries, including organic and inorganic molecules.
Collapse
Affiliation(s)
- Minghao Guo
- Computer Science and Artificial Intelligence LabMassachusetts Institute of TechnologyCambridgeMA02139USA
- CUHK Multimedia LabThe Chinese University of Hong KongSha TinHong Kong
| | - Wan Shou
- Computer Science and Artificial Intelligence LabMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Liane Makatura
- Computer Science and Artificial Intelligence LabMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Timothy Erps
- Computer Science and Artificial Intelligence LabMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Michael Foshey
- Computer Science and Artificial Intelligence LabMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Wojciech Matusik
- Computer Science and Artificial Intelligence LabMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
19
|
MacLeod BP, Parlane FGL, Brown AK, Hein JE, Berlinguette CP. Flexible automation accelerates materials discovery. NATURE MATERIALS 2022; 21:722-726. [PMID: 34907322 DOI: 10.1038/s41563-021-01156-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Benjamin P MacLeod
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Fraser G L Parlane
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Amanda K Brown
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason E Hein
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Curtis P Berlinguette
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada.
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, British Columbia, Canada.
- Canadian Institute for Advanced Research (CIFAR), MaRS Innovation Centre, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Lustosa DM, Milo A. Mechanistic Inference from Statistical Models at Different Data-Size Regimes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Danilo M. Lustosa
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Anat Milo
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
21
|
Wang K, Dowling AW. Bayesian optimization for chemical products and functional materials. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100728] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Palizhati A, Torrisi SB, Aykol M, Suram SK, Hummelshøj JS, Montoya JH. Agents for sequential learning using multiple-fidelity data. Sci Rep 2022; 12:4694. [PMID: 35304496 PMCID: PMC8933401 DOI: 10.1038/s41598-022-08413-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/17/2022] [Indexed: 11/09/2022] Open
Abstract
Sequential learning for materials discovery is a paradigm where a computational agent solicits new data to simultaneously update a model in service of exploration (finding the largest number of materials that meet some criteria) or exploitation (finding materials with an ideal figure of merit). In real-world discovery campaigns, new data acquisition may be costly and an optimal strategy may involve using and acquiring data with different levels of fidelity, such as first-principles calculation to supplement an experiment. In this work, we introduce agents which can operate on multiple data fidelities, and benchmark their performance on an emulated discovery campaign to find materials with desired band gap values. The fidelities of data come from the results of DFT calculations as low fidelity and experimental results as high fidelity. We demonstrate performance gains of agents which incorporate multi-fidelity data in two contexts: either using a large body of low fidelity data as a prior knowledge base or acquiring low fidelity data in-tandem with experimental data. This advance provides a tool that enables materials scientists to test various acquisition and model hyperparameters to maximize the discovery rate of their own multi-fidelity sequential learning campaigns for materials discovery. This may also serve as a reference point for those who are interested in practical strategies that can be used when multiple data sources are available for active or sequential learning campaigns.
Collapse
Affiliation(s)
- Aini Palizhati
- Energy and Materials Division, Toyota Research Institute, Los Altos, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, USA
| | - Steven B Torrisi
- Energy and Materials Division, Toyota Research Institute, Los Altos, USA
| | - Muratahan Aykol
- Energy and Materials Division, Toyota Research Institute, Los Altos, USA
| | - Santosh K Suram
- Energy and Materials Division, Toyota Research Institute, Los Altos, USA
| | - Jens S Hummelshøj
- Energy and Materials Division, Toyota Research Institute, Los Altos, USA
| | - Joseph H Montoya
- Energy and Materials Division, Toyota Research Institute, Los Altos, USA.
| |
Collapse
|
23
|
Bai J, Cao L, Mosbach S, Akroyd J, Lapkin AA, Kraft M. From Platform to Knowledge Graph: Evolution of Laboratory Automation. JACS AU 2022; 2:292-309. [PMID: 35252980 PMCID: PMC8889618 DOI: 10.1021/jacsau.1c00438] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 05/19/2023]
Abstract
High-fidelity computer-aided experimentation is becoming more accessible with the development of computing power and artificial intelligence tools. The advancement of experimental hardware also empowers researchers to reach a level of accuracy that was not possible in the past. Marching toward the next generation of self-driving laboratories, the orchestration of both resources lies at the focal point of autonomous discovery in chemical science. To achieve such a goal, algorithmically accessible data representations and standardized communication protocols are indispensable. In this perspective, we recategorize the recently introduced approach based on Materials Acceleration Platforms into five functional components and discuss recent case studies that focus on the data representation and exchange scheme between different components. Emerging technologies for interoperable data representation and multi-agent systems are also discussed with their recent applications in chemical automation. We hypothesize that knowledge graph technology, orchestrating semantic web technologies and multi-agent systems, will be the driving force to bring data to knowledge, evolving our way of automating the laboratory.
Collapse
Affiliation(s)
- Jiaru Bai
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Liwei Cao
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Sebastian Mosbach
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
- Cambridge
Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower #05-05, 1 Create Way, 138602 Singapore
| | - Jethro Akroyd
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
- Cambridge
Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower #05-05, 1 Create Way, 138602 Singapore
| | - Alexei A. Lapkin
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
- Cambridge
Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower #05-05, 1 Create Way, 138602 Singapore
| | - Markus Kraft
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
- Cambridge
Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower #05-05, 1 Create Way, 138602 Singapore
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
- The
Alan Turing Institute, London NW1 2DB, United Kingdom
| |
Collapse
|
24
|
Guan Y, Chaffart D, Liu G, Tan Z, Zhang D, Wang Y, Li J, Ricardez-Sandoval L. Machine learning in solid heterogeneous catalysis: Recent developments, challenges and perspectives. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117224] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Batchu SP, Hernandez Blazquez B, Malhotra A, Fang H, Ierapetritou M, Vlachos D. Accelerating Manufacturing for Biomass Conversion via Integrated Process and Bench Digitalization: A Perspective. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00560j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a perspective for accelerating biomass manufacturing via digitalization. We summarize the challenges for manufacturing and identify areas where digitalization can help. A profound potential in using lignocellulosic biomass...
Collapse
|
26
|
Sridharan B, Goel M, Priyakumar UD. Modern Machine Learning for Tackling Inverse Problems in Chemistry: Molecular Design to Realization. Chem Commun (Camb) 2022; 58:5316-5331. [DOI: 10.1039/d1cc07035e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The discovery of new molecules and materials helps expand the horizons of novel and innovative real-life applications. In the pursuit of finding molecules with desired properties, chemists have traditionally relied...
Collapse
|
27
|
Aldeghi M, Häse F, Hickman RJ, Tamblyn I, Aspuru-Guzik A. Golem: an algorithm for robust experiment and process optimization. Chem Sci 2021; 12:14792-14807. [PMID: 34820095 PMCID: PMC8597856 DOI: 10.1039/d1sc01545a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023] Open
Abstract
Numerous challenges in science and engineering can be framed as optimization tasks, including the maximization of reaction yields, the optimization of molecular and materials properties, and the fine-tuning of automated hardware protocols. Design of experiment and optimization algorithms are often adopted to solve these tasks efficiently. Increasingly, these experiment planning strategies are coupled with automated hardware to enable autonomous experimental platforms. The vast majority of the strategies used, however, do not consider robustness against the variability of experiment and process conditions. In fact, it is generally assumed that these parameters are exact and reproducible. Yet some experiments may have considerable noise associated with some of their conditions, and process parameters optimized under precise control may be applied in the future under variable operating conditions. In either scenario, the optimal solutions found might not be robust against input variability, affecting the reproducibility of results and returning suboptimal performance in practice. Here, we introduce Golem, an algorithm that is agnostic to the choice of experiment planning strategy and that enables robust experiment and process optimization. Golem identifies optimal solutions that are robust to input uncertainty, thus ensuring the reproducible performance of optimized experimental protocols and processes. It can be used to analyze the robustness of past experiments, or to guide experiment planning algorithms toward robust solutions on the fly. We assess the performance and domain of applicability of Golem through extensive benchmark studies and demonstrate its practical relevance by optimizing an analytical chemistry protocol under the presence of significant noise in its experimental conditions.
Collapse
Affiliation(s)
- Matteo Aldeghi
- Vector Institute for Artificial Intelligence Toronto ON Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto Toronto ON Canada
- Department of Computer Science, University of Toronto Toronto ON Canada
| | - Florian Häse
- Vector Institute for Artificial Intelligence Toronto ON Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto Toronto ON Canada
- Department of Computer Science, University of Toronto Toronto ON Canada
- Department of Chemistry and Chemical Biology, Harvard University Cambridge MA USA
| | - Riley J Hickman
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto Toronto ON Canada
- Department of Computer Science, University of Toronto Toronto ON Canada
| | - Isaac Tamblyn
- Vector Institute for Artificial Intelligence Toronto ON Canada
- National Research Council of Canada Ottawa ON Canada
| | - Alán Aspuru-Guzik
- Vector Institute for Artificial Intelligence Toronto ON Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto Toronto ON Canada
- Department of Computer Science, University of Toronto Toronto ON Canada
- Lebovic Fellow, Canadian Institute for Advanced Research Toronto ON Canada
| |
Collapse
|
28
|
Hammer AS, Leonov AI, Bell NL, Cronin L. Chemputation and the Standardization of Chemical Informatics. JACS AU 2021; 1:1572-1587. [PMID: 34723260 PMCID: PMC8549037 DOI: 10.1021/jacsau.1c00303] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 05/11/2023]
Abstract
The explosion in the use of machine learning for automated chemical reaction optimization is gathering pace. However, the lack of a standard architecture that connects the concept of chemical transformations universally to software and hardware provides a barrier to using the results of these optimizations and could cause the loss of relevant data and prevent reactions from being reproducible or unexpected findings verifiable or explainable. In this Perspective, we describe how the development of the field of digital chemistry or chemputation, that is the universal code-enabled control of chemical reactions using a standard language and ontology, will remove these barriers allowing users to focus on the chemistry and plug in algorithms according to the problem space to be explored or unit function to be optimized. We describe a standard hardware (the chemical processing programming architecture-the ChemPU) to encompass all chemical synthesis, an approach which unifies all chemistry automation strategies, from solid-phase peptide synthesis, to HTE flow chemistry platforms, while at the same time establishing a publication standard so that researchers can exchange chemical code (χDL) to ensure reproducibility and interoperability. Not only can a vast range of different chemistries be plugged into the hardware, but the ever-expanding developments in software and algorithms can also be accommodated. These technologies, when combined will allow chemistry, or chemputation, to follow computation-that is the running of code across many different types of capable hardware to get the same result every time with a low error rate.
Collapse
|
29
|
Zhang X, Li Y, Feng Y, Guo J, Takahashi K, Wang C. Quick approach for optimization of monodisperse microsphere synthesis with a knowledge sharing strategy powered by machine learning. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Christensen M, Yunker LPE, Adedeji F, Häse F, Roch LM, Gensch T, dos Passos Gomes G, Zepel T, Sigman MS, Aspuru-Guzik A, Hein JE. Data-science driven autonomous process optimization. Commun Chem 2021; 4:112. [PMID: 36697524 PMCID: PMC9814253 DOI: 10.1038/s42004-021-00550-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/14/2021] [Indexed: 01/28/2023] Open
Abstract
Autonomous process optimization involves the human intervention-free exploration of a range process parameters to improve responses such as product yield and selectivity. Utilizing off-the-shelf components, we develop a closed-loop system for carrying out parallel autonomous process optimization experiments in batch. Upon implementation of our system in the optimization of a stereoselective Suzuki-Miyaura coupling, we find that the definition of a set of meaningful, broad, and unbiased process parameters is the most critical aspect of successful optimization. Importantly, we discern that phosphine ligand, a categorical parameter, is vital to determination of the reaction outcome. To date, categorical parameter selection has relied on chemical intuition, potentially introducing bias into the experimental design. In seeking a systematic method for selecting a diverse set of phosphine ligands, we develop a strategy that leverages computed molecular feature clustering. The resulting optimization uncovers conditions to selectively access the desired product isomer in high yield.
Collapse
Affiliation(s)
- Melodie Christensen
- grid.17091.3e0000 0001 2288 9830Department of Chemistry, University of British Columbia, Vancouver, BC Canada ,grid.417993.10000 0001 2260 0793Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ USA
| | - Lars P. E. Yunker
- grid.17091.3e0000 0001 2288 9830Department of Chemistry, University of British Columbia, Vancouver, BC Canada
| | - Folarin Adedeji
- grid.417993.10000 0001 2260 0793Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ USA
| | - Florian Häse
- grid.38142.3c000000041936754XDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA ,grid.17063.330000 0001 2157 2938Department of Chemistry, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Computer Science, University of Toronto, Toronto, ON Canada ,grid.494618.6Vector Institute for Artificial Intelligence, Toronto, ON Canada ,ChemOS Sàrl, Lausanne, Vaud Switzerland
| | - Loïc M. Roch
- grid.38142.3c000000041936754XDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA ,grid.17063.330000 0001 2157 2938Department of Chemistry, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Computer Science, University of Toronto, Toronto, ON Canada ,ChemOS Sàrl, Lausanne, Vaud Switzerland
| | - Tobias Gensch
- grid.223827.e0000 0001 2193 0096Department of Chemistry, University of Utah, Salt Lake City, UT USA
| | - Gabriel dos Passos Gomes
- grid.17063.330000 0001 2157 2938Department of Chemistry, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Computer Science, University of Toronto, Toronto, ON Canada ,grid.494618.6Vector Institute for Artificial Intelligence, Toronto, ON Canada
| | - Tara Zepel
- grid.17091.3e0000 0001 2288 9830Department of Chemistry, University of British Columbia, Vancouver, BC Canada
| | - Matthew S. Sigman
- grid.223827.e0000 0001 2193 0096Department of Chemistry, University of Utah, Salt Lake City, UT USA
| | - Alán Aspuru-Guzik
- grid.38142.3c000000041936754XDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA ,grid.17063.330000 0001 2157 2938Department of Chemistry, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Computer Science, University of Toronto, Toronto, ON Canada ,grid.494618.6Vector Institute for Artificial Intelligence, Toronto, ON Canada ,grid.440050.50000 0004 0408 2525Canadian Institute for Advanced Research, Toronto, ON Canada
| | - Jason E. Hein
- grid.17091.3e0000 0001 2288 9830Department of Chemistry, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
31
|
Häse F, Aldeghi M, Hickman RJ, Roch LM, Christensen M, Liles E, Hein JE, Aspuru-Guzik A. Olympus: a benchmarking framework for noisy optimization and experiment planning. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1088/2632-2153/abedc8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Research challenges encountered across science, engineering, and economics can frequently be formulated as optimization tasks. In chemistry and materials science, recent growth in laboratory digitization and automation has sparked interest in optimization-guided autonomous discovery and closed-loop experimentation. Experiment planning strategies based on off-the-shelf optimization algorithms can be employed in fully autonomous research platforms to achieve desired experimentation goals with the minimum number of trials. However, the experiment planning strategy that is most suitable to a scientific discovery task is a priori unknown while rigorous comparisons of different strategies are highly time and resource demanding. As optimization algorithms are typically benchmarked on low-dimensional synthetic functions, it is unclear how their performance would translate to noisy, higher-dimensional experimental tasks encountered in chemistry and materials science. We introduce Olympus, a software package that provides a consistent and easy-to-use framework for benchmarking optimization algorithms against realistic experiments emulated via probabilistic deep-learning models. Olympus includes a collection of experimentally derived benchmark sets from chemistry and materials science and a suite of experiment planning strategies that can be easily accessed via a user-friendly Python interface. Furthermore, Olympus facilitates the integration, testing, and sharing of custom algorithms and user-defined datasets. In brief, Olympus mitigates the barriers associated with benchmarking optimization algorithms on realistic experimental scenarios, promoting data sharing and the creation of a standard framework for evaluating the performance of experiment planning strategies.
Collapse
|
32
|
|
33
|
Ashraf C, Joshi N, Beck DAC, Pfaendtner J. Data Science in Chemical Engineering: Applications to Molecular Science. Annu Rev Chem Biomol Eng 2021; 12:15-37. [PMID: 33710940 DOI: 10.1146/annurev-chembioeng-101220-102232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chemical engineering is being rapidly transformed by the tools of data science. On the horizon, artificial intelligence (AI) applications will impact a huge swath of our work, ranging from the discovery and design of new molecules to operations and manufacturing and many areas in between. Early adoption of data science, machine learning, and early examples of AI in chemical engineering has been rich with examples of molecular data science-the application tools for molecular discovery and property optimization at the atomic scale. We summarize key advances in this nascent subfield while introducing molecular data science for a broad chemical engineering readership. We introduce the field through the concept of a molecular data science life cycle and discuss relevant aspects of five distinct phases of this process: creation of curated data sets, molecular representations, data-driven property prediction, generation of new molecules, and feasibility and synthesizability considerations.
Collapse
Affiliation(s)
- Chowdhury Ashraf
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA; ,
| | - Nisarg Joshi
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA; ,
| | - David A C Beck
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA; , .,eScience Institute, University of Washington, Seattle, Washington 98195, USA
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA; ,
| |
Collapse
|
34
|
Rodríguez-Martínez X, Pascual-San-José E, Campoy-Quiles M. Accelerating organic solar cell material's discovery: high-throughput screening and big data. ENERGY & ENVIRONMENTAL SCIENCE 2021; 14:3301-3322. [PMID: 34211582 PMCID: PMC8209551 DOI: 10.1039/d1ee00559f] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/20/2021] [Indexed: 05/27/2023]
Abstract
The discovery of novel high-performing materials such as non-fullerene acceptors and low band gap donor polymers underlines the steady increase of record efficiencies in organic solar cells witnessed during the past years. Nowadays, the resulting catalogue of organic photovoltaic materials is becoming unaffordably vast to be evaluated following classical experimentation methodologies: their requirements in terms of human workforce time and resources are prohibitively high, which slows momentum to the evolution of the organic photovoltaic technology. As a result, high-throughput experimental and computational methodologies are fostered to leverage their inherently high exploratory paces and accelerate novel materials discovery. In this review, we present some of the computational (pre)screening approaches performed prior to experimentation to select the most promising molecular candidates from the available materials libraries or, alternatively, generate molecules beyond human intuition. Then, we outline the main high-throuhgput experimental screening and characterization approaches with application in organic solar cells, namely those based on lateral parametric gradients (measuring-intensive) and on automated device prototyping (fabrication-intensive). In both cases, experimental datasets are generated at unbeatable paces, which notably enhance big data readiness. Herein, machine-learning algorithms find a rewarding application niche to retrieve quantitative structure-activity relationships and extract molecular design rationale, which are expected to keep the material's discovery pace up in organic photovoltaics.
Collapse
Affiliation(s)
| | | | - Mariano Campoy-Quiles
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB 08193 Bellaterra Spain
| |
Collapse
|
35
|
Pollice R, dos Passos Gomes G, Aldeghi M, Hickman RJ, Krenn M, Lavigne C, Lindner-D’Addario M, Nigam A, Ser CT, Yao Z, Aspuru-Guzik A. Data-Driven Strategies for Accelerated Materials Design. Acc Chem Res 2021; 54:849-860. [PMID: 33528245 PMCID: PMC7893702 DOI: 10.1021/acs.accounts.0c00785] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 01/06/2023]
Abstract
The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the material science community in recent years. The intrinsically high dimensionality of the space of realizable materials makes traditional approaches ineffective for large-scale explorations. Modern data science and machine learning tools developed for increasingly complicated problems are an attractive alternative. An imminent climate catastrophe calls for a clean energy transformation by overhauling current technologies within only several years of possible action available. Tackling this crisis requires the development of new materials at an unprecedented pace and scale. For example, organic photovoltaics have the potential to replace existing silicon-based materials to a large extent and open up new fields of application. In recent years, organic light-emitting diodes have emerged as state-of-the-art technology for digital screens and portable devices and are enabling new applications with flexible displays. Reticular frameworks allow the atom-precise synthesis of nanomaterials and promise to revolutionize the field by the potential to realize multifunctional nanoparticles with applications from gas storage, gas separation, and electrochemical energy storage to nanomedicine. In the recent decade, significant advances in all these fields have been facilitated by the comprehensive application of simulation and machine learning for property prediction, property optimization, and chemical space exploration enabled by considerable advances in computing power and algorithmic efficiency.In this Account, we review the most recent contributions of our group in this thriving field of machine learning for material science. We start with a summary of the most important material classes our group has been involved in, focusing on small molecules as organic electronic materials and crystalline materials. Specifically, we highlight the data-driven approaches we employed to speed up discovery and derive material design strategies. Subsequently, our focus lies on the data-driven methodologies our group has developed and employed, elaborating on high-throughput virtual screening, inverse molecular design, Bayesian optimization, and supervised learning. We discuss the general ideas, their working principles, and their use cases with examples of successful implementations in data-driven material discovery and design efforts. Furthermore, we elaborate on potential pitfalls and remaining challenges of these methods. Finally, we provide a brief outlook for the field as we foresee increasing adaptation and implementation of large scale data-driven approaches in material discovery and design campaigns.
Collapse
Affiliation(s)
- Robert Pollice
- Chemical
Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
| | - Gabriel dos Passos Gomes
- Chemical
Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
| | - Matteo Aldeghi
- Chemical
Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Vector
Institute for Artificial Intelligence, 661 University Ave Suite 710, Toronto, Ontario M5G 1M1, Canada
| | - Riley J. Hickman
- Chemical
Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
| | - Mario Krenn
- Chemical
Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Vector
Institute for Artificial Intelligence, 661 University Ave Suite 710, Toronto, Ontario M5G 1M1, Canada
| | - Cyrille Lavigne
- Chemical
Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
| | - Michael Lindner-D’Addario
- Chemical
Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
| | - AkshatKumar Nigam
- Chemical
Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
| | - Cher Tian Ser
- Chemical
Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
| | - Zhenpeng Yao
- Chemical
Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
| | - Alán Aspuru-Guzik
- Chemical
Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Vector
Institute for Artificial Intelligence, 661 University Ave Suite 710, Toronto, Ontario M5G 1M1, Canada
- Lebovic
Fellow, Canadian Institute for Advanced
Research (CIFAR), 661
University Ave, Toronto, Ontario M5G, Canada
| |
Collapse
|
36
|
Shi Y, Prieto PL, Zepel T, Grunert S, Hein JE. Automated Experimentation Powers Data Science in Chemistry. Acc Chem Res 2021; 54:546-555. [PMID: 33471522 DOI: 10.1021/acs.accounts.0c00736] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Data science has revolutionized chemical research and continues to break down barriers with new interdisciplinary studies. The introduction of computational models and machine learning (ML) algorithms in combination with automation and traditional experimental techniques has enabled scientific advancement across nearly every discipline of chemistry, from materials discovery, to process optimization, to synthesis planning. However, predictive tools powered by data science are only as good as their data sets and, currently, many of the data sets used to train models suffer from several limitations, including being sparse, limited in scope and requiring human curation. Likewise, computational data faces limitations in terms of accurate modeling of nonideal systems and can suffer from low translation fidelity from simulation to real conditions. The lack of diverse data and the need to be able to test it experimentally reduces both the accuracy and scope of the predictive models derived from data science. This Account contextualizes the need for more complex and diverse experimental data and highlights how the seamless integration of robotics, machine learning, and data-rich monitoring techniques can be used to access it with minimal human labor.We propose three broad categories of data in chemistry: data on fundamental properties, data on reaction outcomes, and data on reaction mechanics. We highlight flexible, automated platforms that can be deployed to acquire and leverage these data. The first platform combines solid- and liquid-dosing modules with computer vision to automate solubility screening, thereby gathering fundamental data that are necessary for almost every experimental design. Using computer vision offers the additional benefit of creating a visual record, which can be referenced and used to further interrogate and gain insight on the data collected. The second platform iteratively tests reaction variables proposed by a ML algorithm in a closed-loop fashion. Experimental data related to reaction outcomes are fed back into the algorithm to drive the discovery and optimization of new materials and chemical processes. The third platform uses automated process analytical technology to gather real-time data related to reaction kinetics. This system allows the researcher to directly interrogate the reaction mechanisms in granular detail to determine exactly how and why a reaction proceeds, thereby enabling reaction optimization and deployment.
Collapse
Affiliation(s)
- Yao Shi
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Paloma L. Prieto
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Tara Zepel
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shad Grunert
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jason E. Hein
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
37
|
|
38
|
Kell DB, Samanta S, Swainston N. Deep learning and generative methods in cheminformatics and chemical biology: navigating small molecule space intelligently. Biochem J 2020; 477:4559-4580. [PMID: 33290527 PMCID: PMC7733676 DOI: 10.1042/bcj20200781] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022]
Abstract
The number of 'small' molecules that may be of interest to chemical biologists - chemical space - is enormous, but the fraction that have ever been made is tiny. Most strategies are discriminative, i.e. have involved 'forward' problems (have molecule, establish properties). However, we normally wish to solve the much harder generative or inverse problem (describe desired properties, find molecule). 'Deep' (machine) learning based on large-scale neural networks underpins technologies such as computer vision, natural language processing, driverless cars, and world-leading performance in games such as Go; it can also be applied to the solution of inverse problems in chemical biology. In particular, recent developments in deep learning admit the in silico generation of candidate molecular structures and the prediction of their properties, thereby allowing one to navigate (bio)chemical space intelligently. These methods are revolutionary but require an understanding of both (bio)chemistry and computer science to be exploited to best advantage. We give a high-level (non-mathematical) background to the deep learning revolution, and set out the crucial issue for chemical biology and informatics as a two-way mapping from the discrete nature of individual molecules to the continuous but high-dimensional latent representation that may best reflect chemical space. A variety of architectures can do this; we focus on a particular type known as variational autoencoders. We then provide some examples of recent successes of these kinds of approach, and a look towards the future.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, U.K
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Soumitra Samanta
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, U.K
| | - Neil Swainston
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, U.K
| |
Collapse
|
39
|
Moosavi S, Jablonka KM, Smit B. The Role of Machine Learning in the Understanding and Design of Materials. J Am Chem Soc 2020; 142:20273-20287. [PMID: 33170678 PMCID: PMC7716341 DOI: 10.1021/jacs.0c09105] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Indexed: 12/21/2022]
Abstract
Developing algorithmic approaches for the rational design and discovery of materials can enable us to systematically find novel materials, which can have huge technological and social impact. However, such rational design requires a holistic perspective over the full multistage design process, which involves exploring immense materials spaces, their properties, and process design and engineering as well as a techno-economic assessment. The complexity of exploring all of these options using conventional scientific approaches seems intractable. Instead, novel tools from the field of machine learning can potentially solve some of our challenges on the way to rational materials design. Here we review some of the chief advancements of these methods and their applications in rational materials design, followed by a discussion on some of the main challenges and opportunities we currently face together with our perspective on the future of rational materials design and discovery.
Collapse
Affiliation(s)
- Seyed
Mohamad Moosavi
- Laboratory of Molecular Simulation,
Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Valais, Switzerland
| | - Kevin Maik Jablonka
- Laboratory of Molecular Simulation,
Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Valais, Switzerland
| | - Berend Smit
- Laboratory of Molecular Simulation,
Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Valais, Switzerland
| |
Collapse
|
40
|
Montoya JH, Winther KT, Flores RA, Bligaard T, Hummelshøj JS, Aykol M. Autonomous intelligent agents for accelerated materials discovery. Chem Sci 2020; 11:8517-8532. [PMID: 34123112 PMCID: PMC8163357 DOI: 10.1039/d0sc01101k] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
We present an end-to-end computational system for autonomous materials discovery. The system aims for cost-effective optimization in large, high-dimensional search spaces of materials by adopting a sequential, agent-based approach to deciding which experiments to carry out. In choosing next experiments, agents can make use of past knowledge, surrogate models, logic, thermodynamic or other physical constructs, heuristic rules, and different exploration-exploitation strategies. We show a series of examples for (i) how the discovery campaigns for finding materials satisfying a relative stability objective can be simulated to design new agents, and (ii) how those agents can be deployed in real discovery campaigns to control experiments run externally, such as the cloud-based density functional theory simulations in this work. In a sample set of 16 campaigns covering a range of binary and ternary chemistries including metal oxides, phosphides, sulfides and alloys, this autonomous platform found 383 new stable or nearly stable materials with no intervention by the researchers.
Collapse
Affiliation(s)
| | | | - Raul A Flores
- SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | - Thomas Bligaard
- SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
- Department of Energy Conversion and Storage, Technical University of Denmark Lyngby Denmark
| | | | | |
Collapse
|
41
|
Abstract
The way chemists represent chemical structures as two-dimensional sketches made up of atoms and bonds, simplifying the complex three-dimensional molecules comprising nuclei and electrons of the quantum mechanical description, is the everyday language of chemistry. This language uses models, particularly of bonding, that are not contained in the quantum mechanical description of chemical systems, but has been used to derive machine-readable formats for storing and manipulating chemical structures in digital computers. This language is fuzzy and varies from chemist to chemist but has been astonishingly successful and perhaps contributes with its fuzziness to the success of chemistry. It is this creative imagination of chemical structures that has been fundamental to the cognition of chemistry and has allowed thought experiments to take place. Within the everyday language, the model nature of these concepts is not always clear to practicing chemists, so that controversial discussions about the merits of alternative models often arise. However, the extensive use of artificial intelligence (AI) and machine learning (ML) in chemistry, with the aim of being able to make reliable predictions, will require that these models be extended to cover all relevant properties and characteristics of chemical systems. This, in turn, imposes conditions such as completeness, compactness, computational efficiency and non-redundancy on the extensions to the almost universal Lewis and VSEPR bonding models. Thus, AI and ML are likely to be important in rationalizing, extending and standardizing chemical bonding models. This will not affect the everyday language of chemistry but may help to understand the unique basis of chemical language.
Collapse
Affiliation(s)
- Timothy Clark
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Martin G Hicks
- Beilstein-Institut, Trakehner Str. 7–9, 60487 Frankfurt am Main, Germany
| |
Collapse
|
42
|
A nanomaterials discovery robot for the Darwinian evolution of shape programmable gold nanoparticles. Nat Commun 2020; 11:2771. [PMID: 32488034 PMCID: PMC7265452 DOI: 10.1038/s41467-020-16501-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
The fabrication of nanomaterials from the top-down gives precise structures but it is costly, whereas bottom-up assembly methods are found by trial and error. Nature evolves materials discovery by refining and transmitting the blueprints using DNA mutations autonomously. Genetically inspired optimisation has been used in a range of applications, from catalysis to light emitting materials, but these are not autonomous, and do not use physical mutations. Here we present an autonomously driven materials-evolution robotic platform that can reliably optimise the conditions to produce gold-nanoparticles over many cycles, discovering new synthetic conditions for known nanoparticle shapes using the opto-electronic properties as a driver. Not only can we reliably discover a method, encoded digitally to synthesise these materials, we can seed in materials from preceding generations to engineer more sophisticated architectures. Over three independent cycles of evolution we show our autonomous system can produce spherical nanoparticles, rods, and finally octahedral nanoparticles by using our optimized rods as seeds.
Collapse
|