1
|
Farag SA, Dosoky WM, Moussa AA, Kamal M, Elolimy AA, El-Mekkawy MMF, Abd El-Hack ME, Swelum AA. Impact of date palm (Phoenix dactylifera) pollen supplementation on growth performance, carcass traits, cecal microbial composition, and blood parameters in Japanese quail (Coturnix coturnix Japonica). Poult Sci 2025; 104:105164. [PMID: 40318549 DOI: 10.1016/j.psj.2025.105164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 05/07/2025] Open
Abstract
This study aimed to evaluate the effects of date palm pollen (DPP) supplementation in the diet of Japanese quail on growth performance, carcass characteristics, blood biomarkers, and intestinal bacterial load. A total of 360 unsexed one-day-old Japanese quail chicks were randomly assigned to four experimental groups using a completely randomized design. Each group was further subdivided into three replicates, each consisting of 30 chicks. In the experiment, the first group was given control (basal diet); the second group was given the same basal diet plus 3 g/kg of DPP; the third group was given the same basal diet plus 5 g/kg of DPP; and the fourth group was given the same basal diet plus 7 g/kg of DPP. The results revealed significant differences between treatments, with DPP supplementation leading to increased body weight (BW) and body weight gain (BWG) during the initial weeks (P < 0.05), and these differences became more pronounced (P < 0.01) in the later stages of the study. Additionally, the DPP-treated groups demonstrated lower feed intake (FI) and improved feed conversion ratio (FCR) than the control group. Supplementation with DPP significantly (P < 0.05) influenced carcass, liver, spleen, thymus, and bursa percentage. The addition of DPP to the quail diet significantly impacted (P < 0.01) all hematological parameters, except for red blood cell concentration. Biochemical analysis showed a significant increase (P < 0.01) in total protein, albumin, globulin, and high-density lipoprotein (HDL) levels in the DPP groups. In contrast, alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea, creatinine, cholesterol, triglycerides, and low-density lipoprotein (LDL) levels were significantly reduced (P < 0.01). DPP supplementation had a significant impact on antioxidant enzyme activities, with the 5 g/kg and 7 g/kg DPP groups showing significant increases (P < 0.01) in total antioxidant capacity (TAC), superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) levels. Furthermore, malondialdehyde (MDA) and nitric oxide (NO) concentrations were significantly reduced (P < 0.01). According to microbiological tests, the DPP-treated groups had reduced Escherichia coli and Staphylococcus aureus levels. In summary, adding DPP to the diet of Japanese quail enhances their gut microbiota composition, growth performance, carcass characteristics, and biochemical markers.
Collapse
Affiliation(s)
- Soha A Farag
- Department of Animal Production, Faculty of Agriculture, Tanta University, Egypt
| | - Waleed M Dosoky
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Abdelrahim A Moussa
- Department of Animal Production, Faculty of Agriculture, Tanta University, Egypt
| | - Mahmoud Kamal
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Ahmed A Elolimy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, Abu Dhabi, United Arab Emirates.
| | | | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), P.O. Box 77, Giza, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
2
|
Wojciechowska-Puchałka J, Calik J, Krawczyk J, Obrzut J, Tomaszewska E, Muszyński S, Wojtysiak D. The effect of caponization on tibia bone histomorphometric properties of crossbred roosters. Sci Rep 2024; 14:4062. [PMID: 38374163 PMCID: PMC10876549 DOI: 10.1038/s41598-024-54791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/16/2024] [Indexed: 02/21/2024] Open
Abstract
The negative effect of caponization on the structural, geometric and mechanical parameters of femur and tibia has been shown in a few studies. Nevertheless, its influence on tibia bone microarchitecture is still largely unknown. Therefore, this study aimed to assess the effect of castration on the microstructural parameters of the trabecular and compact bone of tibia bone in crossbred chickens. The experiment involved 96 roosters derived from crossing Yellowleg Partridge hens ([Formula: see text]-33) and Rhode Island Red cockerels (R-11) fattened until the 16th, 20th and 24th week of life. Animals were randomly divided into 2 groups of 48 each. Group I (control) consisted of intact roosters and group II (experimental) consisted of birds subjected to caponization at the 8th week of age. The castration surgery had no influence on some properties within compact bone such as osteon diameter On.Dm, osteon perimeter On.Pm, osteon area On.Ar, osteocyte lacunar number Ot.Lc.N, osteon bone area On.B.Ar, osteon wall thickness On.W.Th as well as thick-mature collagen content in all analyzed age groups of animals. Nevertheless, our results demonstrate that castration caused a decrease of Haversian canal area Hc.Ar, osteocyte lacunar area Ot.Lc.Ar and osteocyte lacunar porosity Ot.Lc.Po among the 16-week-old birds, decrease of Haversian canal perimeter Hc.Pm and increase of fraction of bone area On.B.Ar/On.Ar among 16- and 24-week-old individuals and also an increase of osteocyte lacunar density Ot.Lc.Dn in the osteons of the oldest roosters. Additionally, some microstructural parameters of trabecular bone show the negative effect of caponization. The youngest 16-week-old capons were characterized by thinnin the trabecular in the epiphysis part of tibia. Moreover, in the case of 24-week-old, there is an increase in the trabecular separation Tb.Sp with simultaneous decrease of trabecular number Tb.N compared to roosters, which may suggest the increase of the bone resorption among the oldest individuals. The increased bone turnover in the epiphysis part of the tibia bone also indicates changes in the collagen fibers distribution, where among 20-week-old animals there is a decrease in the content of immature thin collagen fibers with simultaneous increase in the content of mature thick collagen fibers. Furthermore, among the oldest 24-week-old individuals we can observe the increased thick-to-thin collagen ratio, which may be a sign of slowing down in bone formation.
Collapse
Affiliation(s)
- J Wojciechowska-Puchałka
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Kraków, 24/28 Mickiewicza Ave., 30-059, Cracow, Poland.
| | - J Calik
- Department of Poultry Breeding, National Research Institute of Animal Production, 32-083, Balice, Poland
| | - J Krawczyk
- Department of Poultry Breeding, National Research Institute of Animal Production, 32-083, Balice, Poland
| | - J Obrzut
- Department of Poultry Breeding, National Research Institute of Animal Production, 32-083, Balice, Poland
| | - E Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 12 Akademicka St., 20-950, Lublin, Poland
| | - S Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 13 Akademicka St, 20-950, Lublin, Poland
| | - D Wojtysiak
- Department of Animal Genetics, Breeding and Ethology, Faculty of Animal Sciences, University of Agriculture in Kraków, 24/28 Mickiewicza Ave., 30-059, Cracow, Poland
| |
Collapse
|
3
|
Sanyal A, Ghosh A, Roy C, Mazumder I, Marrazzo P. Revolutionizing the Use of Honeybee Products in Healthcare: A Focused Review on Using Bee Pollen as a Potential Adjunct Material for Biomaterial Functionalization. J Funct Biomater 2023; 14:352. [PMID: 37504847 PMCID: PMC10381877 DOI: 10.3390/jfb14070352] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
The field of biomedical engineering highly demands technological improvements to allow the successful engraftment of biomaterials requested for healing damaged host tissues, tissue regeneration, and drug delivery. Polymeric materials, particularly natural polymers, are one of the primary suitable materials employed and functionalized to enhance their biocompatibility and thus confer advantageous features after graft implantation. Incorporating bioactive substances from nature is a good technique for expanding or increasing the functionality of biomaterial scaffolds, which may additionally encourage tissue healing. Our ecosystem provides natural resources, like honeybee products, comprising a rich blend of phytochemicals with interesting bioactive properties, which, when functionally coupled with biomedical biomaterials, result in the biomaterial exhibiting anti-inflammatory, antimicrobial, and antioxidant effects. Bee pollen is a sustainable product recently discovered as a new functionalizing agent for biomaterials. This review aims to articulate the general idea of using honeybee products for biomaterial engineering, mainly focusing on describing recent literature on experimental studies on biomaterials functionalized with bee pollen. We have also described the underlying mechanism of the bioactive attributes of bee pollen and shared our perspective on how future biomedical research will benefit from the fabrication of such functionalized biomaterials.
Collapse
Affiliation(s)
- Arka Sanyal
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Anushikha Ghosh
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Chandrashish Roy
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Ishanee Mazumder
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Pasquale Marrazzo
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
4
|
Lee J, Tompkins Y, Kim DH, Kim WK, Lee K. The effects of myostatin mutation on the tibia bone quality in female Japanese quail before and after sexual maturation. Poult Sci 2023; 102:102734. [PMID: 37156076 DOI: 10.1016/j.psj.2023.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
In the modern layer industry, improvement of bone quality is one of the prior tasks to solve from economic and welfare standpoints. In addition to nutritional and environmental factors, genetic factors have been considered major factors regulating bone quality in layers but are yet to be fully investigated due to limitations on available animal models. Initially, the myostatin (MSTN) gene was genetically edited in quail to investigate the effect of MSTN mutation on economic traits in meat producing poultry species. In the current study, the function of the MSTN gene on regulation of bone quality in layers was investigated using MSTN mutant female quail as an animal model. Tibia bones were collected from wild-type (WT) and MSTN mutant female quail at 5 wk old and 4 mo old, representing prelaying and actively laying stages, respectively. Left tibia bones were analyzed by microcomputed tomography scanning to evaluate the architectural characteristics, while bone breaking strength (BBS) was measured using right tibia bones. At 5 wk of age, MSTN mutant female quail showed higher BBS and values on parameters related to bone quality such as bone mineral contents (BMC), bone mineral density (BMD), bone volume (BV), and/or trabecular bone thickness in whole diaphysis, whole metaphysis, and metaphyseal trabecular bone, compared to WT female quail. Although BBS and BMD became similar between the 2 groups at 4 mo of age, higher TV and TS in whole metaphysis and higher BMC and TV in whole diaphysis of MSTN mutant group compared to those of WT group suggested that the improved tibia bone quality by MSTN mutation before sexual maturation lasted to a certain degree even after sexual maturation. The use of the MSTN mutant female model provided new insights into genetic regulation on female quail bone quality depending on physiological changes.
Collapse
Affiliation(s)
- Joonbum Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yuguo Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
5
|
Zhu X, He Y, Zhang Q, Ma D, Zhao H. Lead induced disorders of lipid metabolism and glycometabolism in the liver of developmental Japanese quails (Coturnix japonica) via inhibiting PI3K/Akt signaling pathway. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109489. [PMID: 36261108 DOI: 10.1016/j.cbpc.2022.109489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
The lead (Pb) contamination is considered a lethal threat to birds. However, Pb-induced hepatotoxicology especially its impacts on metabolic processes in the liver of birds is not yet fully understood. Therefore, we tried to determine the toxicological effects of Pb exposure on hepatic carbohydrate and lipid metabolism via Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway by using an animal model- Japanese quail (Coturnix japonica). One-week old female Japanese quails were randomly allocated into four groups and fed with 0, 50 ppm, 500 ppm and 1000 ppm Pb drinking water respectively for 49 days. The results showed that Pb accumulated in the liver as a dose-dependent manner. Exposure to high dose of Pb (500 and 1000 ppm Pb) led to severe histopathological damages characterized by irregularity and dilation of liver sinusoids, hepatic lipid vacuolization and hepatocellular cytoplasm hyalinization. Meanwhile, Pb exposure caused glycogen increase and lipid droplets decrease in the liver. Pb exposure was also attributable to a decreased triglyceride level in the plasma. In addition, the transcriptional levels of PI3K and Akt in the liver were downregulated by Pb exposure. Subsequently, the mRNA expressions of genes related with glycometabolism in the liver were remarkably altered and the mRNA levels of genes involved in fat synthesis and oxidation in the liver were also markedly changed. it seems that Pb could lead to liver metabolic disorder through structural damages and PI3K/Akt signaling pathway disruption.
Collapse
Affiliation(s)
- Xiaojia Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yu He
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Qingyu Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Derui Ma
- Beijing Chaoyang Foreign Language School, Beijing 100101, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
6
|
Martiniakova M, Blahova J, Kovacova V, Babikova M, Mondockova V, Kalafova A, Capcarova M, Omelka R. Bee Bread Can Alleviate Lipid Abnormalities and Impaired Bone Morphology in Obese Zucker Diabetic Rats. Molecules 2021; 26:2616. [PMID: 33947088 PMCID: PMC8124454 DOI: 10.3390/molecules26092616] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 04/27/2021] [Indexed: 12/26/2022] Open
Abstract
This study examined for the first time whether bee bread (BB, consisting of monofloral rape bee pollen) could alleviate lipid derangements and reduced bone quality in Zucker diabetic fatty (ZDF) rats, which are considered an appropriate animal model for type 2 diabetes mellitus (T2DM) investigation. Adult ZDF rats were segregated into four groups: lean non-diabetic rats (L group), obese diabetic rats untreated (C group), and those treated with the BB at two doses (500 and 700 mg/kg body weight, respectively, B1 and B2 groups) for 10 weeks. Significantly reduced levels of total cholesterol and triglyceride were recorded in the B2 group versus the C group. In both BB-treated groups, significantly increased relative volume of trabecular bone and trabecular thickness, enhanced density of secondary osteons, accelerated periosteal bone apposition, and improved blood flow were observed. A positive effect of higher dose of BB on femoral weight and cortical bone thickness was also demonstrated. Our results suggest a promising potential of BB to ameliorate T2DM-related complications associated with lipid and bone damages.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia;
| | - Jana Blahova
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia;
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| | - Anna Kalafova
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (A.K.); (M.C.)
| | - Marcela Capcarova
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (A.K.); (M.C.)
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| |
Collapse
|
7
|
Dose-Dependent Impact of Bee Pollen Supplementation on Macroscopic and Microscopic Structure of Femoral Bone in Rats. Animals (Basel) 2021; 11:ani11051265. [PMID: 33924748 PMCID: PMC8146875 DOI: 10.3390/ani11051265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Bee pollen is considered an interesting feed supplement with beneficial health impacts. It contains many basic nutritional compounds that improve growth performance, development and immune response of animals. However, its effect on bone structure has been studied to a limited extent and the results published so far are ambiguous. Therefore, the impact of bee pollen supplementation on selected bone characteristics of rats was investigated in our study. We determined a dose-dependent effect of bee pollen administration on macroscopic and microscopic structure of femoral bone. Several negative effects of bee pollen supplementation at the level of 0.75% on bone features have been demonstrated, while the level of 0.5% did not influence these properties in rats. Abstract Bee pollen has been successfully used as a feed additive with beneficial impacts on productive, reproductive, and immune conditions of animals. However, its effect on bone structure and bone health remains controversial. Therefore, the purpose of our study was to examine the impact of bee pollen supplementation on macroscopic and microscopic structure of a femoral bone using rats as suitable animal models. Male rats (1 month-old) were assigned into three groups: control (C group) that was fed a standard diet without bee pollen and two bee pollen supplemented groups (P1 and P2 groups) that received an experimental diet including 0.5% and 0.75% of bee pollen, respectively, for 3 months. A number of unfavorable effects of 0.75% bee pollen administration on bone weight, cortical bone thickness, calcium content, alkaline phosphatase activity, sizes of primary osteons’ vascular canals, Haversian canals and secondary osteons in the cortical bone have been recorded, whereas these bone parameters were significantly decreased in the P2 group versus the C group. On the contrary, the concentration of 0.5% did not affect any of bone features mentioned above. In conclusion, the impact of bee pollen supplementation on femoral bone structure of rats depends on the dose used.
Collapse
|