1
|
Akbari Oghaz N, Rahnama K, Vatandoost H, Afshari A, White JF, Hyde KD, Yazdanian M, Salari E, Hatamzadeh S, Taheri A. Entomopathogenic fungi as guardians of elm trees: A review of dual-action biocontrol agents targeting Scolytus spp. and their associated Ophiostoma species. J Invertebr Pathol 2025; 211:108361. [PMID: 40393642 DOI: 10.1016/j.jip.2025.108361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/09/2025] [Accepted: 05/16/2025] [Indexed: 05/22/2025]
Abstract
The elm tree, an integral component of riparian ecosystems worldwide, has experienced significant mortality due to Dutch elm disease (DED). This review highlights that only 20 out of the 127 identified species within the genus Scolytus have been reported as vectors of DED. A critical research gap exists in the use of entomopathogenic fungi (EPFs) for controlling Scolytus species that vector DED. Current research has primarily focused on S. scolytus, S. multistriatus, and S. schevyrewi, identifying fourteen EPF species as effective biocontrol agents. Notably, only five of these EPFs, including Metarhizium anisopliae, Beauveria bassiana, Nomuraea rileyi, Trichoderma harzianum, and T. polysporum, have been proposed as antifungal agents against Ophiostoma ulmi and O. novo-ulmi. Additionally, environmental factors, such as temperature and UV exposure, along with synthetic substances like pesticides and fungicides, can significantly impact the efficacy of EPFs in biocontrol applications. The paucity of information on the dual control of elm bark beetles and associated pathogenic Ophiostoma species is notable. Despite the limited scope of existing studies, they underscore the dual benefits of EPFs as both bio-fungicides and bio-insecticides. This review posits that EPFs present an effective approach to integrated pest management for DED and advocates for a renewed focus on research into this promising strategy, taking into account environmental factors that could enhance their efficacy.
Collapse
Affiliation(s)
- Nima Akbari Oghaz
- Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan 4918943464, Iran.
| | - Kamran Rahnama
- Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan 4918943464, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Ali Afshari
- Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan 4918943464, Iran
| | - James Francis White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 089018520, USA
| | - Kevin David Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Mohsen Yazdanian
- Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan 4918943464, Iran
| | - Elham Salari
- Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan 4918943464, Iran
| | - Sareh Hatamzadeh
- Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan 4918943464, Iran
| | - Abdolhossein Taheri
- Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan 4918943464, Iran
| |
Collapse
|
2
|
Kumar D, Roy S, Babu A, Pandey AK. Harnessing Fungal Bioagents Rich in Volatile Metabolites for Sustainable Crop Protection: A Critical Review. J Basic Microbiol 2025; 65:e70003. [PMID: 40007229 DOI: 10.1002/jobm.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/29/2024] [Accepted: 01/11/2025] [Indexed: 02/27/2025]
Abstract
Pests and diseases have a significant impact on crop health and yields, posing a serious threat to global agriculture. Effective management strategies, such as integrated pest management (IPM), including crop rotation, use of synthetic pesticides, biological control, and resistant/tolerant crop varieties, are essential to mitigate these risks and ensure sustainable agricultural practices. Fungal bioagents play an important role in managing phytopathogens and insect pests by acting as biological agents. They promote healthy plant growth by enhancing the uptake of nutrients and combating systemic resistance in plants. Furthermore, fungal bioagents are environmentally friendly, reducing application of fungicides and insecticides and minimizing their negative impact on the crops and environment. Their use in IPM promotes sustainable agriculture and ensures high-quality crops while maintaining soil health and microbial biodiversity. These fungal bioagents are rich sources of volatile organic compounds (VOCs), which play an important role in biological communication during interaction with insect pests and phytopathogens. In pest management, VOC production by beneficial fungi is accountable for their efficacy against pests and pathogens. Thus, this review discusses the important fungal bioagents producing VOCs, extraction methods of VOC, and the use of VOC-producing fungi in pest and disease management, knowledge gaps, and future research areas.
Collapse
Affiliation(s)
- Dheeraj Kumar
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Center, Nagrakata, India
| | - Somnath Roy
- Entomology Department, Tea Research Association, Tocklai Tea Research Institute, Jorhat, India
| | - Azariah Babu
- Entomology Department, Tea Research Association, Tocklai Tea Research Institute, Jorhat, India
| | - Abhay K Pandey
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Center, Nagrakata, India
| |
Collapse
|
3
|
Vivekanandhan P, Swathy K, Sarayut P, Patcharin K. Enzymatic, cellular breakdown and lysis in treatment of Beauveria Brongniartii on Spodoptera litura (Fabricius, 1775). Sci Rep 2025; 15:7175. [PMID: 40021686 PMCID: PMC11871362 DOI: 10.1038/s41598-024-78151-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/29/2024] [Indexed: 03/03/2025] Open
Abstract
The current study aimed to isolate Beauveria brongniartii conidia from forest soils, identify the fungus, and evaluate its effectiveness on the eggs, larvae, pupae, and adults of Spodoptera litura. Insect mortality rates were recorded every 3, 6, 9, and 12 days. The identification of entomopathogenic fungi was carried out using molecular techniques, including PCR, DNA sequencing, and molecular markers, to detect species-specific 18 S rDNA genetic sequences, all performed under aseptic conditions. The results indicated that higher conidia concentrations (2.7 × 109 conidia/mL) exhibited greater virulence, with eggs showing a mortality rate of 98.66%, followed by larvae 96%, adults 90.66%, and pupae 77.33% after 12 days. Probit analysis revealed minimal LC50 and LC90 values: eggs (5.5 × 102; 1.0 × 106 spores/mL), larvae (8.2 × 102; 1.2 × 107 spores/mL), pupae (9.6 × 104; 7.3 × 1010 spores/mL), and adults (1.0 × 103; 2.0 × 108 spores/mL). The total hemocyte counts and detailed observational results revealed that B. brongniartii induces cellular breakdown and cell lysis in S. litura larvae by producing enzymes that degrade the cuticle and cell membranes. Earthworm bioindicator studies showed minimal effects from B. brongniartii conidia compared to controls, while chemical treatments resulted in 96% mortality at 100 ppm. Histopathological examinations revealed no significant differences in gut tissue between earthworms treated with fungal conidia and those in the control group, unlike the substantial damage caused by chemical treatments. Biochemical analysis revealed significant alterations in enzyme activity, including reduced levels of phosphatase and catalase, as well as increased levels of lipid peroxides and superoxide dismutase. This study highlights the effectiveness of B. brongniartii in controlling S. litura, demonstrating its potential as a viable biocontrol agent and promoting eco-friendly alternatives to chemical pesticides, with no risk to non-target species or the environment.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kannan Swathy
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pittarate Sarayut
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Krutmuang Patcharin
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
4
|
Vivekanandhan P, Swathy K, Sarayut P, Patcharin K. Classification, biology and entomopathogenic fungi-based management and their mode of action against Drosophila species (Diptera: Drosophilidae): a review. Front Microbiol 2024; 15:1443651. [PMID: 39439942 PMCID: PMC11493638 DOI: 10.3389/fmicb.2024.1443651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
This review provides a comprehensive analysis of the classification, biology, and management of Drosophila species (Diptera: Drosophilidae) with a focus on entomopathogenic fungi (EPF) as a biocontrol strategy. Drosophila species, particularly Drosophila suzukii, and Drosophila melanogaster have emerged as significant pests in various agricultural systems, causing extensive damage to fruit crops. Understanding their taxonomic classification and biological traits is crucial for developing effective management strategies. This review delves into the life cycle, behavior, and ecological interactions of Drosophila species, highlighting the challenges posed by their rapid reproduction and adaptability. The review further explores the potential of EPF as an eco-friendly alternative to chemical pesticides. The mode of action of EPF against Drosophila species is examined, including spore adhesion, germination, and penetration of the insect cuticle, leading to host death. Factors influencing the efficacy of EPF, such as environmental conditions, fungal virulence, and host specificity, are discussed in detail. By synthesizing current research, this review aims to provide valuable insights into the application of EPF and to identify future research directions for enhancing the effectiveness of EPF-based control measures against Drosophila species.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Kannan Swathy
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Pittarate Sarayut
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Krutmuang Patcharin
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Liu H, Yin J, Huang X, Zang C, Zhang Y, Cao J, Gong M. Mosquito Gut Microbiota: A Review. Pathogens 2024; 13:691. [PMID: 39204291 PMCID: PMC11357333 DOI: 10.3390/pathogens13080691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Mosquitoes are vectors of many important human diseases. The prolonged and widespread use of insecticides has led to the development of mosquito resistance to these insecticides. The gut microbiota is considered the master of host development and physiology; it influences mosquito biology, disease pathogen transmission, and resistance to insecticides. Understanding the role and mechanisms of mosquito gut microbiota in mosquito insecticide resistance is useful for developing new strategies for tackling mosquito insecticide resistance. We searched online databases, including PubMed, MEDLINE, SciELO, Web of Science, and the Chinese Science Citation Database. We searched all terms, including microbiota and mosquitoes, or any specific genera or species of mosquitoes. We reviewed the relationships between microbiota and mosquito growth, development, survival, reproduction, and disease pathogen transmission, as well as the interactions between microbiota and mosquito insecticide resistance. Overall, 429 studies were included in this review after filtering 8139 search results. Mosquito gut microbiota show a complex community structure with rich species diversity, dynamic changes in the species composition over time (season) and across space (environmental setting), and variation among mosquito species and mosquito developmental stages (larval vs. adult). The community composition of the microbiota plays profound roles in mosquito development, survival, and reproduction. There was a reciprocal interaction between the mosquito midgut microbiota and virus infection in mosquitoes. Wolbachia, Asaia, and Serratia are the three most studied bacteria that influence disease pathogen transmission. The insecticide resistance or exposure led to the enrichment or reduction in certain microorganisms in the resistant mosquitoes while enhancing the abundance of other microorganisms in insect-susceptible mosquitoes, and they involved many different species/genera/families of microorganisms. Conversely, microbiota can promote insecticide resistance in their hosts by isolating and degrading insecticidal compounds or altering the expression of host genes and metabolic detoxification enzymes. Currently, knowledge is scarce about the community structure of mosquito gut microbiota and its functionality in relation to mosquito pathogen transmission and insecticide resistance. The new multi-omics techniques should be adopted to find the links among environment, mosquito, and host and bring mosquito microbiota studies to the next level.
Collapse
Affiliation(s)
- Hongmei Liu
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Jianhai Yin
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Xiaodan Huang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Chuanhui Zang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Ye Zhang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Jianping Cao
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Maoqing Gong
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| |
Collapse
|
6
|
Vivekanandhan P, Swathy K, Sarayut P, Patcharin K. Biology, classification, and entomopathogen-based management and their mode of action on Tuta absoluta (Meyrick) in Asia. Front Microbiol 2024; 15:1429690. [PMID: 39171273 PMCID: PMC11335496 DOI: 10.3389/fmicb.2024.1429690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Tuta absoluta, known as the South American tomato leaf miner, significantly impacts tomato plants (Solanum lycopersicum) economically on a global scale. This pest, belonging to the Gelechiidae family, is native to South America and was first identified in Peru in 1917. Since its discovery, T. absoluta has rapidly spread to Europe, Africa, and Asia, severely threatening tomato production in these regions. The widespread application of chemical pesticides against this pest has resulted in significant environmental harm, including contamination of soil and water, and has had negative effects on non-target species such as beneficial insects, birds, and aquatic life. Although substantial research has been conducted, biological control methods for T. absoluta remain insufficient, necessitating further study. This review covers the Biology, Classification, and Entomopathogen-Based Management of T. absoluta (Meyrick) in Asia. It provides essential insights into the pest's life cycle, ecological impacts, and the potential of entomopathogens as biocontrol agents. The detailed information presented aims to facilitate the development of sustainable pest control strategies, minimizing environmental impact and promoting the use of entomopathogens as viable alternatives to chemical pesticides in controlling T. absoluta insect pest.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Research Administration Section, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Kannan Swathy
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Pittarate Sarayut
- Research Administration Section, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Krutmuang Patcharin
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
7
|
Vivekanandhan P, Kamaraj C, Alharbi SA, Ansari MJ. Novel report on soil infection with Metarhizium rileyi against soil-dwelling life stages of insect pests. J Basic Microbiol 2024; 64:e2400159. [PMID: 38771084 DOI: 10.1002/jobm.202400159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/14/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Entomopathogenic fungi are the most effective control remedy against a wide range of medical and agricultural important pests. The present study aimed to isolate, identify, and assess the virulence of Metarhizium rileyi against Spodoptera litura and Spodoptera frugiperda pupae under soil conditions. The biotechnological methods were used to identify the isolate as M. rileyi. The fungal conidial pathogenicity (2.0 × 107, 2.0 × 108, 2.0 × 109, 2.0 × 1010, and 2.0 × 1011 conidia/mL-1) was tested against prepupae of S. litura and S. frugiperda at 3, 6, 9, and 12 days after treatments. Additionally, the artificial soil-conidial assay was performed on a nontarget species earthworm Eudrilus eugeniae, using M. rileyi conidia. The present results showed that the M. rileyi caused significant mortality rates in S. litura pupae (61-90%), and S. litura pupae were more susceptible than S. frugiperda pupae (46%-73%) at 12 day posttreatment. The LC50 and LC90 of M. rileyi against S. litura, were 3.4 × 1014-9.9 × 1017 conidia/mL-1 and 6.6 × 105-4.6 × 1014 conidia/mL-1 in S. frugiperda, respectively. The conidia of M. rileyi did not exhibit any sublethal effect on the adult stage of E. eugeniae, and Artemia salina following a 12-day treatment period. Moreover, in the histopathological evaluation no discernible harm was observed in the gut tissues of E. eugeniae, including the lumen and epithelial cells, as well as the muscles, setae, nucleus, mitochondria, and coelom. The present findings provide clear evidence that M. rileyi fungal conidia can be used as the foundation for the development of effective bio-insecticides to combat the pupae of S. litura and S. frugiperda agricultural pests.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Sulaiman A Alharbi
- Department of Botany & Microbiology, College of Science King Saud University, Riyadh, Saudi Arabia
| | - Mohammad J Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, Uttar Pradesh, India
| |
Collapse
|
8
|
Granados-Echegoyen C, Campos-Ruiz JA, Pérez-Pacheco R, Vásquez-López A, Vera-Reyes I, Arroyo-Balán F, Santillán-Fernández A, Villanueva-Sánchez E, Villanueva-Verduzco C, Fonseca-Muñoz A, Diego-Nava F, Wang Y. Preliminary Bioactivity Assessment of Myrothecium Species (Stachybotryaceae) Crude Extracts against Aedes aegypti (Diptera: Culicidae): A First Approach from This Phytopathogenic Fungi. J Fungi (Basel) 2024; 10:466. [PMID: 39057351 PMCID: PMC11277721 DOI: 10.3390/jof10070466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Mosquitoes, as insect vectors, play a crucial role in transmitting viruses and parasites, leading to millions of human deaths in tropical and subtropical regions worldwide. This study aimed to evaluate the effects of ethanolic extracts of three species within the genus Myrothecium (M. roridum, M. dimerum, and M. nivale) on Aedes aegypti mosquito larvae to assess the inhibitory effect on growth and development, as well as to determine mortality. We quantify the average lethal concentrations and provide a qualitative characterization of the chemical groups responsible for their potential. Phytochemical screening revealed the presence of alkaloids, flavonoids, and terpenoids in the ethanolic extracts of the three fungal species. Tannins were found only in the extracts of M. dimerum and M. roridum. We observed a clear dependence of the effects of the crude extracts on mosquito larvae on the concentrations used and the duration of exposure. The toxic effect was observed after 48 h at a concentration of 800 ppm for both M. dimerum and M. nivale, while M. roridum showed effectiveness after 72 h. All three species within the genus Myrothecium exhibited 100% biological activity after 72 h of exposure at 600 ppm. At lower concentrations, there was moderate growth and development inhibitory activity in the insect life cycle. The study highlights the effectiveness of crude Myrothecium extracts in combating mosquito larvae, with effects becoming apparent between 48 and 72 h of exposure. This initial approach underscores the potential of the fungus's secondary metabolites for further in-depth analysis of their individual effects or synergies between them.
Collapse
Affiliation(s)
| | - José Abimael Campos-Ruiz
- Facultad de Agronomía, Universidad para el Bienestar Benito Juárez García Oaxaca, Zaachila 71250, Mexico;
| | - Rafael Pérez-Pacheco
- Instituto Politécnico Nacional, CIIDIR Unidad Oaxaca, Santa Cruz Xoxocotlán 71230, Mexico; (R.P.-P.); (A.V.-L.)
| | - Alfonso Vásquez-López
- Instituto Politécnico Nacional, CIIDIR Unidad Oaxaca, Santa Cruz Xoxocotlán 71230, Mexico; (R.P.-P.); (A.V.-L.)
| | - Ileana Vera-Reyes
- Biosciences and Agrotechnology Department, CONAHCYT-Center for Research in Applied Chemistry, Saltillo 25294, Mexico;
| | - Fabián Arroyo-Balán
- CONAHCYT-Centro de Estudios en Desarrollo Sustentable y Aprovechamiento de la Vida Silvestre (CEDESU), Universidad Autónoma de Campeche, San Francisco de Campeche 24079, Mexico;
| | | | - Evert Villanueva-Sánchez
- Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, CONAHCYT-Universidad Autónoma Chapingo, Texcoco 56230, Mexico;
| | | | - Alicia Fonseca-Muñoz
- Facultad de Sistemas Biológicos e Innovación Tecnológica, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico;
| | - Fidel Diego-Nava
- Instituto Politécnico Nacional, CIIDIR Unidad Oaxaca, Santa Cruz Xoxocotlán 71230, Mexico; (R.P.-P.); (A.V.-L.)
| | - Yi Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA;
| |
Collapse
|
9
|
Vivekanandhan P, Alharbi SA, Ansari MJ. Toxicity, biochemical and molecular docking studies of Acacia nilotica L., essential oils against insect pests. Toxicon 2024; 243:107737. [PMID: 38677379 DOI: 10.1016/j.toxicon.2024.107737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Botanical essential oils are natural insecticides derived from plants, offering eco-friendly alternatives to synthetic chemicals for pest control. In this study, the essential oils were extracted from Acacia nilotica seed cotyledons, and their toxicity was tested against insect pests. Furthermore, the chemical components of the essential oils were identified through gas chromatography-mass spectrometry (GC-MS) analysis. The essential oil extracted from A. nilotica seeds exhibited the highest mortality rates of 60% and 98% in Culex quinquefasciatus, and 60% and 96.66% mortality in Plutella xylostella at 24 and 48 h after treatment, respectively. The essential oils resulted in a lower LC50 of 159.263 ppm/mL, and LC90 of 320.930 ppm/mL within 24 h. In 48 h, the LC50 was 52.070 ppm/mL and the LC90 was 195.123 ppm/mL for C. quinquefasciatus. In the essential oil treatment of P. xylostella, the lower LC50 was 165.900 ppm/mL, and the LC90 was 343.840 ppm/mL 24 h after the treatment. At 48 h post-treatment, the LC50 decreased to 62.965 ppm/mL, and the LC90 decreased to 236.795 ppm/mL in P. xylostella. The study investigated the impact of essential oils on insect enzymes 24 h after treatment. The study revealed significant changes in the levels of insect enzymes, including a decrease in acetylcholinesterase enzymes and an increase in glutathione S-transferase compared to the control group. Essential oils had minimal effects, resulting in mortality rates of 30.66% and 46% at 24 and 48 h after treatment on Artemia salina. After 48 h, minimal toxic effects of essential oils were observed on E. eugeniae, with a mortality rate of 11.33%. The GC-MS analysis of A. nilotica seed-derived essential oils revealed ten major chemical constituents, including 6-hydroxymellein, phthalic acid, trichloroacetic acid, hexadecane, acetamide, heptacosane, eicosane, pentadecane, 1,3,4-eugenol, and chrodrimanin B. Among these constituents, Heptacosane is the major chemical component, and this molecule has a high potential for involvement in insecticidal activity.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Department of General Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 600077, India.
| | - Sulaiman Ali Alharbi
- Department of Botany & Microbiology College of Science King Saud University, P.O Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), India
| |
Collapse
|
10
|
Vivekanandhan P, Alahmadi TA, Ansari MJ, Subala SP. Biocontrol efficacy of cajeput oil against Anopheles stephensi L. mosquito and its effect on non-target species. Front Physiol 2024; 15:1357411. [PMID: 38496298 PMCID: PMC10941012 DOI: 10.3389/fphys.2024.1357411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Chemical insecticides are effective at controlling mosquito populations, but their excessive use can pollute the environment and harm non-target organisms. Mosquitoes can also develop resistance to these chemicals over time, which makes long-term mosquito control efforts challenging. In this study, we assessed the phytochemical, biochemical, and insecticidal properties of the chemical constituents of cajeput oil. Results show that Melaleuca cajuputi essential oil may exhibit mosquito larvicidal properties against Anopheles stephensi larvae (second-fourth instar) at 24 h post-treatment. At 24 h post-exposure, the essential oil resulted in a significant decrease in detoxifying enzymes. All of these findings indicate that cajeput oil infects An. stephensi larvae directly affect the immune system, leading to decreased immune function. Cajeput oil significantly affects the second, third, and fourth instar larvae of An. stephensi, according to the bioassay results. Cajeput oil does not induce toxicity in non-target Eudrilus eugeniae earthworm species, as indicated by a histological study of earthworms. Phytochemical screening and GC-MS analysis of the essential oil revealed the presence of several major phytochemicals that contribute to mosquito larvicidal activity. The importance of cajeput oil as an effective candidate for biological control of the malarial vector An. stephensi is supported by this study.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Department of General Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| | - S. P. Subala
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi, India
| |
Collapse
|
11
|
Swathy K, Vivekanandhan P, Yuvaraj A, Sarayut P, Kim JS, Krutmuang P. Biodegradation of pesticide in agricultural soil employing entomopathogenic fungi: Current state of the art and future perspectives. Heliyon 2024; 10:e23406. [PMID: 38187317 PMCID: PMC10770572 DOI: 10.1016/j.heliyon.2023.e23406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/27/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Pesticides play a pivotal role in agriculture for the effective production of various crops. The indiscriminate use of pesticides results in the significant bioaccumulation of pesticide residues in vegetables. This situation is beyond the control of consumers and poses a serious health issue for human beings. Occupational exposure to pesticides may occur for farmers, agricultural workers, and industrial producers of pesticides. This occupational exposure primarily causes food and water contamination that gets into humans and environmental pollution. Depending on the toxicity of pesticides, the causes and effects differ in the environment and in human health. The number of criteria used and the method of implementation employed to assess the effect of pesticides on humans and the environment have been increasing, as they may provide characterization of pesticides that are already on the market as well as those that are on the way. The biological control of pests has been increasing nowadays to combat all these effects caused by synthetic pesticides. Myco-biocontrol has received great attention in research because it has no negative impact on humans, the environment, or non-target species. Entomopathogenic fungi are microbes that have the ability to kill insect pests. Fungi also make enzymes like the lytic enzymes, esterase, oxidoreductase, and cytochrome P450, which react with chemical residues in the field and break them down into nontoxic substances. In this review, the authors looked at how entomopathogenic fungi break down insecticides in the environment and how their enzymes break down insecticides on farms.
Collapse
Affiliation(s)
- Kannan Swathy
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Perumal Vivekanandhan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of General Pathology at Saveetha Dental College and Hospitals in the Saveetha Institute of Medical & Technical Sciences at Saveetha University in Chennai, Tamil Nadu, 600077, India
| | | | - Pittarate Sarayut
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jae Su Kim
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, South Korea
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
12
|
Vivekanandhan P, Swathy K, Lucy A, Sarayut P, Patcharin K. Entomopathogenic fungi based microbial insecticides and their physiological and biochemical effects on Spodoptera frugiperda (J.E. Smith). Front Cell Infect Microbiol 2023; 13:1254475. [PMID: 38149005 PMCID: PMC10750404 DOI: 10.3389/fcimb.2023.1254475] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023] Open
Abstract
Background 'The fall armyworm, Spodoptera frugiperda', represents a significant threat to maize production, a major staple crop in Asian countries. Methods In pursuit of more effective control of this insect pest, our study assessed the physiological and biochemical effects of the entomopathogenic fungus Metarhizium anisopliae against the larvae of S. frugiperda. Results Results revealed that, following nine days of treatment, a high concentration of conidia (1.5x107 conidia/mL-1) was toxic to all stages of larvae (second to fifth instar), resulting in 97% mortality of the second instar, 89% mortality of the third instar, 77% mortality of the fourth instar, and 72% mortality of fifth instar. All larval instars were found to have dose-dependent mortality effects. Treated S. frugiperda larvae further displayed significant physiological, morphological, and behavioral changes. Here, treated larvae displayed significantly lower levels of acetylcholinesterase, α-carboxylesterase, and β-carboxylesterase enzyme activity when compared to control groups. Treated larvae underwent an outward morphological change as the result of a decrease in the exterior cuticle of the anal papillae and a demelanization of the interior cuticle. Treated larvae also exhibited abnormal feeding behaviors as a consequence of the negative impact of conidia treatment on the neuromuscular system. Investigation into the effect of M. anisopliae on the non-target organism, the earthworm Eudrilus eugeniae, revealed that M. anisopliae conidia did not produce significant pathogenicity following three days of treatment. Furthermore, histological analysis revealed no significant effect of the entomopathogenic fungi on the gut tissue of the non-target organism. Conclusion This study highlights the potential of M. anisopliae in the control of S. frugiperda.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Kannan Swathy
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Alford Lucy
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Pittarate Sarayut
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Krutmuang Patcharin
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
13
|
Mendonça GRQ, Peters LP, Lopes LM, Sousa AH, Carvalho CM. Native fungi from Amazon with potential for control of Aedes aegypti L. (Diptera: Culicidae). BRAZ J BIOL 2023; 83:e274954. [PMID: 37909558 DOI: 10.1590/1519-6984.274954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/14/2023] [Indexed: 11/03/2023] Open
Abstract
Aedes aegypti L. (Diptera: Culicidae) is the main transmitter of pathogens that cause human diseases, including dengue, chikungunya, zika and yellow fever. Faced with this problem, this study aims to select fungi with entomopathogenic potential against Ae. aegypti and develop formulations that optimize the control action of entomopathogenic fungi in the semi-field condition. 23 fungal strains native from Amazon were inoculated in Potato-Dextrose-Agar (PDA) culture medium for 14 days and then transferred by scraping to tubes containing 0.9% NaCl solution. To obtain the larvae, eggs were collected using traps in peridomestic environments for 7 days. 20 larvae of Ae. aegypti in 125 mL erlenmeyers containing 20 mL of conidial suspension at a concentration of 1x106 conidia/mL for initial selection and 1×104, 1×105, 1×106 and 1×107 conidia/mL for determination of LC50. Mortality was checked every 24 h for 5 days. The three fungi with the best virulence rates were identified using molecular techniques. The compatibility between fungi at a concentration of 1×106 conidia/mL and oily adjuvants, mineral oil and vegetable oil (andiroba, chestnut and copaiba) at concentrations of 0.1, 0.5 and 1% was evaluated. The germination capacity of 100 conidia per treatment was evaluated after incubation at 28 ºC for 24 h. To evaluate the entomopathogenic potential of the fungal formulations, conidial suspensions (1×106 conidia/mL) were added with 0.1% mineral and vegetable oil. The treatments were submitted to laboratory and semi-field conditions and mortality was verified every 24 h for 5 days. Beauveria sp. (4,458) (LC50 = 8.66× 103), Metarhizium anisopliae (4,420) (LC50 = 5.48×104) and M. anisopliae (4,910) (LC50 = 1.13×105) were significantly more effective in the larval control of Ae. aegypti, in relation to the other fungal morphospecies evaluated. Mineral oil was better compatible in all treatments evaluated. Beauveria sp. (4,458) was considerably less virulent under semi-field conditions. M. anisopliae (4,910) formulated with mineral oil increased larval mortality to 100% on the 4th day in the laboratory and on the 5th day in the semi-field. Fungal formulations developed from native Amazonian isolates represent a promising tool for the development of strategies to control Ae. aegypti.
Collapse
Affiliation(s)
- G R Q Mendonça
- Universidade Federal do Acre, Programa de Pós-graduação em Ciência, Inovação e Tecnologia para Amazônia, Rio Branco, AC, Brasil
| | - L P Peters
- Universidade Federal do Acre, Centro de Ciências da Saúde e do Desporto, Rio Branco, AC, Brasil
| | - L M Lopes
- Universidade Federal do Acre, Centro de Ciências Biológicas e da Natureza, Rio Branco, AC, Brasil
| | - A H Sousa
- Universidade Federal do Acre, Centro de Ciências Biológicas e da Natureza, Rio Branco, AC, Brasil
| | - C M Carvalho
- Universidade Federal do Acre, Programa de Pós-graduação em Ciência, Inovação e Tecnologia para Amazônia, Rio Branco, AC, Brasil
- Universidade Federal do Acre, Centro de Ciências Biológicas e da Natureza, Rio Branco, AC, Brasil
| |
Collapse
|
14
|
Perumal V, Kannan S, Alford L, Pittarate S, Mekchay S, Reddy GVP, Elangovan D, Marimuthu R, Krutmuang P. Biocontrol effect of entomopathogenic fungi Metarhizium anisopliae ethyl acetate-derived chemical molecules: An eco-friendly anti-malarial drug and insecticide. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:1-19. [PMID: 37497800 DOI: 10.1002/arch.22037] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
Insect pests represent a major threat to human health and agricultural production. With a current over-dependence on chemical insecticides in the control of insect pests, leading to increased chemical resistance in target organisms, as well as side effects on nontarget organisms, the wider environment, and human health, finding alternative solutions is paramount. The employment of entomopathogenic fungi is one such potential avenue in the pursuit of greener, more target-specific methods of insect pest control. To this end, the present study tested the chemical constituents of Metarhizium anisopliae fungi against the unicellular protozoan malaria parasite Plasmodium falciparum, the insect pests Anopheles stephensi Listen, Spodoptera litura Fabricius, and Tenebrio molitor Linnaeus, as well as the nontarget bioindicator species, Eudrilus eugeniae Kinberg. Fungal crude chemical molecules caused a noticeable anti-plasmodial effect against P. falciparum, with IC50 and IC90 values of 11.53 and 7.65 µg/mL, respectively. The crude chemical molecules caused significant larvicidal activity against insect pests, with LC50 and LC90 values of 49.228-71.846 µg/mL in A. stephensi, 32.542-76.510 µg/mL in S. litura, and 38.503-88.826 µg/mL in T. molitor at 24 h posttreatment. Based on the results of the nontarget bioassay, it was revealed that the fungal-derived crude extract exhibited no histopathological sublethal effects on the earthworm E. eugeniae. LC-MS analysis of M. anisopliae-derived crude metabolites revealed the presence of 10 chemical constituents. Of these chemicals, three major chemical constituents, namely, camphor (15.91%), caprolactam (13.27%), and monobutyl phthalate (19.65%), were highlighted for potential insecticidal and anti-malarial activity. The entomopathogenic fungal-derived crude extracts thus represent promising tools in the control of insect pests and malarial parasites.
Collapse
Affiliation(s)
- Vivekanandhan Perumal
- Department of General Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Swathy Kannan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Lucy Alford
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| | - Sarayut Pittarate
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Supamit Mekchay
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Gadi V P Reddy
- USDA-ARS-Southern Insect Management Research Unit, Stoneville, Mississippi, USA
| | - Dilipan Elangovan
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Ramachandran Marimuthu
- Department of Botany, School of Life Sciences, Periyar University, Salem, Tamil Nadu, India
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
15
|
Katak RDM, Cintra AM, Burini BC, Marinotti O, Souza-Neto JA, Rocha EM. Biotechnological Potential of Microorganisms for Mosquito Population Control and Reduction in Vector Competence. INSECTS 2023; 14:718. [PMID: 37754686 PMCID: PMC10532289 DOI: 10.3390/insects14090718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023]
Abstract
Mosquitoes transmit pathogens that cause human diseases such as malaria, dengue fever, chikungunya, yellow fever, Zika fever, and filariasis. Biotechnological approaches using microorganisms have a significant potential to control mosquito populations and reduce their vector competence, making them alternatives to synthetic insecticides. Ongoing research has identified many microorganisms that can be used effectively to control mosquito populations and disease transmission. However, the successful implementation of these newly proposed approaches requires a thorough understanding of the multipronged microorganism-mosquito-pathogen-environment interactions. Although much has been achieved in discovering new entomopathogenic microorganisms, antipathogen compounds, and their mechanisms of action, only a few have been turned into viable products for mosquito control. There is a discrepancy between the number of microorganisms with the potential for the development of new insecticides and/or antipathogen products and the actual available products, highlighting the need for investments in the intersection of basic research and biotechnology.
Collapse
Affiliation(s)
- Ricardo de Melo Katak
- Malaria and Dengue Laboratory, Instituto Nacional de Pesquisas da Amazônia-INPA, Manaus 69060-001, AM, Brazil;
| | - Amanda Montezano Cintra
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| | - Bianca Correa Burini
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA;
| | - Osvaldo Marinotti
- Department of Biology, Indiana University, Bloomington, IN 47405, USA;
| | - Jayme A. Souza-Neto
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| | - Elerson Matos Rocha
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| |
Collapse
|
16
|
Zhu K, Liu X, Qi X, Liu Q, Wang B, Sun W, Pan B. Acaricidal activity of bioactive compounds isolated from Aspergillus oryzae against poultry red mites, Dermanyssus gallinae (Acari: Dermanyssidae). Vet Parasitol 2023; 320:109983. [PMID: 37450962 DOI: 10.1016/j.vetpar.2023.109983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Dermanyssus gallinae, the poultry red mite (PRM), is an obligate ectoparasite feeding on poultry blood, seriously affecting the health of layers and egg production. The control of PRMs mainly relies on chemical drugs, which is facing several challenges such as the environment pollution and drug resistance. Using fungal metabolites is an environmentally friendly alternative for the control of pests. However, few studies have been conducted on the efficacy of fungal metabolites against D. gallinae. In this study, five strains of fungi were isolated from D. gallinae under laboratory conditions, and their extracts with ethyl acetate were tested for acaricidal activity on D. gallinae. The crude extract of Aspergillus oryzae caused 75.55 ± 6.94% mortality of mites at a concentration of 12.5 mg/mL, showing the highest acaricidal effect in all extracts. Subsequently, the extract of A. oryzae was isolated by bio-guided fractionation, and ten major compounds were identified by LC-MS/MS analysis. The results of bioassays indicated that five compounds exhibited acaricidal activity against D. gallinae. N, N-dimethyldecylamine N-oxide was the optimal acaricidal compound with LC50 of 0.568 mg/mL. Additionally, palmitic acid, triethanolamine, cuminaldehyde, and 2,4-dimethylbenzaldehyde also showed acaricidal activity. These compounds have great application potential in the mite control, and the analysis of these fungal acaricidal substances provides a new idea and basis for the subsequent development of PRM control technology.
Collapse
Affiliation(s)
- Kexin Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xin Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoxiao Qi
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qi Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Bohan Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Weiwei Sun
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Baoliang Pan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
17
|
Perumal V, Kannan S, Pittarate S, Chinnasamy R, Krutmuang P. Essential oils from Acacia nilotica (Fabales: Fabaceae) seeds: May have insecticidal effects? Heliyon 2023; 9:e14808. [PMID: 37089397 PMCID: PMC10119573 DOI: 10.1016/j.heliyon.2023.e14808] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023] Open
Abstract
In the present study Acacia nilotica seed derived essential oils were tested against Spodoptera litura, Tenebrio molitor, Oxycarenus hyalinipennis, and Aphis fabae, as well as their effects on non-target species Eudrilus eugeniae and Artemia salina at 24 h post treatment. The seed essential oil produced insecticidal activity against A. fabae (LC50 = 41.679, LC90 = 75.212 μl/mL), O. hyalinipennis (LC50 = 37.629, LC90 = 118.485 μl/mL), T. molitor (LC50 = 56.796, LC90 = 201.912 μl/mL), and S. litura (LC50 = 62.215, LC90 = 241.183 μl/mL). Essential oils do not cause a remarkable effect on E. eugeniae and A. salina cytotoxicity. The essential oils produced a lower effect on Artemia salina (LC50 = 384.382, LC90 = 1341.397 μl/mL) and no lethal effects were observed on E. eugeniae. The histopathological evaluation showed no sub-lethal effects of essential oils on earthworm gut tissues. GC-MS analysis results revealed that the major chemical constituent was hexadecane (19.560%) and heptacosane (17.214%) and FT-IR analysis revealed the presence of alkanes and alkyles, aromatics, and amides functional groups that may be involved in insecticidal activity. Overall, the results showed that the seed derived essential oil has excellent insecticidal action against major agricultural insect pests and may therefore offer an environmentally benign alternative to conventional insecticide.
Collapse
Affiliation(s)
- Vivekanandhan Perumal
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiangmai 50200, Thailand
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 77, Tamil Nadu, India
- Corresponding author. Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiangmai 50200, Thailand.
| | - Swathy Kannan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiangmai 50200, Thailand
| | - Sarayut Pittarate
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiangmai 50200, Thailand
| | | | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiangmai 50200, Thailand
- Corresponding author.
| |
Collapse
|
18
|
The Laboratory and Semi-Field Larvicidal Effects of Essential Oil Extracted from Feronia limonia against Anopheles arabiensis Patton. J Parasitol Res 2023; 2023:5907603. [PMID: 36872938 PMCID: PMC9977545 DOI: 10.1155/2023/5907603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 09/13/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
This study intended to evaluate the larvicidal activity of Feronia limonia leaf essential oil against the wild population of Anopheles arabiensis Patton larvae in laboratory and semi-field environments. Larvae mortality was observed after 12, 24, 48, and 72 hours of exposure. In laboratory condition, the essential oil showed good larvicidal activity against An. arabiensis (LC50 = 85.61 and LC95 = 138.03 ppm (after 12 hours); LC50 = 65.53 and LC95 = 117.95 ppm (after 24 hours); LC50 = 32.18 and LC95 = 84.59 ppm (after 48 hours); LC50 = 8.03 and LC95 = 60.45 ppm (after 72 hours), while in semi-field experiments, larvicidal activity was (LC50 = 91.89 and LC95 = 134.93 ppm (after 12 hours); LC50 = 83.34 and LC95 = 109.81 ppm (after 24 hours); LC50 = 66.78 and LC95 = 109.81 (after 28 hours); LC50 = 47.64 and 90.67 ppm (after 72 hours). These results give an insight on the future use of F. limonia essential oils for mosquitoes control.
Collapse
|
19
|
Peng ZY, Huang ST, Chen JT, Li N, Wei Y, Nawaz A, Deng SQ. An update of a green pesticide: Metarhizium anisopliae. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2147224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Zhe-Yu Peng
- Department of Pathogen Biology, the Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, People’s Republic of China
| | - Shu-Ting Huang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jia-Ting Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People’s Republic of China
| | - Ni Li
- Department of Pathogen Biology, the Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, People’s Republic of China
| | - Yong Wei
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People’s Republic of China
| | - Asad Nawaz
- Department of Pathogen Biology, the Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, People’s Republic of China
| | - Sheng-Qun Deng
- Department of Pathogen Biology, the Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
20
|
Ragavendran C, Balasubramani G, Tijo C, Manigandan V, Kweka EJ, Karthika P, Sivasankar P, Thomas A, Natarajan D, Nakouti I, Malafaia G. Cladophialophora bantiana metabolites are efficient in the larvicidal and ovicidal control of Aedes aegypti, and Culex quinquefasciatus and have low toxicity in zebrafish embryo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158502. [PMID: 36058332 DOI: 10.1016/j.scitotenv.2022.158502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Mosquitoes' current insecticide resistance status in available public health insecticides is a serious threat to mosquito control initiatives. Microbe-based control agents provide an alternative to conventional pesticides and insecticides, as they can be more targeted than synthetic insecticides. The present study was focused on identifying and investigating the mosquitocidal potential of Cladophialophora bantiana, an endophytic fungus isolated from Opuntia ficus-indica. The Cladophialophora species was identified through phylogenetic analysis of the rDNA sequence. The isolated fungus was first evaluated for its potential to produce metabolites against Aedes aegpti and Culex quinquefasciatus larvae in the 1-4th instar. The secondary metabolites of mycelium extract were assessed at various test doses (100, 200, 300, 400, and 500 μg/mL) in independent bioassays for each instar of selected mosquito larvae. After 48 h of exposure, A. aegypti expressed LC50 values of 13.069, 18.085, 9.554, and 11.717 μg/mL and LC90 = 25.702, 30.860, 17.275, and 19.601 μg/mL; followed by C. quinquefasciatus LC50 = 14.467, 11.766, 5.934, and 7.589 μg/mL, and LC90 = 29.529, 20.767, 11.192, and 13.296 μg/mL. The mean % of ovicidal bioassay was recorded 120 h after exposure. The hatchability (%) was proportional to mycelia metabolite concentration. The enzymatic level of acetylcholinesterase in fungal mycelial metabolite treated 4th instar larvae indicated a dose-dependent pattern. The GC-MS profile of C. bantiana extracts identified five of the most abundant compounds, namely cyclobutane, trans-3-undecene-1,5-diyne, 1-bromo-2-chloro, propane, 1,2,3-trichloro-2-methyl-, 5,5,10,10-tetrachlorotricyclo, and phenol, which had the killing effect in mosquitoes. Furthermore, the C. bantiana fungus ethyl acetate extracts had a strong larvicidal action on A. aegypti and C. quinquefasciatus. Finally, the toxicity test on zebrafish embryos revealed the induction of malformations only at concentrations above 1 mg/mL. Therefore, our study pioneered evidence that C. bantiana fungal metabolites effectively control A. aegypti and C. qunquefasciastus and show less lethality in zebrafish embryos at concentrations up to 500 μg/mL.
Collapse
Affiliation(s)
- Chinnasamy Ragavendran
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem 636 011, Tamil Nadu, India; Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, India.
| | - Govindasamy Balasubramani
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| | - Cherian Tijo
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair Campus, Brookshabad, Port Blair, Andamans 744112, India
| | | | - Eliningaya J Kweka
- Division of Livestock and Human Diseases Vector Control, Tropical Pesticides Research Institute, P.O. Box 3024, Arusha, Tanzania; Department of Medical Parasitology and Entomology, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
| | - Pandi Karthika
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Palaniappan Sivasankar
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Adelina Thomas
- School of Pharmacy, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
| | - Devarajan Natarajan
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Ismini Nakouti
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
21
|
Toxicity of Metarhizium flavoviride conidia virulence against Spodoptera litura (Lepidoptera: Noctuidae) and its impact on physiological and biochemical activities. Sci Rep 2022; 12:16775. [PMID: 36202839 PMCID: PMC9537412 DOI: 10.1038/s41598-022-20426-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Insect pests of agricultural crops have establish immunological tolerance against fungal infection caused by pathogens via different humoral and cellular processes. Fungal infection can be prevented by insect antioxidant and detoxifying enzymes, but there is no clear understanding of how they physiologically and biochemically interact. Our study aims to examine the antioxidant and detoxifying enzyme defense systems of the pest insect Spodoptera litura in response to infection by Metarhizium flavoviride. At 48 h following exposure to M. flavoviride, antioxidant enzyme levels were modified, and phenoloxidase and total hemocyte count were decreased significantly. The amount of detoxifying enzymes increased significantly. M. flavoviride appears to directly affect the S. litura immune system and results in decreased immunity. In a bioassay, M. flavoviride was found to be harmful to S. litura larvae in their third and fourth instar stage. M. flavoviride may be an effective tool in the control of S. litura larvae. Such entomopathogenic fungi represent cheaper, pollution free, target specific, promising alternatives to synthetic chemical tools in the for control insect pests.
Collapse
|
22
|
Delivery and effectiveness of entomopathogenic fungi for mosquito and tick control: current knowledge and research challenges. Acta Trop 2022; 234:106627. [DOI: 10.1016/j.actatropica.2022.106627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 07/28/2022] [Indexed: 02/07/2023]
|
23
|
Ferreira JM, Pinto SMN, Soares FEF. Metarhizium robertsii protease and conidia production, response to heat stress and virulence against Aedes aegypti larvae. AMB Express 2021; 11:166. [PMID: 34902084 PMCID: PMC8669065 DOI: 10.1186/s13568-021-01326-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 11/21/2022] Open
Abstract
Nutritional factors exert significant influence on the growth of entomopathogenic fungi, one of the main agents employed commercially in the biological control of arthropods. Thus, the objective of this work is to optimize the culture medium and solid fermentation time for production of proteases and conidia of Metarhizium robertsii ARSEF 2575 and to evaluate the interference of riboflavin and salts on virulence and resistance to abiotic stress factors. In the first step, nine groups were separated: negative control, positive control, and seven supplementation groups: ammonium nitrate, ammonium chloride, potassium nitrate, sodium nitrate, ammonium sulfate, ammonium phosphate, urea. Sodium nitrate showed significant difference in protease production at the time of 20 days of solid fermentation. Then, different concentrations of sodium nitrate and riboflavin as supplement were evaluated. Response surface methodology demonstrated that riboflavin and sodium nitrate influence proteolytic activity and conidia production, but without synergism. Supplementation of the medium with the optimal concentration of sodium nitrate and riboflavin did not interfere with the germination of conidia without exposure to abiotic stress, but did increase the thermotolerance of conidia. The presence of riboflavin and sodium nitrate at optimal concentrations in the culture medium did not alter fungal virulence with and without exposure to heat stress, varying according to the presence or absence of the supernatant during exposure, evidencing that resistance to heat exposure is multifactorial and dependent on intra- and extracellular factors. Moreover, the supplementation increased the larvicidal activity of the supernatant against Aedes aegypti.
Collapse
Affiliation(s)
- Juliana M Ferreira
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235 s/n, Goiânia, Goiás, 74690-900, Brazil
| | - Salorrane M N Pinto
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235 s/n, Goiânia, Goiás, 74690-900, Brazil
| | - Filippe E F Soares
- Departamento de Química, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil.
| |
Collapse
|
24
|
Wu CY, Meng J, Merchant A, Zhang YX, Li MW, Zhou XG, Wang Q. Microbial Response to Fungal Infection in a Fungus-Growing Termite, Odontotermes formosanus (Shiraki). Front Microbiol 2021; 12:723508. [PMID: 34880836 PMCID: PMC8645866 DOI: 10.3389/fmicb.2021.723508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
The crosstalk between gut microbiota and host immunity has emerged as one of the research foci of microbiome studies in recent years. The purpose of this study was to determine how gut microbes respond to fungal infection in termites, given their reliance on gut symbionts for food intake as well as maintaining host health. Here, we used Metarhizium robertsii, an entomopathogenic fungus, to infect Odontotermes formosanus, a fungus-growing termite in the family Termitidae, and documented changes in host gut microbiota via a combination of bacterial 16S rDNA sequencing, metagenomic shotgun sequencing, and transmission electron microscopy. Our analyses found that when challenged with Metarhizium, the termite gut showed reduced microbial diversity within the first 12 h of fungal infection and then recovered and even surpassed pre-infection flora levels. These combined results shed light on the role of gut flora in maintaining homeostasis and immune homeostasis in the host, and the impact of gut flora dysbiosis on host susceptibility to infection.
Collapse
Affiliation(s)
- Chen-Yu Wu
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.,School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jing Meng
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Yi-Xiang Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Mu-Wang Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xu-Guo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Qian Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Vivekanandhan P, Swathy K, Thomas A, Kweka EJ, Rahman A, Pittarate S, Krutmuang P. Insecticidal Efficacy of Microbial-Mediated Synthesized Copper Nano-Pesticide against Insect Pests and Non-Target Organisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10536. [PMID: 34639837 PMCID: PMC8508597 DOI: 10.3390/ijerph181910536] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022]
Abstract
Currently, medical and stored grain pests are major concerns of public health and economies worldwide. The synthetic pesticides cause several side effects to human and non-target organisms. Copper nanoparticles (CuNPs) were synthesized from an aqueous extract of Metarhizium robertsii and screened for insecticidal activity against Anopheles stephensi, Aedes aegypti, Culex quinquefasciatus, Tenebrio molitor and other non-target organisms such as Artemia salina, Artemia nauplii, Eudrilus eugeniae and Eudrilus andrei. The synthesized copper nano-particles were characterized using, UV-vis spectrophotometer, Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Energy Dispersive X-Ray analysis (EDaX), High Resolution Scanning Electron Microscope (HR-SEM) and Atomic Force Microscope (AFM) analysis. Insects were exposed to 25 μg/mL concentration produced significant mortality against larvae of A. stephensi, A. aegypti, C. quinquefasciatus and T. molitor. The lower toxicity was observed on non-target organisms. Results showed that, M. robertsii mediated synthesized CuNPs is highly toxic to targeted pests while they had lower toxicity were observed on non-target organisms.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Society for Research and Initiatives for Sustainable Technologies and Institutions, Grambharti, Amarapur, Gandhinagar 382650, Gujarat, India;
- Department of Biotechnology, Periyar University, Salem 636011, Tamil Nadu, India
| | - Kannan Swathy
- Society for Research and Initiatives for Sustainable Technologies and Institutions, Grambharti, Amarapur, Gandhinagar 382650, Gujarat, India;
- Department of Biotechnology, Periyar University, Salem 636011, Tamil Nadu, India
| | - Adelina Thomas
- School of Pharmacy, Catholic University of Health and Allied Sciences, Mwanza P.O. Box 1464, Tanzania;
| | - Eliningaya J. Kweka
- Division of Livestock and Human Diseases Vector Control, Tropical Pesticides Research Institute, Arusha P.O. Box 3024, Tanzania;
- Department of Medical Parasitology and Entomology, Catholic University of Health and Allied Sciences, Mwanza P.O. Box 1464, Tanzania
| | - Afroja Rahman
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (A.R.); (S.P.)
| | - Sarayut Pittarate
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (A.R.); (S.P.)
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (A.R.); (S.P.)
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
26
|
Mariam T, Oktiviyari A, Yamin Harahap A. The Effect of Lemongrass Leaves and Stalks Extracts using Methanol as The Eco-friendly Larvicides on Fourth Instar Aedes aegypti Larvae. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND: Aedes aegypti is one of the most vicious mosquitoes, known for its role in several deadly diseases, including dengue fever and Zika. Several strategies have been developed over decades to prevent vector-borne diseases; one of them is insecticide to control the mosquito population. However, this strategy would not last long due to the elevation of resistance, environmental problem, and some issues regarding human health. Natural products have become major options to combat the glitches. Lemongrass (Cymbopogon citratus) has known for its toxic effect on mosquito larva.
AIM: The objective of this study was to assess the effect of C. citratus extract against fourth instar of A. aegypti larvae.
METHODS: Three extract concentrations, 2.5%, 5%, and 7.5%, were used. The larvicide activity was evaluated at 2, 4, and 6 h. Our data indicated that all concentrations contributed to increase larvae mortality.
RESULTS: Lethal Concentration (LC) 50 and LC90 were achieved at 2.5% and 4.1% of extract, respectively.
CONCLUSION: C. citratus extract has a larvicide activity against fourth instar of A. aegypti.
Collapse
|
27
|
Milugo TK, Tchouassi DP, Kavishe RA, Dinglasan RR, Torto B. Naturally Occurring Compounds With Larvicidal Activity Against Malaria Mosquitoes. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.718804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Female Anopheles mosquitoes transmit Plasmodium parasites that cause human malaria. Currently, vector control is the most widely deployed approach to reduce mosquito population and hence disease transmission. This relies on use of insecticide-based interventions including Long-lasting Insecticide-treated Nets (LLINs) and Indoor Residual Spraying (IRS) where scale-up has contributed to a dramatic decline in malaria deaths and morbidity over the past decade. Challenges to their effective use include the emergence and spread of insecticide resistance by malaria vector populations coupled with the inability to curb outdoor transmission. Under these situations, use of larvicides through larval source management (LSM) can complement these existing measures. The need to minimize environmental impact and effect on non-target organisms has spurred interest in the development of eco-friendly larvicides of natural origin. Here, we review literature published in the last five years to highlight compounds of natural origin found to exhibit larvicidal activity against malaria mosquitoes. Specifically, the larvicidal activity of different classes of compounds is discussed including their effect on non-target organisms. Additionally, we provide suggestions for future research into mosquito larvicides including the use of chemical synthesis to improve the bioactivity of known natural compounds.
Collapse
|
28
|
Accoti A, Engdahl CS, Dimopoulos G. Discovery of Novel Entomopathogenic Fungi for Mosquito-Borne Disease Control. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:637234. [PMID: 37744144 PMCID: PMC10512396 DOI: 10.3389/ffunb.2021.637234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/28/2021] [Indexed: 09/26/2023]
Abstract
The increased application of chemical control programs has led to the emergence and spread of insecticide resistance in mosquitoes. Novel environmentally safe control strategies are currently needed for the control of disease vectors. The use of entomopathogenic fungi could be a suitable alternative to chemical insecticides. Currently, Beauveria spp. and Metarhizium spp. are the most widely used entomopathogenic fungi for mosquito control, but increasing the arsenal with additional fungi is necessary to mitigate the emergence of resistance. Entomopathogenic fungi are distributed in a wide range of habitats. We have performed a comprehensive screen for candidate mosquitocidal fungi from diverse outdoor environments in Maryland and Puerto Rico. An initial screening of 22 fungi involving exposure of adult Anopheles gambiae to 2-weeks-old fungal cultures identified five potent pathogenic fungi, one of which is unidentified and the remaining four belonging to the three genera Galactomyces sp., Isaria sp. and Mucor sp. These fungi were then screened against Aedes aegypti, revealing Isaria sp. as a potent mosquito killer. The entomopathogenic effects were confirmed through spore-dipping assays. We also probed further into the killing mechanisms of these fungi and investigated whether the mosquitocidal activities were the result of potential toxic fungus-produced metabolites. Preliminary assays involving the exposure of mosquitoes to sterile filtered fungal liquid cultures showed that Galactomyces sp., Isaria sp. and the unidentified isolate 1 were the strongest producers of factors showing lethality against An. gambiae. We have identified five fungi that was pathogenic for An. gambiae and one for Ae. aegypti, among these fungi, four of them (two strains of Galactomyces sp., Mucor sp., and the unidentified isolate 1) have never previously been described as lethal to insects. Further characterization of these entomopathogenic fungi and their metabolites needs to be done to confirm their potential use in biologic control against mosquitoes.
Collapse
Affiliation(s)
| | | | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|