1
|
Dipalo LL, Mikkelsen JG, Gijsbers R, Carlon MS. Trojan Horse-Like Vehicles for CRISPR-Cas Delivery: Engineering Extracellular Vesicles and Virus-Like Particles for Precision Gene Editing in Cystic Fibrosis. Hum Gene Ther 2025. [PMID: 40295092 DOI: 10.1089/hum.2024.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
The advent of genome editing has kindled the hope to cure previously uncurable, life-threatening genetic diseases. However, whether this promise can be ultimately fulfilled depends on how efficiently gene editing agents can be delivered to therapeutically relevant cells. Over time, viruses have evolved into sophisticated, versatile, and biocompatible nanomachines that can be engineered to shuttle payloads to specific cell types. Despite the advances in safety and selectivity, the long-term expression of gene editing agents sustained by viral vectors remains a cause for concern. Cell-derived vesicles (CDVs) are gaining traction as elegant alternatives. CDVs encompass extracellular vesicles (EVs), a diverse set of intrinsically biocompatible and low-immunogenic membranous nanoparticles, and virus-like particles (VLPs), bioparticles with virus-like scaffold and envelope structures, but devoid of genetic material. Both EVs and VLPs can efficiently deliver ribonucleoprotein cargo to the target cell cytoplasm, ensuring that the editing machinery is only transiently active in the cell and thereby increasing its safety. In this review, we explore the natural diversity of CDVs and their potential as delivery vectors for the clustered regularly interspaced short palindromic repeats (CRISPR) machinery. We illustrate different strategies for the optimization of CDV cargo loading and retargeting, highlighting the versatility and tunability of these vehicles. Nonetheless, the lack of robust and standardized protocols for CDV production, purification, and quality assessment still hinders their widespread adoption to further CRISPR-based therapies as advanced "living drugs." We believe that a collective, multifaceted effort is urgently needed to address these critical issues and unlock the full potential of genome-editing technologies to yield safe, easy-to-manufacture, and pharmacologically well-defined therapies. Finally, we discuss the current clinical landscape of lung-directed gene therapies for cystic fibrosis and explore how CDVs could drive significant breakthroughs in in vivo gene editing for this disease.
Collapse
Affiliation(s)
- Laudonia Lidia Dipalo
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | | | - Rik Gijsbers
- Department of Pharmaceutical and Pharmacological Sciences, Advanced Disease Modelling, Targeted Drug Discovery, and Gene Therapy (ADVANTAGE) labs, KU Leuven, Leuven, Belgium
- Leuven Viral Vector Core, group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Marianne S Carlon
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Perera N, De Blasio MJ, Febbraio MA. Harnessing the therapeutic potential of exercise in extracellular vesicle-based therapy in metabolic disease associated cardiovascular complications. Free Radic Biol Med 2025; 226:230-236. [PMID: 39549882 DOI: 10.1016/j.freeradbiomed.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/10/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Cardiovascular disease (CVD) is a leading cause of mortality, affecting ∼18 million individuals each year. Obesity and type 2 diabetes mellitus in particular, both chronic metabolic disorders, are risk factors for CVD. The salutary effects of physical activity in preventing and ameliorating CVD have long been acknowledged, as it improves glucose and lipid homeostasis, alongside attenuating oxidative damage, increasing mitochondrial function, and ultimately improving cardiac function. Exercise serves as a catalyst for the secretion of extracellular vesicles (EVs), facilitating inter-tissue communication, by which tissues can deliver important signals from one tissue to another. In recent years, an increasing number of studies have focused on the cargo encapsulated within exercise-derived EVs, as well as the orchestration of inter-tissue crosstalk aimed at modulating metabolism and tissue function in CVDs. The precise mechanisms underpinning the cardioprotective properties of exercise-derived EVs, however, remains only partially elucidated. This review explores novel EV based therapeutic options in CVD and, in particular, EVs derived from models of exercise to alter metabolism and enhance cardiovascular outcomes.
Collapse
Affiliation(s)
- Nimna Perera
- Monash Institute of Pharmaceutical Sciences, Parkville, Melbourne, Australia
| | - Miles J De Blasio
- Monash Institute of Pharmaceutical Sciences, Parkville, Melbourne, Australia
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Parkville, Melbourne, Australia.
| |
Collapse
|
3
|
Khanabdali R, Mandrekar M, Grygiel R, Vo PA, Palma C, Nikseresht S, Barton S, Shojaee M, Bhuiyan S, Asari K, Belzer S, Ansari K, Coward JI, Perrin L, Hooper J, Guanzon D, Lai A, Salomon C, Kershner K, Newton C, Horejsh D, Rice G. High-throughput surface epitope immunoaffinity isolation of extracellular vesicles and downstream analysis. Biol Methods Protoc 2024; 9:bpae032. [PMID: 39070184 PMCID: PMC11272960 DOI: 10.1093/biomethods/bpae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/09/2024] [Accepted: 05/16/2024] [Indexed: 07/30/2024] Open
Abstract
Extracellular vesicles (EVs), including exosomes, have significant potential for diagnostic and therapeutic applications. The lack of standardized methods for efficient and high-throughput isolation and analysis of EVs, however, has limited their widespread use in clinical practice. Surface epitope immunoaffinity (SEI) isolation utilizes affinity ligands, including antibodies, aptamers, or lectins, that target specific surface proteins present on EVs. Paramagnetic bead-SEI isolation represents a fit-for-purpose solution for the reproducible, high-throughput isolation of EVs from biofluids and downstream analysis of RNA, protein, and lipid biomarkers that is compatible with clinical laboratory workflows. This study evaluates a new SEI isolation method for enriching subpopulations of EVs. EVs were isolated from human plasma using a bead-based SEI method designed for on-bead and downstream analysis of EV-associated RNA and protein biomarkers. Western blot analysis confirmed the presence of EV markers in the captured nanoparticles. Mass spectrometry analysis of the SEI lysate identified over 1500 proteins, with the top 100 including known EV-associated proteins. microRNA (miRNA) sequencing followed by RT-qPCR analysis identified EV-associated miRNA transcripts. Using SEI, EVs were isolated using automated high-throughput particle moving instruments, demonstrating equal or higher protein and miRNA yield and recovery compared to manual processing. SEI is a rapid, efficient, and high-throughput method for isolating enriched populations of EVs; effectively reducing contamination and enabling the isolation of a specific subpopulation of EVs. In this study, high-throughput EV isolation and RNA extraction have been successfully implemented. This technology holds great promise for advancing the field of EV research and facilitating their application for biomarker discovery and clinical research.
Collapse
Affiliation(s)
| | | | - Rick Grygiel
- Promega Corporation, Madison, WI 53711, United States
| | - Phuoc-An Vo
- Promega Corporation, Madison, WI 53711, United States
| | | | | | | | | | | | | | | | | | - Jermaine I Coward
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
- ICON Cancer Care, South Brisbane, QLD 4101, Australia
| | - Lewis Perrin
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - John Hooper
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Dominic Guanzon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Andrew Lai
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | | | | | | | - Gregory Rice
- INOVIQ Ltd., Notting Hill, VIC 3168, Australia
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
4
|
Alexandre L, Shen ML, de Araujo LO, Renault J, DeCorwin-Martin P, Martel R, Ng A, Juncker D. Effect of Sample Preprocessing and Size-Based Extraction Methods on the Physical and Molecular Profiles of Extracellular Vesicles. ACS Sens 2024; 9:1239-1251. [PMID: 38436286 PMCID: PMC10964911 DOI: 10.1021/acssensors.3c02070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Extracellular vesicles (EVs) are nanometric lipid vesicles that shuttle cargo between cells. Their analysis could shed light on health and disease conditions, but EVs must first be preserved, extracted, and often preconcentrated. Here we first compare plasma preservation agents, and second, using both plasma and cell supernatant, four EV extraction methods, including (i) ultracentrifugation (UC), (ii) size-exclusion chromatography (SEC), (iii) centrifugal filtration (LoDF), and (iv) accousto-sorting (AcS). We benchmarked them by characterizing the integrity, size distribution, concentration, purity, and expression profiles for nine proteins of EVs, as well as the overall throughput, time-to-result, and cost. We found that the difference between ethylenediaminetetraacetic acid (EDTA) and citrate anticoagulants varies with the extraction method. In our hands, ultracentrifugation produced a high yield of EVs with low contamination; SEC is low-cost, fast, and easy to implement, but the purity of EVs is lower; LoDF and AcS are both compatible with process automation, small volume requirement, and rapid processing times. When using plasma, LoDF was susceptible to clogging and sample contamination, while AcS featured high purity but a lower yield of extraction. Analysis of protein profiles suggests that the extraction methods extract different subpopulations of EVs. Our study highlights the strengths and weaknesses of sample preprocessing methods, and the variability in concentration, purity, and EV expression profiles of the extracted EVs. Preanalytical parameters such as collection or preprocessing protocols must be considered as part of the entire process in order to address EV diversity and their use as clinically actionable indicators.
Collapse
Affiliation(s)
- Lucile Alexandre
- Biomedical
Engineering Department, McGill University, Montreal, Quebec H3A 2B4, Canada
- McGill
University & Genome Quebec Innovation Centre, McGill University, Montreal, Quebec H3A 0G1, Canada
- Laboratoire
Physico Chimie Curie, Institut Curie, PSL
Research University, CNRS, 75005 Paris, France
| | - Molly L. Shen
- Biomedical
Engineering Department, McGill University, Montreal, Quebec H3A 2B4, Canada
- McGill
University & Genome Quebec Innovation Centre, McGill University, Montreal, Quebec H3A 0G1, Canada
| | - Lorenna Oliveira
Fernandes de Araujo
- Biomedical
Engineering Department, McGill University, Montreal, Quebec H3A 2B4, Canada
- McGill
University & Genome Quebec Innovation Centre, McGill University, Montreal, Quebec H3A 0G1, Canada
| | - Johan Renault
- Biomedical
Engineering Department, McGill University, Montreal, Quebec H3A 2B4, Canada
- McGill
University & Genome Quebec Innovation Centre, McGill University, Montreal, Quebec H3A 0G1, Canada
| | - Philippe DeCorwin-Martin
- Biomedical
Engineering Department, McGill University, Montreal, Quebec H3A 2B4, Canada
- McGill
University & Genome Quebec Innovation Centre, McGill University, Montreal, Quebec H3A 0G1, Canada
| | - Rosalie Martel
- Biomedical
Engineering Department, McGill University, Montreal, Quebec H3A 2B4, Canada
- McGill
University & Genome Quebec Innovation Centre, McGill University, Montreal, Quebec H3A 0G1, Canada
| | - Andy Ng
- Biomedical
Engineering Department, McGill University, Montreal, Quebec H3A 2B4, Canada
- McGill
University & Genome Quebec Innovation Centre, McGill University, Montreal, Quebec H3A 0G1, Canada
| | - David Juncker
- Biomedical
Engineering Department, McGill University, Montreal, Quebec H3A 2B4, Canada
- McGill
University & Genome Quebec Innovation Centre, McGill University, Montreal, Quebec H3A 0G1, Canada
| |
Collapse
|
5
|
Sunkara V, Park J, Han J, del Río JS, Cho HJ, Oh IJ, Cho YK. Exosome Precipitation by Ionic Strength Modulation: ExoPRISM. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 38017017 PMCID: PMC10726304 DOI: 10.1021/acsami.3c13527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
Extracellular vesicles (EVs) are emerging as crucial materials for precision theragnostic applications. However, current separation methods are time-consuming, costly, and not scalable and deliver limited yields or purity. Here, we present EV precipitation by ionic strength modulation (ExoPRISM), a simple, low-cost, user-friendly, and readily adaptable approach for separating EVs in high yields without compromising their biological functions. Adding an electrolyte solution to blood plasma in small increments generates the sequential precipitation of proteins and EVs, allowing for fractional separation of EVs using low-speed centrifugation. The coprecipitated electrolytes are easily washed away, and the entire EV separation and washing process takes less than an hour. This approach successfully separates EVs from a broad range of volumes and types of biological fluids, including culture medium, urine, plasma, and serum, showing promise as a robust tool for next-generation liquid biopsies and regenerative medicine.
Collapse
Affiliation(s)
- Vijaya Sunkara
- Center
for Soft and Living Matter, Institute for
Basic Science (IBS), Ulsan 44919, Republic
of Korea
| | - Juhee Park
- Center
for Soft and Living Matter, Institute for
Basic Science (IBS), Ulsan 44919, Republic
of Korea
| | - Jiyun Han
- Center
for Soft and Living Matter, Institute for
Basic Science (IBS), Ulsan 44919, Republic
of Korea
- Department
of Biomedical Engineering, Ulsan National
Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jonathan Sabaté del Río
- Center
for Soft and Living Matter, Institute for
Basic Science (IBS), Ulsan 44919, Republic
of Korea
| | - Hyun-Ju Cho
- Department
of Internal Medicine, Chonnam National University
Medical School, and Hwasun Hospital, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - In-Jae Oh
- Department
of Internal Medicine, Chonnam National University
Medical School, and Hwasun Hospital, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Yoon-Kyoung Cho
- Center
for Soft and Living Matter, Institute for
Basic Science (IBS), Ulsan 44919, Republic
of Korea
- Department
of Biomedical Engineering, Ulsan National
Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
6
|
Lee J, Kim E, Park J, Choi S, Lee MS, Park J. Pre-analytical handling conditions and protein marker recovery from urine extracellular vesicles for bladder cancer diagnosis. PLoS One 2023; 18:e0291198. [PMID: 37676879 PMCID: PMC10484439 DOI: 10.1371/journal.pone.0291198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Extracellular vesicles (EVs) contain a variety of biomolecules and provide information about the cells that produce them. EVs from cancer cells found in urine can be used as biomarkers to detect cancer, enabling early diagnosis and treatment. The potential of alpha-2-macroglobulin (A2M) and clusterin (CLU) as novel diagnostic urinary EV (uEV) biomarkers for bladder cancer (BC) was demonstrated previously. To validate the diagnostic value of these proteins in uEVs in a large BC cohort, urine handling conditions before uEV isolation should be optimized during sample transportation from medical centers. In this study, we analyzed the uEV protein quantity, EV particle number, and uEV-A2M/CLU after urine storage at 20°C and 4°C for 0-6 days, each. A2M and CLU levels in uEVs were relatively stable when stored at 4°C for a maximum of three days and at 20°C for up to 24 h, with minimal impact on analysis results. Interestingly, pre-processing to remove debris and cells by centrifugation and filtration of urine did not show any beneficial effects on the preservation of protein biomarkers of uEVs during storage. Here, the importance of optimizing shipping conditions to minimize the impact of pre-analytical handling on the uEVs protein biomarkers was emphasized. These findings provide insights for the development of clinical protocols that use uEVs for diagnostic purposes.
Collapse
Affiliation(s)
- Jisu Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Eunha Kim
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Joohee Park
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Seokjoo Choi
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Jinsung Park
- Department of Urology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si, Republic of Korea
| |
Collapse
|
7
|
Jalaludin I, Lubman DM, Kim J. A guide to mass spectrometric analysis of extracellular vesicle proteins for biomarker discovery. MASS SPECTROMETRY REVIEWS 2023; 42:844-872. [PMID: 34747512 DOI: 10.1002/mas.21749] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Exosomes (small extracellular vesicles) in living organisms play an important role in processes such as cell proliferation or intercellular communication. Recently, exosomes have been extensively investigated for biomarker discoveries for various diseases. An important aspect of exosome analysis involves the development of enrichment methods that have been introduced for successful isolation of exosomes. These methods include ultracentrifugation, size exclusion chromatography, polyethylene glycol-based precipitation, immunoaffinity-based enrichment, ultrafiltration, and asymmetric flow field-flow fractionation among others. To confirm the presence of exosomes, various characterization methods have been utilized such as Western blot analysis, atomic force microscopy, electron microscopy, optical methods, zeta potential, visual inspection, and mass spectrometry. Recent advances in high-resolution separations, high-performance mass spectrometry and comprehensive proteome databases have all contributed to the successful analysis of exosomes from patient samples. Herein we review various exosome enrichment methods, characterization methods, and recent trends of exosome investigations using mass spectrometry-based approaches for biomarker discovery.
Collapse
Affiliation(s)
- Iqbal Jalaludin
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
8
|
Shahlaei M, Saeidifar M, Zamanian A. Sustained release of sulforaphane by bioactive extracellular vesicles for neuroprotective effect on chick model. J Biomed Mater Res B Appl Biomater 2022; 110:2636-2648. [PMID: 35785470 DOI: 10.1002/jbm.b.35117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Novel studies have shown neurological treatment possibilities with extracellular vesicles (EVs) as natural particles with a special composition that are produced by different cell types. Their stability, natural structure, composition, and bioavailability make them good candidates as drug vehicles. Here, EVs were isolated from amniotic fluid (AF) through differential centrifugation, and characterized for size (<200 nm), structure, and composition, their effectiveness on the human PC12 cell line, and brain of chick embryos exposed to sodium valproate (animal autistic model). Sulforaphane (SFN) was employed as a bioactive compound and then encapsulated into Evs using three methods including passive (incubation), active (sonication), and active-passive (sonication-incubation). Further, the loading and in vitro releases of SFN fitted the Korsmeyer-Peppas (R2 = 0.99) kinetic model by non-Fickian diffusion case II (n = 0.44, passive loading) and Fickian diffusion case I (n = 0.41, active and active-passive loading). SFN-loaded EVs (SFN@EVs; 11 μM: 103 nM) stimulated hPC-12 cell proliferation. The gene expression analysis revealed that SFN@EVs could upregulate Nrf2 and reduce IL-6 expression. Eventually, histopathological results of the coronal cross-section of the chick embryos brain showed treatment with SFN@EVs. This treatment illustrated normality in the gray and white matter and the orientation of the bipolar neurons. Our findings showed EVs' potentially acting as a gene expression regulator in autism spectrum disorder.
Collapse
Affiliation(s)
- Mona Shahlaei
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Centre, Karaj, Iran
| | - Maryam Saeidifar
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Centre, Karaj, Iran
| | - Ali Zamanian
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Centre, Karaj, Iran
| |
Collapse
|
9
|
De Luca T, Stratford RE, Edwards ME, Ferreira CR, Benson EA. Novel Quantification of Extracellular Vesicles with Unaltered Surface Membranes Using an Internalized Oligonucleotide Tracer and Applied Pharmacokinetic Multiple Compartment Modeling. Pharm Res 2021; 38:1677-1695. [PMID: 34671921 PMCID: PMC8602176 DOI: 10.1007/s11095-021-03102-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE We developed an accessible method for labeling small extracellular vesicles (sEVs) without disrupting endogenous ligands. Using labeled sEVs administered to conscious rats, we developed a multiple compartment pharmacokinetic model to identify potential differences in the disposition of sEVs from three different cell types. METHODS Crude sEVs were labeled with a non-homologous oligonucleotide and isolated from cell culture media using a commercial reagent. Jugular vein catheters were used to introduce EVs to conscious rats (n = 30) and to collect blood samples. Digital PCR was leveraged to allow for quantification over a wide dynamic range. Non-linear mixed effects analysis with first order conditional estimation - extended least squares (FOCE ELS) was used to estimate population-level parameters with associated intra-animal variability. RESULTS 86.5% ± 1.5% (mean ± S.E.) of EV particles were in the 45-195 nm size range and demonstrated protein and lipid markers of endosomal origin. Incorporated oligonucleotide was stable in blood and detectable over five half-lives. Data were best described by a three-compartment model with one elimination from the central compartment. We performed an observation-based simulated posterior predictive evaluation with prediction-corrected visual predictive check. Covariate and bootstrap analyses identified cell type having an influence on peripheral volumes (V2 and V3) and clearance (Cl3). CONCLUSIONS Our method relies upon established laboratory techniques, can be tailored to a variety of biological questions regarding the pharmacokinetic disposition of extracellular vesicles, and will provide a complementary approach for the of study EV ligand-receptor interactions in the context of EV uptake and targeted therapeutics.
Collapse
Affiliation(s)
- Thomas De Luca
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Robert E Stratford
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Madison E Edwards
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Christina R Ferreira
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Eric A Benson
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA.
- Eli Lilly and Company, Indianapolis, Indiana, 46225, USA.
| |
Collapse
|
10
|
Poupardin R, Wolf M, Strunk D. Adherence to minimal experimental requirements for defining extracellular vesicles and their functions. Adv Drug Deliv Rev 2021; 176:113872. [PMID: 34284058 DOI: 10.1016/j.addr.2021.113872] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Rigorous measures are required to cope with the advance of extracellular vesicle (EV) research, from 183 studies published in 2012 to 2,309 studies published in 2020. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (MISEV) guidelines in 2014, updated in 2018, for assuring and improving EV research quality. We performed a systematic review using a text mining approach to assess adherence to MISEV criteria. A keyword search was conducted in 5,093 accessible publications over the period 2012-2020 and analyzed the methodology used for EV isolation and characterization. We found a significant improvement over the years particularly regarding EV characterization where recent papers used a higher number of methods and EV markers to check for quantity and purity. Interestingly, we also found that EV papers using more methods and EV markers were cited more frequently. Papers citing MISEV criteria were more prone to use a higher number of characterization methods. We therefore established a concise checklist summarizing MISEV criteria to support EV researchers towards reaching the highest standards in the field.
Collapse
Affiliation(s)
- Rodolphe Poupardin
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI - TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
| | - Martin Wolf
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI - TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
| | - Dirk Strunk
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI - TReCS), Paracelsus Medical University (PMU), Salzburg, Austria.
| |
Collapse
|
11
|
Abstract
[Figure: see text].
Collapse
|
12
|
Jeon H, Kang SK, Lee MJ, Park C, Yoo SM, Kang YH, Lee MS. Rab27b regulates extracellular vesicle production in cells infected with Kaposi's sarcoma-associated herpesvirus to promote cell survival and persistent infection. J Microbiol 2021; 59:522-529. [PMID: 33877577 DOI: 10.1007/s12275-021-1108-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) play a crucial role in cell-to-cell communication. EVs and viruses share several properties related to their structure and the biogenesis machinery in cells. EVs from virus-infected cells play a key role in virus spread and suppression using various loading molecules, such as viral proteins, host proteins, and microRNAs. However, it remains unclear how and why viruses regulate EV production inside host cells. The purpose of this study is to investigate the molecular mechanisms underlying EV production and their roles in Kaposi's sarcoma-associated herpesvirus (KSHV)-infected cells. Here, we found that KSHV induced EV production in human endothelial cells via Rab-27b upregulation. The suppression of Rab27b expression in KSHV-infected cells enhanced cell death by increasing autophagic flux and autolysosome formation. Our results indicate that Rab27b regulates EV biogenesis to promote cell survival and persistent viral infection during KSHV infection, thereby providing novel insights into the crucial role of Rab-27b in the KSHV life cycle.
Collapse
Affiliation(s)
- Hyungtaek Jeon
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Su-Kyung Kang
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Myung-Ju Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Changhoon Park
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Seung-Min Yoo
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Yun Hee Kang
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea.
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea.
| |
Collapse
|
13
|
Kralj-Iglič V, Pocsfalvi G, Mesarec L, Šuštar V, Hägerstrand H, Iglič A. Minimizing isotropic and deviatoric membrane energy - An unifying formation mechanism of different cellular membrane nanovesicle types. PLoS One 2020; 15:e0244796. [PMID: 33382808 PMCID: PMC7775103 DOI: 10.1371/journal.pone.0244796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022] Open
Abstract
Tiny membrane-enclosed cellular fragments that can mediate interactions between cells and organisms have recently become a subject of increasing attention. In this work the mechanism of formation of cell membrane nanovesicles (CNVs) was studied experimentally and theoretically. CNVs were isolated by centrifugation and washing of blood cells and observed by optical microscopy and scanning electron microscopy. The shape of the biological membrane in the budding process, as observed in phospholipid vesicles, in erythrocytes and in CNVs, was described by an unifying model. Taking the mean curvature h and the curvature deviator d of the membrane surface as the relevant parameters, the shape and the distribution of membrane constituents were determined theoretically by minimization of membrane free energy. Considering these results and previous results on vesiculation of red blood cells it was interpreted that the budding processes may lead to formation of different types of CNVs as regards the compartment (exo/endovesicles), shape (spherical/tubular/torocytic) and composition (enriched/depleted in particular kinds of molecules). It was concluded that the specificity of pinched off nanovesicles derives from the shape of the membrane constituents and not primarily from their chemical identity, which explains evidences on great heterogeneity of isolated extracellular vesicles with respect to composition. One of the amazing properties of a biological membrane is the ability to undergo dramatic changes of its shape. It may exhibit very high curvature and thereby enclose nano-sized compartments that pinch off from the mother membrane and become freely moving cellular nanovesicles (CNVs). CNVs externalize the pieces of the cell and make them available to other cells within the same organism or other organisms. Therefore they have been acknowledged as mediators of communication between microorganisms, plants, animals and human. Furthernore, they dwell on the border between living and non-living things. Recent findings report on heterogeneity of the size and composition of CNVs found in isolates from different biological samples. As communication between cells is involved in many physiological and patophysiological processes, it is of importance to understand the mechanisms of CNVs formation and recognize the natural laws that mainly govern them. We point to an unifying mechanism that explains stability of differently shaped and composed CNVs by taking into account that the biological membrane tends to attain the minimum of its relevant energy. Conveniently, the procedure can be described by a mathematical model which allows for transparent comparison between experimentally induced shapes of membrane-enclosed vesicular structures and numerical calculations.
Collapse
Affiliation(s)
- Veronika Kralj-Iglič
- Faculty of Health Sciences, Laboratory of Clinical Biophysics, University of Ljubljana, Ljubljana, Slovenia
- Extracellular Vesicles and Mass Spetrometry Group, Institute of Biosciences and Bioresources, National Research Council of Italy, Napoli, Italy
- * E-mail:
| | - Gabriella Pocsfalvi
- Extracellular Vesicles and Mass Spetrometry Group, Institute of Biosciences and Bioresources, National Research Council of Italy, Napoli, Italy
| | - Luka Mesarec
- Faculty of Electrical Engineering, Laboratory of Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Vid Šuštar
- Faculty of Medicine, Lymphocyte Cytoskeleton Group, University of Turku, Turku, Finland
| | - Henry Hägerstrand
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Åbo/Turku, Finland
- Novia University of Applied Sciences, Ekenäs, Finland
| | - Aleš Iglič
- Extracellular Vesicles and Mass Spetrometry Group, Institute of Biosciences and Bioresources, National Research Council of Italy, Napoli, Italy
- Faculty of Electrical Engineering, Laboratory of Physics, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|