1
|
Zingel P, Tuvikene A, Zingel T, Val AL, Agasild H. How do extreme fluctuations in water level affect fish condition in Amazonian Floodplain Lakes? JOURNAL OF FISH BIOLOGY 2025. [PMID: 39876083 DOI: 10.1111/jfb.16063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
The annual flood pulse is a defining feature of Amazonian floodplain lakes, creating a highly variable environment that influences resource availability, such as food and habitat. These cyclical changes necessitate a high degree of adaptability among fish species, many of which have evolved specialized strategies to cope with the fluctuating conditions. In 2023, the Amazon basin experienced a record-breaking drought event, leading to mass mortality of Amazonian fish and other wildlife. This study examines the effect of this extreme event on fish condition in white-water (Rio Solimões basin) and black-water (Rio Negro basin) floodplain lakes. These contrasting environments provide a unique opportunity to study how different water qualities and extreme water-level fluctuations impact fish condition. Research was conducted during the normal low-water period in November 2019 and the drastically decreased water levels in November 2023. The main objective was to understand how extreme water-level fluctuations affect fish health and nutritional status. A total of 585 fishes were analyzed, with 294 from white-water and 291 from black-water, representing different feeding types to provide a comprehensive picture of changes in fish condition. Water-level changes had a statistically significant impact on fish condition in both areas. Comparing low-water and extreme low-water levels, fish condition was consistently higher during the normal low-water period. The linear mixed-effects model revealed that the intensity of the low-water season had a significant effect on fish length-adjusted mass, suggesting that the decrease in water level is associated with an overall decrease in fish length-adjusted mass. When comparing the mean water-level effect (Glass's Δ) between low-water and extreme low-water levels, we found a bigger effect in the black-water system than in the white-water system. This difference may be attributed to the lower nutrient content and higher levels of humic acids and refractory dissolved organic matter in black-water, which can further limit primary productivity and food availability for fishes.
Collapse
Affiliation(s)
- Priit Zingel
- Chair of Hydrobiology and Fisheries, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Arvo Tuvikene
- Chair of Hydrobiology and Fisheries, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Tiina Zingel
- IT College, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Adalberto Luis Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| | - Helen Agasild
- Chair of Hydrobiology and Fisheries, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
2
|
Urban MC. Climate change extinctions. Science 2024; 386:1123-1128. [PMID: 39636977 DOI: 10.1126/science.adp4461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
Climate change is expected to cause irreversible changes to biodiversity, but predicting those risks remains uncertain. I synthesized 485 studies and more than 5 million projections to produce a quantitative global assessment of climate change extinctions. With increased certainty, this meta-analysis suggests that extinctions will accelerate rapidly if global temperatures exceed 1.5°C. The highest-emission scenario would threaten approximately one-third of species, globally. Amphibians; species from mountain, island, and freshwater ecosystems; and species inhabiting South America, Australia, and New Zealand face the greatest threats. In line with predictions, climate change has contributed to an increasing proportion of observed global extinctions since 1970. Besides limiting greenhouse gases, pinpointing which species to protect first will be critical for preserving biodiversity until anthropogenic climate change is halted and reversed.
Collapse
Affiliation(s)
- Mark C Urban
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Center of Biological Risk, University of Connecticut, Storrs, CT, USA
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
3
|
Verheijen BHF, Webb EB, Brasher MG, Hagy HM. Long-term changes in autumn-winter harvest distributions vary among duck species, months, and subpopulations. Ecol Evol 2024; 14:e11331. [PMID: 38832139 PMCID: PMC11145621 DOI: 10.1002/ece3.11331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 06/05/2024] Open
Abstract
Our aim was to describe shifts in autumn and winter harvest distributions of three species of dabbling ducks (blue-winged teal [Spatula discors], mallard [Anas platyrhynchos], and northern pintail [Anas acuta]) in the Central and Mississippi flyways of North America during 1960-2019. We measured shifts in band recovery distributions corrected for changes in hunting season dates and zones by using kernel density estimators to calculate 10 distributional metrics. We then assessed interannual and intraspecific variation by comparing species-specific changes in distributional metrics for 4 months (October-January) and three geographically based subpopulations. During 1960-2019, band recovery distributions shifted west- and southwards (blue-winged teal) or east- and northwards (mallard and northern pintail) by one hundred to several hundred kilometers. For all three species, the broad (95% isopleth) and core distributions (50% isopleth) showed widespread decreases in overlap and increases in relative area compared to a 1960-1979 baseline period. Shifts in band recovery distributions varied by month, with southward shifts for blue-winged teal most pronounced in October and northward shifts for mallard and northern pintail greatest during December and January. Finally, distributional metric response varied considerably among mallard subpopulations, including 2-4-fold differences in longitude, latitude, and overlap, whereas differences among subpopulations were minimal for blue-winged teal and northern pintail. Our findings support the popular notion that winter (December-January) distributions of duck species have shifted north; however, the extent and direction of distributional changes vary among species and subpopulations. Long-term distributional changes are therefore complex and summarizing shifts across species, months, or subpopulations could mask underlying finer-scale patterns that are important to habitat conservation and population management. A detailed understanding of how species distributions have changed over time will help quantify important drivers of species occurrence, identify habitat management options, and could inform decisions on where to focus conservation or restoration efforts.
Collapse
Affiliation(s)
- Bram H. F. Verheijen
- Missouri Cooperative Fish and Wildlife Research Unit, School of Natural ResourcesUniversity of MissouriColumbiaMissouriUSA
| | - Elisabeth B. Webb
- U.S. Geological Survey, Missouri Cooperative Fish and Wildlife Research Unit, School of Natural ResourcesUniversity of MissouriColumbiaMissouriUSA
| | | | - Heath M. Hagy
- U.S. Fish and Wildlife Service, Habitat and Population Evaluation TeamBismarckNorth DakotaUSA
| |
Collapse
|
4
|
Banda LB, Dejene SW, Mzumara TI, McCarthy C, Pangapanga‐Phiri I. An ensemble model predicts an upward range shift of the endemic and endangered Yellow-throated Apalis ( Apalis flavigularis) under future climate change in Malawi. Ecol Evol 2024; 14:e11283. [PMID: 38623518 PMCID: PMC11017464 DOI: 10.1002/ece3.11283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 03/09/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Climate change poses a significant threat to endemic and endangered montane bird species with limited elevation and temperature ranges. Understanding their responses to changes in climate is essential for informing conservation actions. This study focused on the montane dwelling Yellow-throated Apalis (Apalis flavigularis) in Malawi, aiming to identify key factors affecting its distribution and predicting its potential distribution under different climate change scenarios. Using an ensemble species distribution modeling approach, we found that the mean temperature of the driest quarter (Bio9), mean temperature of the wettest quarter (Bio8), and precipitation seasonality (Bio15) were the most important variables that influenced the distribution of this species. Across future climate scenarios, the species' geographic range declined where range losses varied from 57.74% (2050 RCP 6.0) to 82.88% (2070 RCP 6.0). We estimate its current range size to be 549 km2 which is lower than some previous estimates of its spatial distribution. Moreover, our projections indicate that under future climate scenarios, the species will shift to higher elevations with a large proportion of suitable areas located outside forests, posing challenges for adaptation. Our results suggest that the species may be under greater threat than previously thought; hence, urgent conservation actions are required. We recommend reinforcing the protection of areas predicted to remain suitable under future climate scenarios and the development of a species conservation action plan.
Collapse
Affiliation(s)
- Lumbani Benedicto Banda
- Department of Environment and Natural Resources ManagementLilongwe University of Agriculture and Natural Resources (LUANAR)LilongweMalawi
- Africa Centre of Excellence for Climate Smart Agriculture and Biodiversity ConservationHaramaya UniversityDire DawaEthiopia
| | - Sintayehu W. Dejene
- Africa Centre of Excellence for Climate Smart Agriculture and Biodiversity ConservationHaramaya UniversityDire DawaEthiopia
- College of Agriculture and Environmental SciencesHaramaya UniversityDire DawaEthiopia
| | - Tiwonge I. Mzumara
- Department of Biological SciencesMalawi University of Science and Technology (MUST)LimbeMalawi
| | - Christopher McCarthy
- Zanvyl Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMassachusettsUSA
| | - Innocent Pangapanga‐Phiri
- Department of Environment and Natural Resources ManagementLilongwe University of Agriculture and Natural Resources (LUANAR)LilongweMalawi
| |
Collapse
|
5
|
de Moraes KF, Lima MGM, Gonçalves GSR, Cerqueira PV, Santos MPD. The future of endemic and threatened birds of the Amazon in the face of global climate change. Ecol Evol 2024; 14:e11097. [PMID: 38500858 PMCID: PMC10945313 DOI: 10.1002/ece3.11097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
The anthropogenic impacts on the environment, including deforestation and the escalating emissions of greenhouse gases, have significantly contributed to global climate change that can lead to alterations in ecosystems. In this context, protected areas (PAs) are pillars for biodiversity conservation by being able, for example, to maintain the viability of populations of endangered species. On the other hand, the species range shifts do not follow the limits of PAs, jeopardizing the conservation of these species. Furthermore, the effectiveness of PAs is consistently undermined by impacts stemming from land use, hunting activities, and illegal exploitation, both within the designated areas and in their adjacent zones. The objectives of this study are to quantify the impacts of climate change on the distribution of threatened and endemic birds of the Amazon biome, evaluate the effectiveness of PAs in protecting the richness of threatened birds, and analyze the representativeness of species within PAs. We found with our results that climate suitability loss is above 80 for 65% of taxa in the optimistic scenario and above 93% in the pessimistic scenario. The results show that PAs are not effective in protecting the richness of Amazonian birds, just as they are ineffective in protecting most of the taxa studied when analyzed individually Although some taxa are presented as "Protected," in future scenarios these taxa may suffer major shrinkages in their distributions and consequently present population unviability. The loss of climatically suitable areas and the effectiveness of PAs can directly influence the loss of ecosystem services, fundamental to maintaining the balance of biodiversity. Therefore, our study paves the way for conservation actions aimed at these taxa so that they can mitigate current and future extinctions due to climate change.
Collapse
Affiliation(s)
- Kauê Felippe de Moraes
- Conservation Biogeography and Macroecology Laboratory – BIOMACROFederal University of ParáBelémBrazil
- Graduate Program in ZoologyFederal University of ParáBelémBrazil
| | | | | | - Pablo Vieira Cerqueira
- Conservation Biogeography and Macroecology Laboratory – BIOMACROFederal University of ParáBelémBrazil
| | - Marcos Pérsio Dantas Santos
- Conservation Biogeography and Macroecology Laboratory – BIOMACROFederal University of ParáBelémBrazil
- Graduate Program in ZoologyFederal University of ParáBelémBrazil
| |
Collapse
|
6
|
Rodrigues BL, Galati EAB. New sand fly (Diptera, Psychodidae) records and COI DNA barcodes in the state of Maranhão, Eastern Amazon, Brazil. Acta Trop 2024; 250:107095. [PMID: 38097151 DOI: 10.1016/j.actatropica.2023.107095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
The sand fly fauna and the usefulness of the DNA barcoding fragment of the cytochrome c oxidase subunit I (COI) gene were accessed in a forest fragment in the municipality of Governador Newton Bello, state of Maranhão, Brazil. We performed entomological collections in three independent campaigns in May and October 2021, and January 2023. Sand flies were morphologically-identified and then DNA barcoded. Sequences were deposited and analyzed in the BOLD System Database, and various species delimitation algorithms, to assess whether DNA sequences merge into taxonomic units in accordance with nominal species. In total, 1,524 sand flies were collected, comprising 32 nominal species. Nyssomyia antunesi was the most abundant species (31.5 %), followed by Psychodopygus davisi (27 %). We reported for the first time in the state of Maranhão, the presence of Lutzomyia evangelistai, Lutzomyia sherlocki, Pressatia equatorialis, and Psathyromyia barrettoi. We amplified and analyzed 67 COI barcodes of 23 species, which were merged with conspecific sequences extracted from GenBank. The maximum intraspecific p distances ranged from 0.0 % to 14.74 %, while the distances to the nearest neighbor varied from 1.67 % to 13.64 %. The phylogenetic gene tree and species delimitation tools clustered sequences into well-supported clades/clusters for each nominal species, except for Pressatia choti/Pr. equatorialis, which have the lowest interspecific genetic distance (1.67 %). We sequenced for the first time COI barcodes of Brumptomyia brumpti, Evandromyia monstruosa, Micropygomyia rorotaensis, Micropygomyia pilosa, Pintomyia christenseni, Pintomyia pacae, Pr. equatorialis, Pa. barrettoi, and Psathyromyia hermanlenti, which will be useful for further molecular identification and classification proposals of Neotropical species. This study updated the current list of the sand fly fauna for the state of Maranhão to 97, and demonstrated that COI barcodes are useful for specific identification.
Collapse
Affiliation(s)
- Bruno Leite Rodrigues
- Programa de Pós-Graduação em Saúde Pública, Faculdade de Saúde Pública da Universidade de São Paulo (FSP/USP), Av. Dr. Arnaldo, 715 - Cerqueira César, São Paulo 01246-904, SP, Brazil,.
| | - Eunice Aparecida Bianchi Galati
- Programa de Pós-Graduação em Saúde Pública, Faculdade de Saúde Pública da Universidade de São Paulo (FSP/USP), Av. Dr. Arnaldo, 715 - Cerqueira César, São Paulo 01246-904, SP, Brazil
| |
Collapse
|
7
|
Wiens JJ, Zelinka J. How many species will Earth lose to climate change? GLOBAL CHANGE BIOLOGY 2024; 30:e17125. [PMID: 38273487 DOI: 10.1111/gcb.17125] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 01/27/2024]
Abstract
Climate change may be an important threat to global biodiversity, potentially leading to the extinction of numerous species. But how many? There have been various attempts to answer this question, sometimes yielding strikingly different estimates. Here, we review these estimates, assess their disagreements and methodology, and explore how we might reach better estimates. Large-scale studies have estimated the extinction of ~1% of sampled species up to ~70%, even when using the same approach (species distribution models; SDMs). Nevertheless, worst-case estimates often converge near 20%-30% species loss, and many differences shrink when using similar assumptions. We perform a new review of recent SDM studies, which show ~17% loss of species to climate change under worst-case scenarios. However, this review shows that many SDM studies are biased by excluding the most vulnerable species (those known from few localities), which may lead to underestimating global species loss. Conversely, our analyses of recent climate change responses show that a fundamental assumption of SDM studies, that species' climatic niches do not change over time, may be frequently violated. For example, we find mean rates of positive thermal niche change across species of ~0.02°C/year. Yet, these rates may still be slower than projected climate change by ~3-4 fold. Finally, we explore how global extinction levels can be estimated by combining group-specific estimates of species loss with recent group-specific projections of global species richness (including cryptic insect species). These preliminary estimates tentatively forecast climate-related extinction of 14%-32% of macroscopic species in the next ~50 years, potentially including 3-6 million (or more) animal and plant species, even under intermediate climate change scenarios.
Collapse
Affiliation(s)
- John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Joseph Zelinka
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
8
|
Meireles RC, Lopes LE, Brito GR, Solar R. The future of suitable habitats of an endangered Neotropical grassland bird: A path to extinction? Ecol Evol 2023; 13:e9802. [PMID: 36818528 PMCID: PMC9926175 DOI: 10.1002/ece3.9802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/23/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023] Open
Abstract
Global changes increasingly worry researchers and policymakers and may have irreversible impacts on Earth's biodiversity. Similar to other phytophysiognomies, natural grasslands suffer from the effects of land use changes and rising temperatures, threatening animal and plant communities. Birds, being very sensitive to these changes, are widely studied and fundamental to understand the dynamics of ecosystems in relation to climate and land use changes. The Campo Miner Geositta poeciloptera is a grassland bird endemic to the Brazilian Cerrado and threatened with extinction that has been widely studied in recent years. We analyze the decrease in its extent of occurrence (EOO) and the effects of climate and land use change to understand the environmental suitability of the species in current and future scenarios. We used 5 common algorithms to produce ecological niche models. For future predictions, we use two general circulation models for two different greenhouse gas emission scenarios with different climate policies, an optimistic (ssp245) and a pessimistic (ssp585), plus two land use models focusing on increasing farmlands and reducing native grasslands. The current EOO represents ~45% of that presented by the IUCN EOO. The models generated for the present were satisfactory (TSS = 0.77 and ROC = 0.90) and showed high environmental suitability in areas where the species is currently found and low suitability where it is already extinct. All future scenarios have reduced suitable areas for the species, and the models of a greater increase in temperature and increase in farmlands and a greater decrease in grasslands were the worse. Our results reinforce the need to care about biome awareness disparity and the importance of actively preserving grassy-shrub areas. Apparently, the state of Minas Gerais will be the only stronghold of the species in the coming years; however, the lack of protected areas that guarantee its survival needs attention.
Collapse
Affiliation(s)
- Ricardo C Meireles
- Pós-graduação em Ecologia, Conservação e Manejo da Vida Silvestre Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Leonardo E Lopes
- Laboratório de Biologia Animal, Instituto de Ciências Biológicas e da Saúde Universidade Federal de Viçosa Florestal Brazil
| | - Gustavo R Brito
- Pós-graduação em Biociências Universidade Estadual Paulista Assis Brazil
| | - Ricardo Solar
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas Universidade Federal de Minas Gerais Belo Horizonte Brazil
| |
Collapse
|
9
|
Albert JS, Carnaval AC, Flantua SGA, Lohmann LG, Ribas CC, Riff D, Carrillo JD, Fan Y, Figueiredo JJP, Guayasamin JM, Hoorn C, de Melo GH, Nascimento N, Quesada CA, Ulloa Ulloa C, Val P, Arieira J, Encalada AC, Nobre CA. Human impacts outpace natural processes in the Amazon. Science 2023; 379:eabo5003. [PMID: 36701466 DOI: 10.1126/science.abo5003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Amazonian environments are being degraded by modern industrial and agricultural activities at a pace far above anything previously known, imperiling its vast biodiversity reserves and globally important ecosystem services. The most substantial threats come from regional deforestation, because of export market demands, and global climate change. The Amazon is currently perched to transition rapidly from a largely forested to a nonforested landscape. These changes are happening much too rapidly for Amazonian species, peoples, and ecosystems to respond adaptively. Policies to prevent the worst outcomes are known and must be enacted immediately. We now need political will and leadership to act on this information. To fail the Amazon is to fail the biosphere, and we fail to act at our peril.
Collapse
Affiliation(s)
- James S Albert
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - Ana C Carnaval
- Department of Biology and Ph.D. Program in Biology, City University of New York (CUNY) and CUNY Graduate Center, New York, NY, USA
| | - Suzette G A Flantua
- Department of Biological Sciences, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway
| | - Lúcia G Lohmann
- Universidade de São Paulo, Instituto de Biociências, Departamento de Botânica, São Paulo, SP, Brazil
| | - Camila C Ribas
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | - Douglas Riff
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Juan D Carrillo
- Department of Biology, University of Fribourg and Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Ying Fan
- Department of Earth and Planetary Sciences, Rutgers, The State University of New Jersey, NJ, USA
| | - Jorge J P Figueiredo
- Institute of Geoscience, Center of Mathematical and Earth Sciences, Universidade Federal Rio de Janeiro, RJ, Brazil
| | - Juan M Guayasamin
- Instituto Biósfera, Laboratorio de Biología Evolutiva, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Carina Hoorn
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Gustavo H de Melo
- Department of Geology, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | | | - Carlos A Quesada
- Coordination for Environmental Dynamics, National Institute for Research in Amazonia, Manaus, AM, Brazil
| | | | - Pedro Val
- School of Earth and Environmental Sciences, Queens College, CUNY, New York, NY, USA.,Ph.D. Program in Earth and Environmental Sciences, CUNY Graduate Center, New York, NY, USA.,Department of Geology, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Julia Arieira
- Science Panel for the Amazon (SPA), São José dos Campos, SP, Brazil
| | - Andrea C Encalada
- Instituto Biósfera, Universidad San Francisco de Quito, Quito, Ecuador
| | - Carlos A Nobre
- Institute of Advanced Studies, University of São Paulo, SP, Brazil
| |
Collapse
|
10
|
Mota FMM, Heming NM, Morante‐Filho JC, Talora DC. Climate change is expected to restructure forest frugivorous bird communities in a biodiversity hot‐point within the Atlantic Forest. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Flávio Mariano Machado Mota
- Applied Ecology and Conservation Lab, Programa de Pós‐graduação em Ecologia e Conservação da Biodiversidade Universidade Estadual de Santa Cruz Ilhéus Brazil
| | - Neander Marcel Heming
- Applied Ecology and Conservation Lab, Programa de Pós‐graduação em Ecologia e Conservação da Biodiversidade Universidade Estadual de Santa Cruz Ilhéus Brazil
| | - José Carlos Morante‐Filho
- Applied Ecology and Conservation Lab, Programa de Pós‐graduação em Ecologia e Conservação da Biodiversidade Universidade Estadual de Santa Cruz Ilhéus Brazil
| | - Daniela Custódio Talora
- Applied Ecology and Conservation Lab, Programa de Pós‐graduação em Ecologia e Conservação da Biodiversidade Universidade Estadual de Santa Cruz Ilhéus Brazil
| |
Collapse
|
11
|
Watershed Ecohydrological Processes in a Changing Environment: Opportunities and Challenges. WATER 2022. [DOI: 10.3390/w14091502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Basin ecohydrological processes are essential for informing policymaking and social development in response to growing environmental problems. In this paper, we review watershed ecohydrology, focusing on the interaction between watershed ecological and hydrological processes. Climate change and human activities are the most important factors influencing water quantity and quality, and there is a need to integrate watershed socioeconomic activities into the paradigm of watershed ecohydrological process studies. Then, we propose a new framework for integrated watershed management. It includes (1) data collection: building an integrated observation network; (2) theoretical basis: attribution analysis; (3) integrated modeling: medium- and long-term prediction of ecohydrological processes by human–nature interactions; and (4) policy orientation. The paper was a potential solution to overcome challenges in the context of frequent climate extremes and rapid land-use change.
Collapse
|
12
|
|