1
|
Efron A, Brozzi A, Biolchi A, Bodini M, Giuliani M, Guidotti S, Lorenzo F, Moscoloni MA, Muzzi A, Nocita F, Pizza M, Rappuoli R, Tomei S, Vidal G, Vizzotti C, Campos J, Sorhouet Pereira C. Genetic characterization and estimated 4CMenB vaccine strain coverage of 284 Neisseria meningitidis isolates causing invasive meningococcal disease in Argentina in 2010-2014. Hum Vaccin Immunother 2024; 20:2378537. [PMID: 39037011 PMCID: PMC11789736 DOI: 10.1080/21645515.2024.2378537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/18/2024] [Accepted: 07/06/2024] [Indexed: 07/23/2024] Open
Abstract
Meningococcal (Neisseria meningitidis) serogroup B (MenB) strain antigens are diverse and a limited number of strains can be evaluated using the human serum bactericidal antibody (hSBA) assay. The genetic Meningococcal Antigen Typing System (gMATS) was developed to predict the likelihood of coverage for large numbers of isolates by the 4CMenB vaccine, which includes antigens Neisseria adhesin A (NadA), Neisserial Heparin-Binding Antigen (NHBA), factor H-binding protein (fHbp), and Porin A (PorA). In this study, we characterized by whole-genome analyses 284 invasive MenB isolates collected from 2010 to 2014 by the Argentinian National Laboratories Network (52-61 isolates per year). Strain coverage was estimated by gMATS on all isolates and by hSBA assay on 74 randomly selected isolates, representative of the whole panel. The four most common clonal complexes (CCs), accounting for 81.3% of isolates, were CC-865 (75 isolates, 26.4%), CC-32 (59, 20.8%), CC-35 (59, 20.8%), and CC-41/44 (38, 13.4%). Vaccine antigen genotyping showed diversity. The most prevalent variants/peptides were fHbp variant 2, NHBA peptides 24, 21, and 2, and PorA variable region 2 profiles 16-36 and 14. The nadA gene was present in 66 (23.2%) isolates. Estimated strain coverage by hSBA assay showed 78.4% of isolates were killed by pooled adolescent sera, and 51.4% and 64.9% (based on two different thresholds) were killed by pooled infant sera. Estimated coverage by gMATS (61.3%; prediction interval: 55.5%, 66.7%) was consistent with the infant hSBA assay results. Continued genomic surveillance is needed to evaluate the persistence of major MenB CCs in Argentina.
Collapse
Affiliation(s)
- Adriana Efron
- Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | | | | | | | | | | | - Federico Lorenzo
- Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - María Alicia Moscoloni
- Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | | | | | | | | | | | | | - Carla Vizzotti
- National Ministry of Health (2010-2015 and 2019–2023), Buenos Aires, Argentina
| | - Josefina Campos
- Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Cecilia Sorhouet Pereira
- Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| |
Collapse
|
2
|
Arteta-Acosta C, Villena R, Hormazabal JC, Fernández J, Santolaya ME. Whole-genome sequencing of Neisseria meningitidis collected in Chile from pediatric patients during 2016-2019 and coverage vaccine prediction. Vaccine 2024; 42:126311. [PMID: 39276620 DOI: 10.1016/j.vaccine.2024.126311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Over the past few years, whole-genome sequencing (WGS) has become a valuable tool for global meningococcal surveillance. The objective of this study was to genetically characterize Neisseria meningitidis strains isolated from children in Chile through WGS and predicting potential vaccine coverage using gMATS and MenDeVAR. METHODS WGS of 42 N.meningitidis from pediatric patients were processed and assembled using different software. We analyzed genomes with BIGSdb platform hosted at PubMLST.org, and predicted vaccine coverage using MenDeVAR and gMATS tools. RESULTS Among 42 strains, 25 were MenB, 16 MenW, and 1 MenC. The cc11 and cc 41/44 were the most frequents. The main frequent deduced peptide sequence for PorA was P1.5,2 (40 %), peptide P1.4 was present in one MenB strain; NHBA-29 (64 %), none having peptide 2; fHbp-2 (76 %), one strain had peptide-1, and two had peptide 45; NadA was detected in 52 %, peptide-6 was present in 84 %, none had peptide 8. The MenDeVAR index predicted a coverage in MenB strains for 4CMenB 8 % exact matches, 12 % cross-reactivity, 8 % not coverage and 64 % had insufficient data. gMATS predicted 16 % was covered, 8 % not covered and 76 % unpredictable, and overall coverage of 54 %. For rLP2086-fHbp, the MenDeVAR index predicted exact match in 8 %, cross-reactivity in 64 %, and insufficient data in 28 % and an overall coverage of 72 %. In non-MenB strains, the MenDeVAR index predicted for 4CMenB vaccine: cross-reactivity 88 %, 6 % for not covered and insufficient data. For rLP2086-fHbp, predicted cross-reactivity 12 % and insufficient data in 88 %. gMATS predicted an overall coverage of 50 % for Non-MenB. CONCLUSION genetic variability of the Chilean strains that its different from other countries, and until now limit the coverage prediction of vaccine with the available tools like gMATS and MenDeVAR.
Collapse
Affiliation(s)
- Cindy Arteta-Acosta
- MD, MPH Epidemiology, PhD (c) Medical Science, Universidad de Chile, 8380453, Chile.
| | - Rodolfo Villena
- Infectious Diseases Unit, Hospital de niños Dr. Exequiel González Cortés, 8900000, Chile; Department of Pediatrics, Faculty of Medicine, Universidad de Chile, 8380453, Chile.
| | | | | | - María Elena Santolaya
- Department of Pediatrics, Faculty of Medicine, Universidad de Chile, 8380453, Chile; Infectious Diseases Unit, Hospital de niños Dr. Luis Calvo Mackenna, 7500000, Chile.
| |
Collapse
|
3
|
Leong LE, Coldbeck-Shackley RC, McMillan M, Bratcher HB, Turra M, Lawrence A, Kahler C, Maiden MC, Rogers GB, Marshall H. The genomic epidemiology of Neisseria meningitidis carriage from a randomised controlled trial of 4CMenB vaccination in an asymptomatic adolescent population. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 43:100966. [PMID: 38169944 PMCID: PMC10758868 DOI: 10.1016/j.lanwpc.2023.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 01/05/2024]
Abstract
Background Oropharyngeal carriage of Neisseria meningitidis is frequent during adolescence, representing a major source of invasive meningococcal disease. This study examined the impact of a serogroup B vaccination (Bexsero, GSK 4CMenB) programme on adolescent N. meningitidis carriage using genomic data. Methods A total 34,489 oropharyngeal samples were collected as part of a state-wide cluster randomised-controlled trial in South Australia during 2017 and 2018 (NCT03089086). Samples were screened for the presence of N. meningitidis DNA by porA PCR prior to culture. Whole genome sequencing was performed on all 1772 N. meningitidis culture isolates and their genomes were analysed. Findings Unencapsulated meningococci were predominant at baseline (36.3% of isolates), followed by MenB (31.0%), and MenY (20.5%). Most MenB were ST-6058 from hyperinvasive cc41/44, or ST-32 and ST-2870 from cc32. For MenY, ST-23 and ST-1655 from cc23 were prevalent. Meningococcal carriage was mostly unchanged due to the vaccination programme; however, a significant reduction in ST-53 capsule-null meningococci prevalence was observed in 2018 compared to 2017 (OR = 0.52; 95% CI: 0.30-0.87, p = 0.0106). This effect was larger in the vaccinated compared to the control group (OR = 0.37; 95% CI: 0.12-0.98, p = 0.0368). Interpretation While deployment of the 4CMenB vaccination did not alter the carriage of hyperinvasive MenB in the vaccinated population, it altered the carriage of other N. meningitidis sequence types following the vaccination program. Our findings suggest 4CMenB vaccination is unlikely to reduce transmission of hyperinvasive N. meningitidis strains and therefore ongoing targeted vaccination is likely a more effective public health intervention. Funding This work was funded by GlaxoSmithKline Biologicals SA.
Collapse
Affiliation(s)
- Lex E.X. Leong
- Microbiology and Infectious Diseases, SA Pathology, Adelaide 5000, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
- Microbiome & Host Health, South Australian Health and Medical Research Institute, Bedford Park, 5042, Australia
| | | | - Mark McMillan
- Vaccinology and Immunology Research Trials Unit, Women’s and Children’s Health Network, Adelaide 5000, Australia
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia
| | - Holly B. Bratcher
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, United Kingdom
| | - Mark Turra
- Microbiology and Infectious Diseases, SA Pathology, Adelaide 5000, Australia
| | - Andrew Lawrence
- Microbiology and Infectious Diseases, SA Pathology, Adelaide 5000, Australia
| | | | - Martin C.J. Maiden
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, United Kingdom
| | - Geraint B. Rogers
- Microbiome & Host Health, South Australian Health and Medical Research Institute, Bedford Park, 5042, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042, Australia
| | - Helen Marshall
- Vaccinology and Immunology Research Trials Unit, Women’s and Children’s Health Network, Adelaide 5000, Australia
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia
| |
Collapse
|
4
|
Coronell-Rodriguez W, Caceres DC, Cintra O, Guzman-Holst A. Epidemiology of Invasive Meningococcal Disease in Colombia: A Retrospective Surveillance Database Analysis. Infect Dis Ther 2023; 12:2709-2724. [PMID: 37966702 PMCID: PMC10746648 DOI: 10.1007/s40121-023-00886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023] Open
Abstract
INTRODUCTION Invasive meningococcal disease (IMD), caused by Neisseria meningitidis, is associated with high morbidity and mortality. The aim of the current study was to describe the historical and recent epidemiology of IMD in Colombia. METHODS This retrospective surveillance database analysis examined all available data on IMD in Colombia. Data were extracted from publicly available disease event reports and laboratory surveillance reports or obtained directly from hospitals in Cartagena. RESULTS During 2015-2021, the overall incidence of IMD was 0.04-0.18 per 100,000 based on laboratory surveillance reports. IMD incidence was highest among infants aged < 1 year (0.52-1.47 per 100,000), as was IMD mortality (0.00-0.65 per 100,000). Serogroup B was the dominant serogroup responsible for IMD in Colombia during 1988-2014, but, since 2015, serogroup C has been dominant in all age groups, followed by serogroups B and Y. During 2010-2021 combined, the majority of IMD cases were reported in Bogotá (31.9%) and Antioquia (21.7%). Of 42 IMD cases in the city of Cartagena, 54.8% occurred in people who lived in the poorest neighborhoods, and these patients had the highest IMD lethality (52.2%) and the shortest median hospitalization duration (3 days). CONCLUSION The overall incidence of IMD in Colombia was low but was highest among infants aged < 1 year. IMD cases tended to be concentrated in the more densely populated areas and in poorer neighborhoods. As the majority of IMD cases in Colombia since 2015 have been serogroup C, followed by B or Y, vaccination to protect against these serogroups could potentially be beneficial and help to achieve the World Health Organization's and Pan American Health Organization's roadmaps to defeat meningitis by 2030.
Collapse
|
5
|
Spiliopoulou I, Xirogianni A, Simantirakis S, Tzanakaki G. Meningococcal Antibiotic Resistance: Molecular Characterization of Isolates from Patients with Invasive Meningococcal Disease (IMD) in Greece. Antibiotics (Basel) 2023; 12:1136. [PMID: 37508232 PMCID: PMC10376615 DOI: 10.3390/antibiotics12071136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
For effective case management and chemoprophylaxis of Invasive Meningococcal Disease (IMD), prompt antibiotic treatment is required. N. meningitidis is usually susceptible to antibiotics, but reduced susceptibility to penicillin, ciprofloxacin, and rifampicin is increasing worldwide, jeopardizing patients' outcome. We assessed, phenotypically and genotypically, the antimicrobial resistance patterns of 192 strains isolated from IMD cases from all over Greece during 2010-2021. Antimicrobial susceptibility to penicillin, rifampicin, and ciprofloxacin was determined using the E-test. All isolates were genotyped by Multilocus Sequence Typing (MLST). penA, rpoB, and gyrA genes were amplified by PCR and sequenced. Of the 192 isolates, 37% (72/192) were penicillin-susceptible/had increased exposure, and 11% (21/192) were penicillin-resistant. Among those, 40 penA alleles were identified; penA1, penA27, and penA3 were highly associated with susceptibility to penicillin; penA14, penA25, and penA22 related to reduced susceptibility to penicillin, while penA9, penA910, and penA295 had resistance to penicillin. Two ciprofloxacin-resistant isolates harbored the gyrA346 allele, while one rifampicin-resistant isolate harbored the rpoB5 allele. Resistance to ciprofloxacin and rifampicin remains rare. As Greece is one of the countries with high antimicrobial resistance, continued monitoring of antibiotic resistance is important to ensure timely detection of emerging resistance for treatment and prevention guidelines.
Collapse
Affiliation(s)
- Ioanna Spiliopoulou
- National Meningitis Reference Laboratory, Department of Public Health Policy, School of Public Health, University of West Attica, 11521 Athens, Greece
- ECDC Fellowship Programme, Public Health Microbiology Path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), 16973 Solna, Sweden
- National Public Health Organization (NPHO), Central Public Health Laboratory, 16672 Attica, Greece
| | - Athanasia Xirogianni
- National Meningitis Reference Laboratory, Department of Public Health Policy, School of Public Health, University of West Attica, 11521 Athens, Greece
| | - Stelmos Simantirakis
- National Meningitis Reference Laboratory, Department of Public Health Policy, School of Public Health, University of West Attica, 11521 Athens, Greece
| | - Georgina Tzanakaki
- National Meningitis Reference Laboratory, Department of Public Health Policy, School of Public Health, University of West Attica, 11521 Athens, Greece
| |
Collapse
|
6
|
Rivacoba MC, Villena R, Hormazabal JC, Benadof D, Payá E, Valdivieso F, Canals A, Arteta-Acosta C, Santolaya ME. Hypervirulent Strains of Neisseria meningitidis and Clinical Manifestations in Children With Invasive Meningococcal Disease. Pediatr Infect Dis J 2023; Publish Ahead of Print:00006454-990000000-00470. [PMID: 37267065 DOI: 10.1097/inf.0000000000003965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
BACKGROUND Hypervirulent clonal complex (cc) have been associated with higher incidence and case fatality rate of invasive meningococcal disease (IMD). The aim of this study was to describe the clinical manifestations of the hypervirulent cc of meningococcus in children. METHODS Retrospective study in patients hospitalized by IMD microbiologically confirmed at three children's tertiary health care centers in Santiago, Chile, between 2010 and 2018. Demographic, clinical information and determination of the cc and factor H binding protein (fHbp) alleles were performed. RESULTS In total 93 cases were evaluated, sequence typing was available for 91 cases, and 87 (95.6%) had a cc assigned; 63.7% were MenW and 31.8% MenB. The median age was 9 months, 67% were male and 18.7% had any comorbidity. A 26.4% presented neurological deficit, 25.3% petechiae and 20% diarrhea. Sixty-seven percent were admitted to the pediatric intensive care unit (PICU) and the case fatality rate was 9.9%. Regarding cc and fHbp alleles, ST11, ST41/44 and allele 22 were the most frequently identified, with 63.7%, 19.8% and 72.5%, respectively. We found statistically significant differences between the cc and presence of petechiae, diagnosis of meningococcemia plus meningitis, admission and days in PICU and advanced support. Allele 22 for fHbp was associated with the absence of petechiae, low suspicion of IMD, less diagnosis of meningitis+meningococcemia, PICU admission, advanced support and adrenal insufficiency. CONCLUSION Epidemiological and microbiological surveillance of IMD should integrate clinical and laboratory components, including molecular and genetic characterization, to enrich the dynamic understanding of the clinical evolution of IMD.
Collapse
Affiliation(s)
- María Carolina Rivacoba
- From the Infectious Diseases Unit, Hospital de niños Dr. Exequiel González Cortés, Santiago, Chile
| | - Rodolfo Villena
- From the Infectious Diseases Unit, Hospital de niños Dr. Exequiel González Cortés, Santiago, Chile
- Department of Pediatrics, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Dona Benadof
- Department of Pediatrics, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Microbiology Laboratory, Hospital de niños Dr Roberto Del Río, Santiago, Chile
| | - Ernesto Payá
- From the Infectious Diseases Unit, Hospital de niños Dr. Exequiel González Cortés, Santiago, Chile
- Department of Pediatrics, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisca Valdivieso
- Infectious Diseases Unit, Hospital de niños Dr Luis Calvo Mackenna, Santiago, Chile
| | - Andrea Canals
- Academic Direction, Clínica Santa Maria, Santiago, Chile
- Biostatistics Program, School of Public Health, Universidad de Chile, Santiago, Chile
| | - Cindy Arteta-Acosta
- Department of Pediatrics, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Infectious Diseases Unit, Hospital de niños Dr Luis Calvo Mackenna, Santiago, Chile
| | - María Elena Santolaya
- Department of Pediatrics, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Infectious Diseases Unit, Hospital de niños Dr Luis Calvo Mackenna, Santiago, Chile
| |
Collapse
|
7
|
Alarcon ZK, Prada D, Gabastou JM, Sanabria O, Duarte C, Moreno J. Population structure of Neisseria meningitidis ST-9493 identified in Colombian isolates. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2023; 41:290-293. [PMID: 36681574 DOI: 10.1016/j.eimce.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/26/2022] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Neisseria meningitidis is associated with invasive infections causing high mortality rates. The objective of this study was to describe the population structure of Colombian invasive isolates with ST-9493, a potentially emerging clonal group in the country. METHODS The complete genomes of 34 invasive isolates of serogroup B with ST-9493 and its variants at one or two loci were sequenced by Illumina to describe the phenotypic and genotypic characteristics of these isolates. RESULTS The relationship of a clonal group associated with ST-136 CC41/44 was phylogenetically established, identifying two main clades composed of isolates from an outbreak or endemic. The most frequent alleles and peptides included porA 17, porB 44, fHbp 2.24, NHBA 10, and the FetA F5-17 variant. Most of the isolates were susceptible to the antibiotics evaluated. CONCLUSION This study shows that meningococcal isolates with ST-9493 are an autochthonous clonal group with population dynamics and the capacity to cause endemic and epidemic meningococcal disease in Colombia.
Collapse
Affiliation(s)
| | - Diego Prada
- Grupo de Microbiología, Instituto Nacional de Salud (INS), Bogotá, Colombia
| | | | - Olga Sanabria
- Grupo de Microbiología, Instituto Nacional de Salud (INS), Bogotá, Colombia
| | - Carolina Duarte
- Grupo de Microbiología, Instituto Nacional de Salud (INS), Bogotá, Colombia
| | - Jaime Moreno
- Grupo de Microbiología, Instituto Nacional de Salud (INS), Bogotá, Colombia.
| |
Collapse
|
8
|
Sereikaitė E, Plepytė R, Petrutienė A, Stravinskienė D, Kučinskaitė-Kodzė I, Gėgžna V, Ivaškevičienė I, Žvirblienė A, Plečkaitytė M. Molecular characterization of invasive Neisseria meningitidis isolates collected in Lithuania (2009-2019) and estimation of serogroup B meningococcal vaccine 4CMenB and MenB-Fhbp coverage. Front Cell Infect Microbiol 2023; 13:1136211. [PMID: 36875527 PMCID: PMC9975601 DOI: 10.3389/fcimb.2023.1136211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Neisseria meningitidis causes invasive meningococcal disease (IMD), which is associated with significant mortality and long-term consequences, especially among young children. The incidence of IMD in Lithuania was among the highest in European Union/European Economic Area countries during the past two decades; however, the characterization of meningococcal isolates by molecular typing methods has not yet been performed. In this study, we characterized invasive meningococcal isolates (n=294) recovered in Lithuania from 2009 to 2019 by multilocus sequence typing (MLST) and typing of antigens FetA and PorA. The more recent (2017-2019) serogroup B isolates (n=60) were genotyped by analyzing vaccine-related antigens to evaluate their coverage by four-component (4CMenB) and two-component (MenB-Fhbp) vaccines using the genetic Meningococcal Antigen Typing System (gMATS) and Meningococcal Deduced Vaccine Antigen Reactivity (MenDeVAR) Index methods, respectively. The vast majority (90.5%) of isolates belonged to serogroup B. MLST revealed a predominance of clonal complex 32 (74.02%). Serogroup B strain P1.19,15: F4-28: ST-34 (cc32) accounted for 64.1% of IMD isolates. The overall level of strain coverage by the 4MenB vaccine was 94.8% (CI 85.9-98.2%). Most serogroup B isolates (87.9%) were covered by a single vaccine antigen, most commonly Fhbp peptide variant 1 (84.5% of isolates). The Fhbp peptides included in the MenB-Fhbp vaccine were not detected among the analyzed invasive isolates; however, the identified predominant variant 1 was considered cross-reactive. In total, 88.1% (CI 77.5-94.1) of isolates were predicted to be covered by the MenB-Fhbp vaccine. In conclusion, both serogroup B vaccines demonstrate potential to protect against IMD in Lithuania.
Collapse
Affiliation(s)
- Emilija Sereikaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rūta Plepytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aurelija Petrutienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Department of Bacteriology, National Public Health Surveillance Laboratory, Vilnius, Lithuania
| | - Dovilė Stravinskienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Vilmantas Gėgžna
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Inga Ivaškevičienė
- Clinic of Children’s Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Pediatric Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Aurelija Žvirblienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Milda Plečkaitytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- *Correspondence: Milda Plečkaitytė,
| |
Collapse
|
9
|
Alarcon ZK, Prada D, Gabastou JM, Sanabria O, Duarte C, Moreno J. Population structure of Neisseria meningitidis ST-9493 identified in Colombian isolates. Enferm Infecc Microbiol Clin 2022. [DOI: 10.1016/j.eimc.2022.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
de Lemos APS, Sacchi CT, Gonçalves CR, Camargo CH, Andrade AL. Genomic surveillance of Neisseria meningitidis serogroup B invasive strains: Diversity of vaccine antigen types, Brazil, 2016-2018. PLoS One 2020; 15:e0243375. [PMID: 33347452 PMCID: PMC7751880 DOI: 10.1371/journal.pone.0243375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/19/2020] [Indexed: 11/19/2022] Open
Abstract
Background Neisseria meningitidis serogroup B remains a prominent cause of invasive meningococcal disease (IMD) in Brazil. Because two novel protein-based vaccines against serogroup B are available, the main purpose of this study was to provide data on the diversity and distribution of meningococcal vaccine antigen types circulating in Brazil. Methodology Genetic lineages, vaccine antigen types, and allele types of antimicrobial-associated resistance genes based on whole-genome sequencing of a collection of 145 Neisseria meningitidis serogroup B invasive strains recovered in Brazil from 2016 to 2018 were collected. Results A total of 11 clonal complexes (ccs) were identified among the 145 isolates, four of which were predominant, namely, cc461, cc35, cc32, and cc213, accounting for 72.0% of isolates. The most prevalent fHbp peptides were 24 (subfamily A/variant 2), 47 (subfamily A/variant 3), 1 (subfamily B/variant 1) and 45 (subfamily A/variant 3), which were predominantly associated with cc35, cc461, cc32, and cc213, respectively. The NadA peptide was detected in only 26.2% of the isolates. The most frequent NadA peptide 1 was found almost exclusively in cc32. We found seven NHBA peptides that accounted for 74.5% of isolates, and the newly described peptide 1390 was the most prevalent peptide exclusively associated with cc461. Mutated penA alleles were detected in 56.5% of the isolates, whereas no rpoB and gyrA mutant alleles were found. Conclusion During the study period, changes in the clonal structure of circulating strains were observed, without a predominance of a single hyperinvasive lineage, indicating that an epidemiologic shift has occurred that led to a diversity of vaccine antigen types in recent years in Brazil.
Collapse
Affiliation(s)
| | | | | | | | - Ana Lúcia Andrade
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|