1
|
Bitew A, Gelaw A, Wondimeneh Y, Ayenew Z, Getie M, Tafere W, Gebre-Eyesus T, Yimer M, Beyene GT, Bitew M, Abayneh T, Abebe M, Mihret A, Yeshitela B, Teferi M, Gelaw B. Prevalence and antimicrobial susceptibility pattern of Vibrio cholerae isolates from cholera outbreak sites in Ethiopia. BMC Public Health 2024; 24:2071. [PMID: 39085873 PMCID: PMC11292863 DOI: 10.1186/s12889-024-19621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Cholera is an acute infectious disease caused by ingestion of contaminated food or water with Vibrio cholerae. Cholera remains a global threat to public health and an indicator of inequity and lack of social development. The aim of this study was to assess the prevalence and antimicrobial susceptibility pattern of V. cholerae from cholera outbreak sites in Ethiopia. METHODS Across-sectional study was conducted from May 2022 to October 2023 across different regions in Ethiopia: Oromia National Regional State, Amhara National Regional State and Addis Ababa City Administration. A total of 415 fecal samples were collected from the three regions. Two milliliter fecal samples were collected from each study participants. The collected samples were cultured on Blood Agar, MacConkey Agar and Thiosulfate Citrate Bile Salt Sucrose Agar. A series of biochemical tests Oxidase test, String test, Motility, Indole, Citrate, Gas production, H2S production, Urease test were used to identify V. cholerae species. Both polyvalent and monovalent antisera were used for agglutination tests to identify and differentiate V. cholerae serogroup and serotypes. In addition, Kirby-Bauer Disk diffusion antibiotic susceptibility test method was done. Data were registered in epi-enfo version 7 and analyzed by Statistical Package for Social Science version 25. Descriptive statistics were used to determine the prevalence of Vibrio cholerae. Logistic regression model was fitted and p-value < 0.05 was considered as statically significant. RESULTS The prevalence of V. cholerae in the fecal samples was 30.1%. Majority of the isolates were from Oromia National Regional State 43.2% (n = 54) followed by Amhara National Regional State 31.2% (n = 39) and Addis Ababa City Administration 25.6% (n = 32). Most of the V. cholerae isolates were O1 serogroups 90.4% (n = 113) and Ogawa serotypes 86.4% (n = 108). Majority of the isolates were susceptible to ciprofloxacin 100% (n = 125), tetracycline 72% (n = 90) and gentamycin 68% (n = 85). More than half of the isolates were resistant to trimethoprim-sulfamethoxazole 62.4% (n = 78) and ampicillin 56.8% (n = 71). In this study, participants unable to read and write were about four times more at risk for V. cholerae infection (AOR: 3.8, 95% CI: 1.07-13.33). In addition, consumption of river water were about three times more at risk for V. cholerae infection (AOR: 2.8, 95% CI: 1.08-7.08). CONCLUSION our study revealed a high prevalence of V. cholerae from fecal samples. The predominant serogroups and serotypes were O1 and Ogawa, respectively. Fortunately, the isolates showed susceptible to most tested antibiotics. Drinking water from river were the identified associated risk factor for V. cholerae infection. Protecting the community from drinking of river water and provision of safe and treated water could reduce cholera outbreaks in the study areas.
Collapse
Affiliation(s)
- Abebaw Bitew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
- Department of Medical Microbiology, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia.
| | - Aschalew Gelaw
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yitayih Wondimeneh
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Zeleke Ayenew
- Department of Bacteriology, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Michael Getie
- Department of Medical Microbiology, Amhara National Regional State Public Health Institute, Bahir Dar, Ethiopia
| | - Wudu Tafere
- Department of Medical Microbiology, Amhara National Regional State Public Health Institute, Bahir Dar, Ethiopia
| | - Tsehaynesh Gebre-Eyesus
- Department of Medical Microbiology, Amhara National Regional State Public Health Institute, Bahir Dar, Ethiopia
| | - Marechign Yimer
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Getachew Tesfaye Beyene
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Molalegne Bitew
- Bio and Emerging Technology Institute of Ethiopia, Addis Ababa, Ethiopia
| | | | - Markos Abebe
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Adane Mihret
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Biruk Yeshitela
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Mekonnen Teferi
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Baye Gelaw
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
2
|
Jaiswal S, Panja AK, Haldar S. Development of a laboratory-based model to study the interaction between nutrients and Vibrio cholerae and predicting the spread of cholera outbreaks in the Indian subcontinent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48039-48047. [PMID: 39017876 DOI: 10.1007/s11356-024-34391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
Cholera is an infectious disease that is transmitted through contaminated water. The disease includes a long back history of epidemics. Despite the numerous hygiene and prevention techniques that have been developed for Cholera, outbreaks of cholera are still reported worldwide. The resolution to this issue lies in promptly identifying the area susceptible to cholera outbreaks, a matter that continues to perplex scientists and medical professionals. It has been reported that Vibrio is effective in nitrogen digestion because it contains the nasA gene. In this study, initially the impact of nutrients (nitrate and nitrite) on growth of Vibrio cholerae was determined, subsequently a relationship was developed between nutrient substrates and V. cholerae growth rate, using Monod model. Subsequently, the model was applied to large national river quality data set (2012-2014) developed by Central Pollution Control Board (CPCB) and a possible cholerae outbreak zone was predicted. This work will definitely help the policy makers to develop management strategy for keeping rivers safe from future cholera outbreak.
Collapse
Affiliation(s)
- Sweta Jaiswal
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364002, Gujarat, India
| | - Atanu Kumar Panja
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Soumya Haldar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Maji S, Ghotekar BK, Kulkarni SS. Total Synthesis of a Conjugation-Ready Tetrasaccharide Repeating Unit of Vibrio cholerae O:3 O-antigen Polysaccharide. Org Lett 2024; 26:745-750. [PMID: 38198674 DOI: 10.1021/acs.orglett.3c04225] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Herein, we report the first total synthesis of the tetrasaccharide repeating unit of Vibrio cholerae O:3 O-antigen polysaccharide. The highly complex tetrasaccharide contains rare amino sugars such as d-bacillosamine and l-fucosamine, highly labile sugar ascarylose, and higher carbon sugar d-d-heptose. Stereoselective glycosylation of the notoriously reactive ascarylose with d-d-heptose, poor nucleophilicity of the axial C4-OH of l-fucosamine, and amide coupling are the key challenges encountered in the total synthesis, which was completed via a longest linear sequence of 23 steps in 4.2% overall yield.
Collapse
Affiliation(s)
- Soumyakanta Maji
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Balasaheb K Ghotekar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
4
|
Abdulaziz A, Vikraman HK, Raj D, Menon N, George G, Soman R, Mony DP, Mary A, Krishna K, Raju GKT, Kuttan SP, Tharakan B, Chekidhenkuzhiyil J, Platt T, Sathyendranath S. Distribution and antibiotic resistance of vibrio population in an urbanized tropical lake-the Vembanad-in the southwest coast of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116066-116077. [PMID: 37906329 DOI: 10.1007/s11356-023-30565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
Among the diverse Vibrio spp. autochthonous to coastal ecosystems, V. cholerae, V. fluvialis, V. vulnificus and V. parahaemolyticus are pathogenic to humans. Increasing sea-surface temperature, sea-level rise and water-related disasters associated with climate change have been shown to influence the proliferation of these bacteria and change their geographic distribution. We investigated the spatio-temporal distribution of Vibrio spp. in a tropical lake for 1 year at a 20-day interval. The abundance of Vibrio spp. was much higher during the south-west monsoon in 2018, when the lake experienced a once-in-a-century flood. The distribution of Vibrio spp. was influenced by salinity (r = 0.3, p < 0.001), phosphate (r = 0.18, p < 0.01) and nitrite (r = 0.16, p < 0.02) in the water. We isolated 470 colonies of Vibrio-like organisms and 341 could be revived further and identified using 16S rRNA gene sequencing. Functional annotations showed that all the 16 Vibrio spp. found in the lake could grow in association with animals. More than 60% of the isolates had multiple antibiotic resistance (MAR) index greater than 0.5. All isolates were resistant to erythromycin and cefepime. The proliferation of multiple antibiotic-resistant Vibrio spp. is a threat to human health. Our observations suggest that the presence of a diverse range of Vibrio spp. is favoured by the low-saline conditions brought about by heavy precipitation. Furthermore, infections caused by contact with Vibrio-contaminated waters may be difficult to cure due to their multiple antibiotic resistances. Therefore, continuous monitoring of bacterial pollution in the lakes is essential, as is the generation of risk maps of vibrio-infested waters to avoid public contact with contaminated waters and associated disease outbreaks.
Collapse
Affiliation(s)
- Anas Abdulaziz
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India.
| | | | - Devika Raj
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
| | - Nandini Menon
- Nansen Environmental Research Centre India, KUFOS Amenity Centre, Kochi, 682506, India
- Trevor Platt Science Foundation, Kochi, 682018, India
| | - Grinson George
- ICAR-Central Marine Fisheries Research Institute, Kochi, 682018, India
| | - Reshma Soman
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
| | | | - Ann Mary
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
| | - Kiran Krishna
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | | | - Balu Tharakan
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
| | - Jasmin Chekidhenkuzhiyil
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
- Trevor Platt Science Foundation, Kochi, 682018, India
| | - Trevor Platt
- Plymouth Marine Laboratory, Plymouth, PL1 3DH, Devon, UK
| | | |
Collapse
|
5
|
Bhandari M, Rathnayake IU, Ariotti L, Heron B, Huygens F, Sullivan M, Jennison AV. Toxigenic Vibrio cholerae strains in South-East Queensland, Australian river waterways. Appl Environ Microbiol 2023; 89:e0047223. [PMID: 37800954 PMCID: PMC10617385 DOI: 10.1128/aem.00472-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/22/2023] [Indexed: 10/07/2023] Open
Abstract
Cholera is a major public health problem in developing and underdeveloped countries; however, it remains of concern to developed countries such as Australia as international travel-related or locally acquired cholera or diarrheal disease cases are still reported. Cholera is mainly caused by cholera toxin (CT) producing toxigenic O1 and O139 serogroup Vibrio cholerae strains. While most toxigenic V. cholerae cases in Australia are thought to be caused by international-acquired infections, Australia has its own indigenous toxigenic and non-toxigenic O1 and non-O1, non-O139 V. cholerae (NOVC) strains. In Australia, in the 1970s and again in 2012, it was reported that south-east Queensland riverways were a reservoir for toxigenic V. cholerae strains that were linked to local cases. Further surveillance on environmental reservoirs, such as riverways, has not been reported in the literature in the last 10 years. Here we present data from sites previously related to outbreaks and surveillance sampling to detect the presence of V. cholerae using PCR in conjunction with MALDI-TOF and whole-genome sequencing. In this study, we were able to detect NOVC at all 10 sites with all sites having toxigenic non-O1, non-O139 strains. Among 133 NOVC isolates, 22 were whole-genome sequenced and compared with previously sequenced Australian O1 and NOVC strains. None of the samples tested grew toxigenic or non-toxigenic O1 or O139, responsible for epidemic disease. Since NOVC can be pathogenic, continuous surveillance is required to assist in theclinical and envir rapid identification of sources of any outbreaks and to assist public health authorities in implementing control measures. IMPORTANCE Vibrio cholerae is a natural inhabitant of aquatic environments, both freshwater and seawater, in addition to its clinical significance as a causative agent of acute diarrhea and extraintestinal infections. Previously, both toxigenic and non-toxigenic, clinical, and environmental V. cholerae strains have been reported in Queensland, Australia. This study aimed to characterize recent surveillance of environmental NOVC strains isolated from Queensland River waterways to understand their virulence, antimicrobial resistance profile and to place genetic current V. cholerae strains from Australia in context with international strains. The findings from this study suggest the presence of unique toxigenic V. cholerae in Queensland river water systems that are of public health concern. Therefore, ongoing monitoring and genomic characterization of V. cholerae strains from the Queensland environment is important and would assist public health departments to track the source of cholera infection early and implement prevention strategies for future outbreaks. The genomics of environmental V. cholerae could assist us to understand the natural ecology and evolution of this bacterium in natural environments with respect to global warming and climate change.
Collapse
Affiliation(s)
- Murari Bhandari
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland, Australia
- Department of Health, Public Health Microbiology, Forensic and Scientific Services, Brisbane, Queensland, Australia
| | - Irani U. Rathnayake
- Department of Health, Public Health Microbiology, Forensic and Scientific Services, Brisbane, Queensland, Australia
| | - Lawrence Ariotti
- Department of Health, Public Health Microbiology, Forensic and Scientific Services, Brisbane, Queensland, Australia
| | - Brett Heron
- Department of Health, Public Health Microbiology, Forensic and Scientific Services, Brisbane, Queensland, Australia
| | - Flavia Huygens
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Mitchelle Sullivan
- Department of Health, Public Health Microbiology, Forensic and Scientific Services, Brisbane, Queensland, Australia
| | - Amy V. Jennison
- Department of Health, Public Health Microbiology, Forensic and Scientific Services, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Mavhungu M, Digban TO, Nwodo UU. Incidence and Virulence Factor Profiling of Vibrio Species: A Study on Hospital and Community Wastewater Effluents. Microorganisms 2023; 11:2449. [PMID: 37894107 PMCID: PMC10609040 DOI: 10.3390/microorganisms11102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to determine the incidence and virulence factor profiling of Vibrio species from hospital wastewater (HWW) and community wastewater effluents. Wastewater samples from selected sites were collected, processed, and analysed presumptively by the culture dependent methods and molecular techniques. A total of 270 isolates were confirmed as Vibrio genus delineating into V. cholerae (27%), V. parahaemolyticus (9.1%), V. vulnificus (4.1%), and V. fluvialis (3%). The remainder (>50%) may account for other Vibrio species not identified in the study. The four Vibrio species were isolated from secondary hospital wastewater effluent (SHWE), while V. cholerae was the sole specie isolated from Limbede community wastewater effluent (LCWE) and none of the four Vibrio species was recovered from tertiary hospital wastewater effluent (THWE). However, several virulence genes were identified among V. cholerae isolates from SHWE: ToxR (88%), hylA (81%), tcpA (64%), VPI (58%), ctx (44%), and ompU (34%). Virulence genes factors among V. cholerae isolates from LCWE were: ToxR (78%), ctx (67%), tcpA (44%), and hylA (44%). Two different genes (vfh and hupO) were identified in all confirmed V. fluvialis isolates. Among V. vulnificus, vcgA (50%) and vcgB (67%) were detected. In V. parahaemolyticus, tdh (56%) and tlh (100%) were also identified. This finding reveals that the studied aquatic niches pose serious potential health risk with Vibrio species harbouring virulence signatures. The distribution of virulence genes is valuable for ecological site quality, as well as epidemiological marker in the control and management of diseases caused by Vibrio species. Regular monitoring of HWW and communal wastewater effluent would allow relevant establishments to forecast, detect, and mitigate any public health threats in advance.
Collapse
Affiliation(s)
- Mashudu Mavhungu
- Patho-Biocatalysis Group, Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa (T.O.D.)
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Tennison O. Digban
- Patho-Biocatalysis Group, Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa (T.O.D.)
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Uchechukwu U. Nwodo
- Patho-Biocatalysis Group, Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa (T.O.D.)
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
7
|
Li Y, Yang KD, Kong DC, Ye JF. Advances in phage display based nano immunosensors for cholera toxin. Front Immunol 2023; 14:1224397. [PMID: 37781379 PMCID: PMC10534012 DOI: 10.3389/fimmu.2023.1224397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Cholera, a persistent global public health concern, continues to cause outbreaks in approximately 30 countries and territories this year. The imperative to safeguard water sources and food from Vibrio cholerae, the causative pathogen, remains urgent. The bacterium is mainly disseminated via ingestion of contaminated water or food. Despite the plate method's gold standard status for detection, its time-consuming nature, taking several days to provide results, remains a challenge. The emergence of novel virulence serotypes raises public health concerns, potentially compromising existing detection methods. Hence, exploiting Vibrio cholerae toxin testing holds promise due to its inherent stability. Immunobiosensors, leveraging antibody specificity and sensitivity, present formidable tools for detecting diverse small molecules, encompassing drugs, hormones, toxins, and environmental pollutants. This review explores cholera toxin detection, highlighting phage display-based nano immunosensors' potential. Engineered bacteriophages exhibit exceptional cholera toxin affinity, through specific antibody fragments or mimotopes, enabling precise quantification. This innovative approach promises to reshape cholera toxin detection, offering an alternative to animal-derived methods. Harnessing engineered bacteriophages aligns with ethical detection and emphasizes sensitivity and accuracy, a pivotal stride in the evolution of detection strategies. This review primarily introduces recent advancements in phage display-based nano immunosensors for cholera toxin, encompassing technical aspects, current challenges, and future prospects.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - De-cai Kong
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Kariuki S, Kering K, Wairimu C, Onsare R, Mbae C. Antimicrobial Resistance Rates and Surveillance in Sub-Saharan Africa: Where Are We Now? Infect Drug Resist 2022; 15:3589-3609. [PMID: 35837538 PMCID: PMC9273632 DOI: 10.2147/idr.s342753] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/16/2022] [Indexed: 01/03/2023] Open
Abstract
Introduction Although antimicrobials have traditionally been used to treat infections and improve health outcomes, resistance to commonly used antimicrobials has posed a major challenge. An estimated 700,000 deaths occur globally every year as a result of infections caused by antimicrobial-resistant pathogens. Antimicrobial resistance (AMR) also contributes directly to the decline in the global economy. In 2019, sub-Saharan Africa (SSA) had the highest mortality rate (23.5 deaths per 100,000) attributable to AMR compared to other regions. Methods We searched PubMed for articles relevant to AMR in pathogens in the WHO-GLASS list and in other infections of local importance in SSA. In this review, we focused on AMR rates and surveillance of AMR for these priority pathogens and some of the most encountered pathogens of public health significance. In addition, we reviewed the implementation of national action plans to mitigate against AMR in countries in SSA. Results and Discussion The SSA region is disproportionately affected by AMR, in part owing to the prevailing high levels of poverty, which result in a high burden of infectious diseases, poor regulation of antimicrobial use, and a lack of alternatives to ineffective antimicrobials. The global action plan as a strategy for prevention and combating AMR has been adopted by most countries, but fewer countries are able to fully implement country-specific action plans, and several challenges exist in many settings. Conclusion A concerted One Health approach will be required to ramp up implementation of action plans in the region. In addition to AMR surveillance, effective implementation of infection prevention and control, water, sanitation, and hygiene, and antimicrobial stewardship programs will be key cost-effective strategies in helping to tackle AMR.
Collapse
Affiliation(s)
- Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya,Correspondence: Samuel Kariuki, Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya, Email
| | - Kelvin Kering
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Celestine Wairimu
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Robert Onsare
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Cecilia Mbae
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
9
|
Liu C, Wang Y, Azizian K, Omidi N, Kaviar VH, Kouhsari E, Maleki A. Antimicrobial resistance in Vibrio cholerae O1/O139 clinical isolates: a systematic review and meta-analysis. Expert Rev Anti Infect Ther 2022; 20:1217-1231. [PMID: 35790112 DOI: 10.1080/14787210.2022.2098114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Vibrio cholerae O1/O139 is responsible for cholera epidemics; that remains a huge public health menace across the globe. Furthermore, an increasing resistance rate among V. cholerae strains has been reported around the world. Therefore, the objective of this meta-analysis was to evaluate the weighted pooled resistance (WPR) rates in clinical V. cholerae O1/O139 isolates based on different years, areas, antimicrobial susceptibility testing, and resistance rates. RESEARCH DESIGN AND METHODS : We searched the studies in PubMed, Scopus, Embase, and Web of Science (until January 2020). Statistical analyses were conducted using STATA software (ver. 14.0). RESULTS : A total of 139 studies investigating 24062 V. cholerae O1/O139 isolates were analyzed. The majority of the studies originated in Asia (n=102). The WPR rates were as follows: azithromycin 1%, erythromycin 36%, ciprofloxacin 3%, cotrimoxazole 79%, doxycycline 7%, tetracycline 20%. There was increased resistance to cotrimoxazole, ciprofloxacin, and tetracycline during the 1980 to 2020 years. CONCLUSIONS : Temporal changes in antibiotic resistance rate found in this study demonstrated the critical continuous surveillance of antibiotic resistance. Also, ciprofloxacin, azithromycin, gentamicin, cephalexin, imipenem, ofloxacin, and norfloxacin were found to be the best antibiotics against V. cholera, with the highest and the lowest effectiveness resistance rate.
Collapse
Affiliation(s)
- Chaoying Liu
- Zhumadian Academy of Industry Innovation and Development, Huanghuai University, Zhumadian 463000, China
| | - Ye Wang
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Khalil Azizian
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nazanin Omidi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Vahab Hassan Kaviar
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
10
|
Afum T, Asandem DA, Asare P, Asante-Poku A, Mensah GI, Musah AB, Opare D, Taniguchi K, Guinko NM, Aphour T, Arhin D, Ishikawa K, Matano T, Mizutani T, Asiedu-Bekoe F, Kiyono H, Anang AK, Koram KA, Yeboah-Manu D. Diarrhea-Causing Bacteria and Their Antibiotic Resistance Patterns Among Diarrhea Patients From Ghana. Front Microbiol 2022; 13:894319. [PMID: 35663873 PMCID: PMC9161929 DOI: 10.3389/fmicb.2022.894319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Diarrheal disease remains a major global health problem particularly in children under 5 years and the emergence of antibiotic-resistant strains of causative pathogens could slow control efforts, particularly in settings where treatment options are limited. This surveillance study conducted in Ghana aimed to determine the prevalence and antimicrobial susceptibility profile of diarrhea-causing bacteria. This was a cross-sectional study carried out in five health facilities in the Ga West Municipality of Ghana between 2017 and 2021. Diarrheic stool samples from patients were collected and cultured on standard differential/selective media and isolates identified by standard biochemical tests, MALDI-TOF assay, and serological analysis. The antibiogram was determined using Kirby-Bauer disk diffusion and Microscan autoScan4 MIC panels which were used for extended-spectrum beta-lactamase (ESBL) detection. Bacteria were isolated from 97.5% (772/792) of stool samples, and 167 of the isolates were diarrheagenic and met our inclusion criteria for antimicrobial resistance (AMR) analysis. These included Escherichia coli (49.1%, 82/167), Salmonella species (23.9%, 40/167), Vibrio species (16.8%, 28/167), and Shigella species (10.2%, 17/167). Among 24 Vibrio species, we observed resistances to cefotaxime (21/24, 87.5%), ceftriaxone (20/24, 83.3%), and ciprofloxacin (6/24, 25%), including four multi-drug resistant isolates. All 13 Vibrio parahaemolyticus isolates were resistant to cefazolin. All 17 Shigella isolates were resistant to tetracycline with resistance to shigellosis drugs such as norfloxacin and ciprofloxacin. Salmonella isolates were highly susceptible to norfloxacin (40/40, 100%) and tetracycline (12/34, 35%). Two ESBL-producing E. coli were also identified with marked susceptibility to gentamicin (66/72, 91.7%) and amikacin (57/72, 79.2%) prescribed in the treatment of E. coli infections. This study showed the different bacteria implicated in diarrhea cases in Ghana and the need for differential diagnoses for better treatment outcomes. Escherichia coli, Shigella, Salmonella, and Vibrio have all been implicated in diarrhea cases in Ghana. The highest prevalence was E. coli and Salmonella with Shigella the least prevalent. Resistance to commonly used drugs found in these isolates may render bacteria infection treatment in the near future nearly impossible. Routine antimicrobial susceptibility testing, effective monitoring, and nationwide surveillance of AMR pathogens should be implemented to curb the increase of antimicrobial resistance in Ghana.
Collapse
Affiliation(s)
- Theophilus Afum
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Diana Asema Asandem
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Prince Asare
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Adwoa Asante-Poku
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Gloria Ivy Mensah
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Abdul Basit Musah
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Kiyosi Taniguchi
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, Institute for Global Prominent Research, Chiba University, Chiba, Japan
| | | | | | | | - Koichi Ishikawa
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Tetsuro Matano
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | | | | | - Hiroshi Kiyono
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, Institute for Global Prominent Research, Chiba University, Chiba, Japan
- Department of Medicine, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV), University of California San Diego, San Diego, CA, United States
| | - Abraham Kwabena Anang
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kwadwo Ansah Koram
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorothy Yeboah-Manu
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- *Correspondence: Dorothy Yeboah-Manu,
| |
Collapse
|
11
|
Opintan JA, Will RC, Kuma GK, Osei M, Akumwena A, Boateng G, Owusu-Okyere G, Antwi L, Opare D, Pragasam AK, Vasudevan K, Srivastava SK, Balaji V, Newman MJ, Dougan G, Mutreja A. Phylogenetic and antimicrobial drug resistance analysis of Vibrio cholerae O1 isolates from Ghana. Microb Genom 2021; 7. [PMID: 34714228 PMCID: PMC8627208 DOI: 10.1099/mgen.0.000668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated the evolution, phylogeny and antimicrobial resistance of Vibrio cholerae O1 isolates (VCO1) from Ghana. Outbreak and environmental sources of VCO1 were characterized, whole-genome sequenced and compared to globally available seventh pandemic (7P) strains of V. cholerae at SNP resolution. Final analyses included 636 isolates. Novel Ghanaian isolates clustered into three distinct clades (clades 1, 2 and 3) in wave 3 of the 7P lineage. The closest relatives of our novel Ghanaian isolates were from Benin, Cameroon, Togo, Niger and Nigeria. All novel Ghanaian isolates were multi-drug resistant. Environmental isolates clustered into clade 2, despite being isolated years later, showing the possibility of persistence and re-emergence of older clades. A lag phase of several years from estimated introduction to reported cases suggests pathogen persistence in the absence of reported cholera cases. These results highlight the importance of deeper surveillance for understanding transmission routes between bordering countries and planning tailored vaccination campaigns in an effort to eradicate cholera.
Collapse
Affiliation(s)
- Japheth A Opintan
- Medical Microbiology Department, University of Ghana Medical School, Accra, Ghana.,Department of Medicine, University of Cambridge, Cambridge, UK
| | - Robert C Will
- Department of Medicine, University of Cambridge, Cambridge, UK.,Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - George K Kuma
- Laboratory Department, Brong Ahafo Regional Hospital, Sunyani, Ghana
| | - Mary Osei
- Medical Microbiology Department, University of Ghana Medical School, Accra, Ghana
| | - Amos Akumwena
- Medical Microbiology Department, University of Ghana Medical School, Accra, Ghana
| | - Gifty Boateng
- National Public Health Reference Laboratory, Accra, Ghana
| | | | - Lorreta Antwi
- National Public Health Reference Laboratory, Accra, Ghana
| | - David Opare
- National Public Health Reference Laboratory, Accra, Ghana
| | | | - Karthick Vasudevan
- Christian Medical College, Vellore, Tamil Nadu, India.,Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, India
| | | | | | - Mercy J Newman
- Medical Microbiology Department, University of Ghana Medical School, Accra, Ghana
| | - Gordon Dougan
- Department of Medicine, University of Cambridge, Cambridge, UK.,Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ankur Mutreja
- Department of Medicine, University of Cambridge, Cambridge, UK.,Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.,Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
12
|
First Experimental Evidence for the Presence of Potentially Toxic Vibrio cholerae in Snails, and Virulence, Cross-Resistance and Genetic Diversity of the Bacterium in 36 Species of Aquatic Food Animals. Antibiotics (Basel) 2021; 10:antibiotics10040412. [PMID: 33918855 PMCID: PMC8069825 DOI: 10.3390/antibiotics10040412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Vibrio cholerae is the most common waterborne pathogen that can cause pandemic cholera in humans. Continuous monitoring of V. cholerae contamination in aquatic products is crucial for assuring food safety. In this study, we determined the virulence, cross-resistance between antibiotics and heavy metals, and genetic diversity of V. cholerae isolates from 36 species of aquatic food animals, nearly two-thirds of which have not been previously detected. None of the V. cholerae isolates (n = 203) harbored the cholera toxin genes ctxAB (0.0%). However, isolates carrying virulence genes tcpA (0.98%), ace (0.5%), and zot (0.5%) were discovered, which originated from the snail Cipangopaludina chinensis. High occurrences were observed for virulence-associated genes, including hapA (73.4%), rtxCABD (68.0–41.9%), tlh (54.2%), and hlyA (37.9%). Resistance to moxfloxacin (74.9%) was most predominant resistance among the isolates, followed by ampicillin (59.1%) and rifampicin (32.5%). Approximately 58.6% of the isolates displayed multidrug resistant phenotypes. Meanwhile, high percentages of the isolates tolerated the heavy metals Hg2+ (67.0%), Pb2+ (57.6%), and Zn2+ (57.6%). Distinct virulence and cross-resistance profiles were discovered among the V. cholerae isolates in 13 species of aquatic food animals. The ERIC-PCR-based genome fingerprinting of the 203 V. cholerae isolates revealed 170 ERIC-genotypes, which demonstrated considerable genomic variation among the isolates. Overall, the results of this study provide useful data to fill gaps for policy and research related to the risk assessment of V. cholerae contamination in aquatic products.
Collapse
|