1
|
Shin SY, Chen J, Milman Krentsis I, Reisner Y, Abrencillo R, Hussain R, Wu D, Karmouty-Quintana H. From Epithelium to Therapy: Transitional Cells in Lung Fibrosis. Am J Respir Cell Mol Biol 2025; 72:472-483. [PMID: 39642382 PMCID: PMC12051923 DOI: 10.1165/rcmb.2024-0372tr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/06/2024] [Indexed: 12/08/2024] Open
Abstract
Patients with idiopathic pulmonary fibrosis and lung fibrosis secondary to infections such as influenza A and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have limited treatment options outside of supportive therapy and lung transplantation. Multiple lung stem cell populations have been implicated in the pathogenesis of lung fibrosis, and more progenitor cell populations continue to be discovered and characterized. In this review, we summarize the functions and differentiation pathways of various cells that constitute the lung epithelium. We then focus on two subpopulations of KRT5+ or KRT8+ transitional cells that both originate from alveolar type II cells but experience different cell fates and play important roles in lung regeneration and repair. We address these transitional cells' potential role in fibrosis and bronchiolization of the alveoli, as they are correlated to aggregate near fibrotic foci in both in vivo models and in human fibrotic lung disease. We conclude by discussing recent advances in cell and organoid therapy to replace aberrant transitional cells and treat lung fibrosis. Namely, we focus on strategies to minimize immune clearance of transplanted cells and to optimize engraftment by transplanting cells precultured as three-dimensional organoids.
Collapse
Affiliation(s)
- Sarah Y. Shin
- Department of Biochemistry and Molecular Biology and
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, UTHealth Houston, Houston, Texas
| | - Jichao Chen
- Department of Pediatrics, Cincinnati Children’s Hospital, Cincinnati, Ohio
| | - Irit Milman Krentsis
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, Texas
| | - Yair Reisner
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, Texas
| | - Rodeo Abrencillo
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, Houston, Texas
| | - Rahat Hussain
- Center for Advanced Cardiopulmonary Therapies and Transplantation, University of Texas Health Science Center at Houston, Houston, Texas
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, UTHealth Houston, Houston, Texas
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, Texas; and
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology and
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, Houston, Texas
| |
Collapse
|
2
|
Ma H, Liu X, Cai H, Yan Y, Li W, Zhao J. Electroacupuncture reduced airway inflammation by activating somatosensory-sympathetic pathways in allergic asthmatic rats. Chin Med J (Engl) 2025; 138:702-712. [PMID: 38602180 PMCID: PMC11925418 DOI: 10.1097/cm9.0000000000003074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Electroacupuncture (EA) treatment is efficacious in patients with respiratory disorders, although the mechanisms of its action in lung-function protection are poorly understood. This study aimed to explore the neuroanatomical mechanisms of EA stimulation at the BL13 acupoint (Feishu, EA-BL13) improvement in asthma. METHODS Allergic asthma was induced by intranasal 2.0% ovalbumin (OVA) instillation combined with intraperitoneal injection of the 10.0% OVA. The levels of interleukin (IL)-4 and IL-5 were detected by enzyme-linked immunosorbent assay. Hematoxylin and eosin and periodic acid-schiff stain were used to evaluate inflammatory cell infiltration and mucus secretion. Cellular oncogene fos induction in neurons after EA stimulation was detected by immunofluorescent staining. The messenger RNA expression levels of adrenergic receptors were quantified with real-time polymerase chain reaction. RESULTS EA improved airway inflammation and mucus secretion mainly by activating somatosensory-sympathetic pathways ( P <0.001). Briefly, the intermediolateral (IML) nuclei of the spinal cord received signals from somatic EA stimulation and then delivered the information via the sympathetic trunk to the lung. Excited sympathetic nerve endings in lung tissue released large amounts of catecholamines that specifically activated the β2 adrenergic receptor (β2AR) on T cells ( P <0.01) and further decreased the levels of IL-4 and IL-5 ( P <0.001) through the cyclic adenosine monophosphate/protein kinase A signaling pathway. CONCLUSION This study provided a new explanation and clinical basis for the use of EA-BL13 as a treatment for allergic asthma in both the attack and remission stages and other respiratory disorders related to airway inflammation.
Collapse
Affiliation(s)
- Hongli Ma
- Department of Anesthesia, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Xiaowen Liu
- Department of Anesthesia, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Huamei Cai
- Department of Anesthesia, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Yun Yan
- Department of Anesthesia, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Weixia Li
- Department of Anesthesia, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Jing Zhao
- Department of Anesthesia, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| |
Collapse
|
3
|
Bammert M, Ansari M, Haag L, Ahmad Z, Schröder V, Birch J, Santacruz D, Rust W, Viollet C, Strobel B, Dick A, Gantner F, Schlüter H, Ramirez F, Lizé M, Thomas MJ, Le HQ. JUNB O-GlcNAcylation-Mediated Promoter Accessibility of Metabolic Genes Modulates Distinct Epithelial Lineage in Pulmonary Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406751. [PMID: 39676507 PMCID: PMC11791990 DOI: 10.1002/advs.202406751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/15/2024] [Indexed: 12/17/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal disease with substantial unmet medical needs. While aberrant epithelial remodeling is a key factor in IPF progression, the molecular mechanisms behind this process remain elusive. Harnessing a 3D patient-derived organoid model and multi-omics approach, the first inventory of the connection between metabolic alteration, chromatin accessibility, and transcriptional regulation in IPF aberrant epithelial remodeling is provided. This remodeling is characterized by an increase in chromatin accessibility, particularly at JUNB motif-enriched promoter regions proximal to transcription start sites of metabolic and pro-fibrotic genes. Mechanistically, JUNB undergoes O-linked β-N-acetylglucosamine modification (O-GlcNAcylation), a critical step in modulating pro-fibrotic responses to chronic injury. This modification is pivotal in fostering the emergence of aberrant epithelial basal cells in the alveolar niche, a proposed driver of IPF pathology. Specific deletion of O-GlcNAcylation sites on JUNB attenuates the metaplastic differentiation of basal cells, thereby aiding in the restoration of the alveolar lineage. Together, the findings reveal a novel link between metabolic dysregulation and cell fate regulation at the chromatin level in fibrosis, mediated by the O-GlcNAc-JUNB axis, suggesting avenues for the development of new therapeutic strategies in IPF.
Collapse
Affiliation(s)
- Marie‐Therese Bammert
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
- Faculty of BiologyUniversity of Konstanz78457KonstanzGermany
| | - Meshal Ansari
- Global Computational Biology and Digital ScienceBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Leoni Haag
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Zuhdi Ahmad
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Victoria Schröder
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Joseph Birch
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Diana Santacruz
- Global Computational Biology and Digital ScienceBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Werner Rust
- Global Computational Biology and Digital ScienceBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Coralie Viollet
- Global Computational Biology and Digital ScienceBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Benjamin Strobel
- Drug Discovery SciencesBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Alec Dick
- Global Computational Biology and Digital ScienceBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Florian Gantner
- Faculty of BiologyUniversity of Konstanz78457KonstanzGermany
- C.H. Boehringer Sohn AG and Co. KG55218IngelheimGermany
| | - Holger Schlüter
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Fidel Ramirez
- Global Computational Biology and Digital ScienceBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Muriel Lizé
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Matthew J. Thomas
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
- University of BathBathBA27JXUK
| | - Huy Q. Le
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| |
Collapse
|
4
|
Martin J, Rittersberger R, Treitler S, Kopp P, Ibraimi A, Koslowski G, Sickinger M, Dabbars A, Schindowski K. Characterization of a primary cellular airway model for inhalative drug delivery in comparison with the established permanent cell lines CaLu3 and RPMI 2650. IN VITRO MODELS 2024; 3:183-203. [PMID: 39872698 PMCID: PMC11756470 DOI: 10.1007/s44164-024-00079-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 01/30/2025]
Abstract
Purpose For optimization of respiratory drug delivery, the selection of suitable in vitro cell models plays an important role in predicting the efficacy and safety of (bio)pharmaceutics and pharmaceutical formulations. Therefore, an in-depth comparison of different primary and permanent in vitro cellular airway models was performed with a focus on selecting a suitable model for inhalative antibodies. Methods Primary cells isolated from the porcine trachea were compared with the established human cell lines CaLu3 and RPMI 2650. The in vitro models were characterized for different epithelial markers by real-time quantitative polymerase chain reaction, which provides insight into the cellular composition of each model. For a few selected markers, the results from RT-qPCR were confirmed via immunofluorescence. Barrier integrity was assessed by transepithelial electrical resistance measurements and FITC-dextran permeability. Results Primary cell models retain key features of the respiratory epithelium, e.g., the formation of a tight epithelial barrier, mucin production, and the presence of club/basal cells. Furthermore, the expression of Fc receptors in the primary cell models closely resembles that in respiratory mucosal tissue, an essential parameter to consider when developing therapeutic antibodies for inhalation. Conclusion The study underlines the importance of selecting wisely appropriate in vitro models. Despite the greater effort and variability in cultivating primary airway cells, they are far superior to permanent cells and a suitable model for drug development. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-024-00079-y.
Collapse
Affiliation(s)
- Janik Martin
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Rebecca Rittersberger
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Simon Treitler
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Patrick Kopp
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Anit Ibraimi
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
- Justus-Von-Liebig-Schule, Von-Kilian-Straße 5, 79762 Waldshut-Tiengen, Germany
| | - Gabriel Koslowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Max Sickinger
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Annabelle Dabbars
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| |
Collapse
|
5
|
Kortekaas RK, Geillinger-Kästle KE, Fuentes-Mateos R, Schönleber A, van der Koog L, Elferink RAB, Al-Alyan N, Burgess JK, Gosens R. The soluble factor milieu in idiopathic pulmonary fibrosis dysregulates epithelial differentiation. FASEB J 2024; 38:e70077. [PMID: 39370849 DOI: 10.1096/fj.202302405rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024]
Abstract
In idiopathic pulmonary fibrosis (IPF), epithelial abnormalities are present including bronchiolization and alveolar cell dysfunction. We hypothesized that the IPF microenvironment disrupts normal epithelial growth and differentiation. We mimicked the soluble factors within an IPF microenvironment using an IPF cocktail (IPFc), composed of nine factors which are increased in IPF lungs (CCL2, IL-1β, IL-4, IL-8, IL-13, IL-33, TGF-β, TNFα, and TSLP). Using IPFc, we asked whether the soluble factor milieu in IPF affects epithelial growth and differentiation and how IPFc compares to TGF-β alone. Epithelial growth and differentiation were studied using mouse lung organoids (primary Epcam+ epithelial cells co-cultured with CCL206 fibroblasts). Organoids exposed to IPFc and TGF-β were re-sorted into epithelial and fibroblast fractions and subjected to RNA sequencing. IPFc did not affect the number of organoids formed. However, pro-surfactant protein C expression was decreased. On these parameters, TGF-β alone had similar effects. However, RNA sequencing of re-sorted organoids revealed that IPFc and TGF-β had distinct effects on both epithelial cells and fibroblasts. IPFc upregulated goblet cell markers, whereas these were inhibited by TGF-β. Although both IPFc and TGF-β increased extracellular matrix gene expression, only TGF-β increased myofibroblast markers. VEGF-C and Wnt signaling were among the most differentially regulated signaling pathways by IPFc versus TGF-β. Interestingly, Wnt pathway activation rescued Sftpc downregulation induced by IPFc. In conclusion, IPFc alters epithelial differentiation in a way that is distinct from TGF-β. Alterations in Wnt signaling contribute to these effects. IPFc may be a more comprehensive representation of the soluble factor microenvironment in IPF.
Collapse
Affiliation(s)
- Rosa K Kortekaas
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Kerstin E Geillinger-Kästle
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Rocío Fuentes-Mateos
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anita Schönleber
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Luke van der Koog
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Robin A B Elferink
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Nakaa Al-Alyan
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Janette K Burgess
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
6
|
Chang SH, Jung S, Chae JJ, Kim JY, Kim SU, Choi JY, Han HJ, Kim HT, Kim HJ, Kim HJ, Park WY, Sparks JA, Lee EY, Lee JS. Therapeutic single-cell landscape: methotrexate exacerbates interstitial lung disease by compromising the stemness of alveolar epithelial cells under systemic inflammation. EBioMedicine 2024; 108:105339. [PMID: 39303666 PMCID: PMC11437874 DOI: 10.1016/j.ebiom.2024.105339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Interstitial lung disease (ILD) poses a serious threat in patients with rheumatoid arthritis (RA). However, the impact of cornerstone drugs, including methotrexate (MTX) and TNF inhibitor, on RA-associated ILD (RA-ILD) remains controversial. METHODS Using an SKG mouse model and single-cell transcriptomics, we investigated the effects of MTX and TNF blockade on ILD. FINDINGS Our study revealed that MTX exacerbates pulmonary inflammation by promoting immune cell infiltration, Th17 activation, and fibrosis. In contrast, TNF inhibitor ameliorates these features and inhibits ILD progression. Analysis of data from a human RA-ILD cohort revealed that patients with ILD progression had persistently higher systemic inflammation than those without progression, particularly among the subgroup undergoing MTX treatment. INTERPRETATION These findings highlight the need for personalized therapeutic approaches in RA-ILD, given the divergent outcomes of MTX and TNF inhibitor. FUNDING This work was funded by GENINUS Inc., and the National Research Foundation of Korea, and Seoul National University Hospital.
Collapse
Affiliation(s)
- Sung Hae Chang
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, 31151, South Korea
| | - Seyoung Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jeong Jun Chae
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea
| | - Jeong Yeon Kim
- Inocras, Inc., San Diego, CA, 92121, USA; Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seon Uk Kim
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ji Yong Choi
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hye-Jeong Han
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Hyun Taek Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Hak-Jae Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Hyun Je Kim
- Department of Biomedical Science, Seoul National University, Seoul, 03080, Republic of Korea
| | - Woong Yang Park
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jeffrey A Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Eun Young Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Jeong Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Inocras, Inc., San Diego, CA, 92121, USA.
| |
Collapse
|
7
|
Ramirez-Moral I, Schuurman AR, van Linge CCA, Butler JM, Yu X, de Haan K, van Leeuwen S, de Vos AF, de Jong MD, Vieira Braga FA, van der Poll T. Single-cell transcriptomics reveals subset-specific metabolic profiles underpinning the bronchial epithelial response to flagellin. iScience 2024; 27:110662. [PMID: 39252969 PMCID: PMC11381847 DOI: 10.1016/j.isci.2024.110662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/30/2023] [Accepted: 07/31/2024] [Indexed: 09/11/2024] Open
Abstract
Airway epithelial cells represent the first line of defense against respiratory pathogens. Flagellin drives the motility of many mucosal pathogens and has been suggested as an immune enhancing adjunctive therapeutic in infections of the airways. This study leveraged single-cell RNA sequencing to determine cell-specific effects of flagellin in primary human bronchial epithelial cells growing in air-liquid interface. Seven cell clusters were identified, including ciliated cells, ionocytes, and several states of basal and secretory cells, of which only inflammatory basal cells and inflammatory secretory cells demonstrated a proportional increase in response to flagellin. Inflammatory secretory cells showed evidence of metabolic reprogramming toward aerobic glycolysis, while in inflammatory basal cells transcriptome profiles indicated enhanced oxidative phosphorylation. Inhibition of mTOR prevented the shift to glycolysis and reduced inflammatory gene transcription specifically in inflammatory secretory cells. These data demonstrate the functional heterogeneity of the human airway epithelium upon exposure to flagellin.
Collapse
Affiliation(s)
- Ivan Ramirez-Moral
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Alex R Schuurman
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Christine C A van Linge
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Joe M Butler
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Xiao Yu
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Karen de Haan
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Sarah van Leeuwen
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Alex F de Vos
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Menno D de Jong
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Felipe A Vieira Braga
- Laboratory for Experimental Oncology and Radiobiology, Center of Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Division of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
8
|
Franzén L, Olsson Lindvall M, Hühn M, Ptasinski V, Setyo L, Keith BP, Collin A, Oag S, Volckaert T, Borde A, Lundeberg J, Lindgren J, Belfield G, Jackson S, Ollerstam A, Stamou M, Ståhl PL, Hornberg JJ. Mapping spatially resolved transcriptomes in human and mouse pulmonary fibrosis. Nat Genet 2024; 56:1725-1736. [PMID: 38951642 PMCID: PMC11319205 DOI: 10.1038/s41588-024-01819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/30/2024] [Indexed: 07/03/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis and limited treatment options. Efforts to identify effective treatments are thwarted by limited understanding of IPF pathogenesis and poor translatability of available preclinical models. Here we generated spatially resolved transcriptome maps of human IPF (n = 4) and bleomycin-induced mouse pulmonary fibrosis (n = 6) to address these limitations. We uncovered distinct fibrotic niches in the IPF lung, characterized by aberrant alveolar epithelial cells in a microenvironment dominated by transforming growth factor beta signaling alongside predicted regulators, such as TP53 and APOE. We also identified a clear divergence between the arrested alveolar regeneration in the IPF fibrotic niches and the active tissue repair in the acutely fibrotic mouse lung. Our study offers in-depth insights into the IPF transcriptional landscape and proposes alveolar regeneration as a promising therapeutic strategy for IPF.
Collapse
Affiliation(s)
- Lovisa Franzén
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Martina Olsson Lindvall
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Michael Hühn
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Victoria Ptasinski
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Laura Setyo
- Pathology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Benjamin P Keith
- Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Astrid Collin
- Animal Science and Technology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Steven Oag
- Animal Science and Technology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Thomas Volckaert
- Bioscience In Vivo, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Annika Borde
- Bioscience In Vivo, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Joakim Lundeberg
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Julia Lindgren
- Translational Genomics, Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Graham Belfield
- Translational Genomics, Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Sonya Jackson
- Late-Stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Ollerstam
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Marianna Stamou
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Patrik L Ståhl
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden.
| | - Jorrit J Hornberg
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
9
|
Jin C, Chen Y, Wang Y, Li J, Liang J, Zheng S, Zhang L, Li Q, Wang Y, Ling F, Li Y, Zheng Y, Nie Q, Feng Q, Wang J, Yang H. Single-cell RNA sequencing reveals special basal cells and fibroblasts in idiopathic pulmonary fibrosis. Sci Rep 2024; 14:15778. [PMID: 38982264 PMCID: PMC11233624 DOI: 10.1038/s41598-024-66947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most predominant type of idiopathic interstitial pneumonia and has an increasing incidence, poor prognosis, and unclear pathogenesis. In order to investigate the molecular mechanisms underlying IPF further, we performed single-cell RNA sequencing analysis on three healthy controls and five IPF lung tissue samples. The results revealed a significant shift in epithelial cells (ECs) phenotypes in IPF, which may be attributed to the differentiation of alveolar type 2 cells to basal cells. In addition, several previously unrecognized basal cell subtypes were preliminarily identified, including extracellular matrix basal cells, which were increased in the IPF group. We identified a special population of fibroblasts that highly expressed extracellular matrix-related genes, POSTN, CTHRC1, COL3A1, COL5A2, and COL12A1. We propose that the close interaction between ECs and fibroblasts through ligand-receptor pairs may have a critical function in IPF development. Collectively, these outcomes provide innovative perspectives on the complexity and diversity of basal cells and fibroblasts in IPF and contribute to the understanding of possible mechanisms in pathological lung fibrosis.
Collapse
Affiliation(s)
- Chengji Jin
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570100, China
| | - Yahong Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570100, China
| | - Yujie Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570100, China
| | - Jia Li
- The Second Affiliated Clinical College, Hainan Medical University, Haikou, 570100, China
| | - Jin Liang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570100, China
| | - Shaomao Zheng
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570100, China
| | - Lipeng Zhang
- The Second Affiliated Clinical College, Hainan Medical University, Haikou, 570100, China
| | - Qiaoyu Li
- The Second Affiliated Clinical College, Hainan Medical University, Haikou, 570100, China
| | - Yongchao Wang
- Singleron Biotechnologies, Yaogu Avenue 11, Nanjing, 211800, China
| | - Fayu Ling
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570100, China
| | - Yongjie Li
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570100, China
| | - Yu Zheng
- The Second Affiliated Clinical College, Hainan Medical University, Haikou, 570100, China
| | - Qiuli Nie
- The Second Affiliated Clinical College, Hainan Medical University, Haikou, 570100, China
| | - Qiong Feng
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570100, China
| | - Jing Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570100, China.
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, 571199, China.
| | - Huiling Yang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
10
|
Chandran RR, Vijayaraj P, Garcia-Milian R, King J, Castillo K, Chen L, Kwon Y, William S, Rickabaugh TM, Langerman J, Choi W, Sen C, Lever JEP, Li Q, Pavelkova N, Plosa EJ, Rowe SM, Plath K, Clair G, Gomperts BN. Loss of cell junctional components and matrix alterations drive cell desquamation and fibrotic changes in Idiopathic Pulmonary Fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599411. [PMID: 38948715 PMCID: PMC11212876 DOI: 10.1101/2024.06.17.599411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The distal bronchioles in Idiopathic Pulmonary Fibrosis (IPF) exhibit histopathological abnormalities such as bronchiolization, peribronchiolar fibrosis and honeycomb cysts that contribute to the overall architectural remodeling of lung tissue seen in the disease. Here we describe an additional histopathologic finding of epithelial desquamation in patients with IPF, wherein epithelial cells detach from the basement membrane of the distal bronchioles. To understand the mechanism driving this pathology, we performed spatial transcriptomics of the epithelial cells and spatial proteomics of the basement membrane of the distal bronchioles from IPF patients and patients with no prior history of lung disease. Our findings reveal a downregulation of cell junctional components, upregulation of epithelial-mesenchymal transition signatures and dysregulated basement membrane matrix in IPF distal bronchioles, facilitating epithelial desquamation. Further, functional assays identified regulation between Collagen IV in the matrix, and the junctional genes JUP and PLEC , that is crucial for maintaining distal bronchiolar homeostasis. In IPF, this balanced regulation between matrix and cell-junctions is disrupted, leading to loss of epithelial adhesion, peribronchiolar fibrosis and epithelial desquamation. Overall, our study suggests that in IPF the interplay between the loss of cell junctions and a dysregulated matrix results in desquamation of distal bronchiolar epithelium and lung remodeling, exacerbating the disease. One Sentence Summary Two-way regulation of cell junctional proteins and matrix proteins drives cellular desquamation and fibrosis in the distal bronchioles of patients with Idiopathic Pulmonary Fibrosis.
Collapse
|
11
|
Xie T, Liang J, Stripp B, Noble PW. Cell-cell interactions and communication dynamics in lung fibrosis. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:63-71. [PMID: 39169931 PMCID: PMC11332853 DOI: 10.1016/j.pccm.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Indexed: 08/23/2024]
Abstract
Cell-cell interactions are essential components of coordinated cell function in lung homeostasis. Lung diseases involve altered cell-cell interactions and communication between different cell types, as well as between subsets of cells of the same type. The identification and understanding of intercellular signaling in lung fibrosis offer insights into the molecular mechanisms underlying these interactions and their implications in the development and progression of lung fibrosis. A comprehensive cell atlas of the human lung, established with the facilitation of single-cell RNA transcriptomic analysis, has enabled the inference of intercellular communications using ligand-receptor databases. In this review, we provide a comprehensive overview of the modified cell-cell communications in lung fibrosis. We highlight the intricate interactions among the major cell types within the lung and their contributions to fibrogenesis. The insights presented in this review will contribute to a better understanding of the molecular mechanisms underlying lung fibrosis and may guide future research efforts in developing targeted therapies for this debilitating disease.
Collapse
Affiliation(s)
- Ting Xie
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jiurong Liang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Barry Stripp
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W. Noble
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
12
|
Zhang J, Li Y, Zhu F, Guo X, Huang Y. Time-/dose- series transcriptome data analysis and traditional Chinese medicine treatment of pneumoconiosis. Int J Biol Macromol 2024; 267:131515. [PMID: 38614165 DOI: 10.1016/j.ijbiomac.2024.131515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Pneumoconiosis' pathogenesis is still unclear and specific drugs for its treatment are lacking. Analysis of series transcriptome data often uses a single comparison method, and there are few reports on using such data to predict the treatment of pneumoconiosis with traditional Chinese medicine (TCM). Here, we proposed a new method for analyzing series transcriptomic data, series difference analysis (SDA), and applied it to pneumoconiosis. By comparison with 5 gene sets including existing pneumoconiosis-related genes and gene set functional enrichment analysis, we demonstrated that the new method was not inferior to two existing traditional analysis methods. Furthermore, based on the TCM-drug target interaction network, we predicted the TCM corresponding to the common pneumoconiosis-related genes obtained by multiple methods, and combined them with the high-frequency TCM for its treatment obtained through literature mining to form a new TCM formula for it. After feeding it to pneumoconiosis modeling mice for two months, compared with the untreated group, the coat color, mental state and tissue sections of the mice in the treated group were markedly improved, indicating that the new TCM formula has a certain efficacy. Our study provides new insights into method development for series transcriptomic data analysis and treatment of pneumoconiosis.
Collapse
Affiliation(s)
- Jifeng Zhang
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui 232001, China; School of Biological Engineering & Institute of Digital Ecology and Health, Huainan Normal University, Huainan, China
| | - Yaobin Li
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui 232001, China.
| | - Fenglin Zhu
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Xiaodi Guo
- School of Biological Engineering & Institute of Digital Ecology and Health, Huainan Normal University, Huainan, China
| | - Yuqing Huang
- School of Biological Engineering & Institute of Digital Ecology and Health, Huainan Normal University, Huainan, China
| |
Collapse
|
13
|
Otelea MR, Oancea C, Reisz D, Vaida MA, Maftei A, Popescu FG. Club Cells-A Guardian against Occupational Hazards. Biomedicines 2023; 12:78. [PMID: 38255185 PMCID: PMC10813369 DOI: 10.3390/biomedicines12010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Club cells have a distinct role in the epithelial repair and defense mechanisms of the lung. After exposure to environmental pollutants, during chronic exposure, the secretion of club cells secretory protein (CCSP) decreases. Exposure to occupational hazards certainly has a role in a large number of interstitial lung diseases. According to the American Thoracic Society and the European Respiratory Society, around 40% of the all interstitial lung disease is attributed to occupational hazards. Some of them are very well characterized (pneumoconiosis, hypersensitivity pneumonitis), whereas others are consequences of acute exposure (e.g., paraquat) or persistent exposure (e.g., isocyanate). The category of vapors, gases, dusts, and fumes (VGDF) has been proven to produce subclinical modifications. The inflammation and altered repair process resulting from the exposure to occupational respiratory hazards create vicious loops of cooperation between epithelial cells, mesenchymal cells, innate defense mechanisms, and immune cells. The secretions of club cells modulate the communication between macrophages, epithelial cells, and fibroblasts mitigating the inflammation and/or reducing the fibrotic process. In this review, we describe the mechanisms by which club cells contribute to the development of interstitial lung diseases and the potential role for club cells as biomarkers for occupational-related fibrosis.
Collapse
Affiliation(s)
- Marina Ruxandra Otelea
- Clinical Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Corina Oancea
- Department of Physical Medicine and Rehabilitation, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daniela Reisz
- Department of Neurology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Monica Adriana Vaida
- Department of Anatomy and Embryology, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Andreea Maftei
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Florina Georgeta Popescu
- Department of Occupational Health, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| |
Collapse
|
14
|
Tang Z, Xia Z, Wang X, Liu Y. The critical role of osteopontin (OPN) in fibrotic diseases. Cytokine Growth Factor Rev 2023; 74:86-99. [PMID: 37648616 DOI: 10.1016/j.cytogfr.2023.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Fibrosis is a pathological condition characterized by the excessive deposition of extracellular matrix components in tissues and organs, leading to progressive architectural remodelling and contributing to the development of various diseases. Osteopontin (OPN), a highly phosphorylated glycoprotein, has been increasingly recognized for its involvement in the progression of tissue fibrosis. This review provides a comprehensive overview of the genetic and protein structure of OPN and focuses on our current understanding of the role of OPN in the development of fibrosis in the lungs and other tissues. Additionally, special attention is given to the potential of OPN as a biomarker and a novel therapeutic target in the treatment of fibrosis.
Collapse
Affiliation(s)
- Ziyi Tang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zijing Xia
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiangpeng Wang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100000, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Shen H, Chen W, Liu Y, Castaldi A, Castillo J, Horie M, Flodby P, Sundar S, Li C, Ji Y, Minoo P, Marconett CN, Zhou B, Borok Z. GRAMD2 + alveolar type I cell plasticity facilitates cell state transitions in organoid culture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.560801. [PMID: 37905051 PMCID: PMC10614891 DOI: 10.1101/2023.10.17.560801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Alveolar epithelial regeneration is critical for normal lung function and becomes dysregulated in disease. While alveolar type 2 (AT2) and club cells are known distal lung epithelial progenitors, determining if alveolar epithelial type 1 (AT1) cells also contribute to alveolar regeneration has been hampered by lack of highly specific mouse models labeling AT1 cells. To address this, the Gramd2 CreERT2 transgenic strain was generated and crossed to Rosa mTmG mice. Extensive cellular characterization, including distal lung immunofluorescence and cytospin staining, confirmed that GRAMD2 + AT1 cells are highly enriched for green fluorescent protein (GFP). Interestingly, Gramd2 CreERT2 GFP + cells were able to form organoids in organoid co-culture with Mlg fibroblasts. Temporal scRNAseq revealed that Gramd2 + AT1 cells transition through numerous intermediate lung epithelial cell states including basal, secretory and AT2 cell in organoids while acquiring proliferative capacity. Our results indicate that Gramd2 + AT1 cells are highly plastic suggesting they may contribute to alveolar regeneration.
Collapse
|
16
|
Parimon T, Chen P, Stripp BR, Liang J, Jiang D, Noble PW, Parks WC, Yao C. Senescence of alveolar epithelial progenitor cells: a critical driver of lung fibrosis. Am J Physiol Cell Physiol 2023; 325:C483-C495. [PMID: 37458437 PMCID: PMC10511168 DOI: 10.1152/ajpcell.00239.2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
Pulmonary fibrosis comprises a range of chronic interstitial lung diseases (ILDs) that impose a significant burden on patients and public health. Among these, idiopathic pulmonary fibrosis (IPF), a disease of aging, is the most common and most severe form of ILD and is treated largely by lung transplantation. The lack of effective treatments to stop or reverse lung fibrosis-in fact, fibrosis in most organs-has sparked the need to understand causative mechanisms with the goal of identifying critical points for potential therapeutic intervention. Findings from many groups have indicated that repeated injury to the alveolar epithelium-where gas exchange occurs-leads to stem cell exhaustion and impaired alveolar repair that, in turn, triggers the onset and progression of fibrosis. Cellular senescence of alveolar epithelial progenitors is a critical cause of stemness failure. Hence, senescence impairs repair and thus contributes significantly to fibrosis. In this review, we discuss recent evidence indicating that senescence of epithelial progenitor cells impairs alveolar homeostasis and repair creating a profibrotic environment. Moreover, we discuss the impact of senescent alveolar epithelial progenitors, alveolar type 2 (AT2) cells, and AT2-derived transitional epithelial cells in fibrosis. Emerging evidence indicates that transitional epithelial cells are prone to senescence and, hence, are a new player involved in senescence-associated lung fibrosis. Understanding the complex interplay of cell types and cellular regulatory factors contributing to alveolar epithelial progenitor senescence will be crucial to developing targeted therapies to mitigate their downstream profibrotic sequelae and to promote normal alveolar repair.NEW & NOTEWORTHY With an aging population, lung fibrotic diseases are becoming a global health burden. Dysfunctional repair of the alveolar epithelium is a key causative process that initiates lung fibrosis. Normal alveolar regeneration relies on functional progenitor cells; however, the senescence of these cells, which increases with age, hinders their ability to contribute to repair. Here, we discuss studies on the control and consequence of progenitor cell senescence in fibrosis and opportunities for research.
Collapse
Affiliation(s)
- Tanyalak Parimon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Peter Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Barry R Stripp
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Jiurong Liang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Dianhua Jiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Paul W Noble
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - William C Parks
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Changfu Yao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| |
Collapse
|
17
|
Jaiswal A, Rehman R, Dutta J, Singh S, Ray A, Shridhar M, Jaisankar J, Bhatt M, Khandelwal D, Sahoo B, Ram A, Mabalirajan U. Cellular Distribution of Secreted Phospholipase A2 in Lungs of IPF Patients and Its Inhibition in Bleomycin-Induced Pulmonary Fibrosis in Mice. Cells 2023; 12:cells12071044. [PMID: 37048117 PMCID: PMC10092981 DOI: 10.3390/cells12071044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/29/2023] [Indexed: 04/03/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease with a very poor prognosis as it has a 2.5 to 5 years mean survival after proper diagnosis. Even nintedanib and pirfenidone cannot halt the progression, though they slow the progression of IPF. Hence, there is a need to understand the novel pathophysiology. Phospholipase A2 (PLA2) could be the ideal candidate to study in IPF, as they have a role in both inflammation and fibrosis. In the present study, we have shown the expression profile of various secretory Phospholipase A2 (PLA2) isoforms by analyzing publicly available transcriptome data of single cells from the lungs of healthy individuals and IPF patients. Among 11 members of sPLA2, PLA2G2A is found to be increased in the fibroblasts and mesothelial cells while PLA2G5 is found to be increased in the fibroblasts of IPF patients. We identified a subset of fibroblasts expressing high PLA2G2A with moderate expression of PLA2G5 and which are specific to IPF only; we named it as PLA2G2A+ IPF fibroblast. Pathway analysis revealed that these PLA2G2A+ IPF fibroblast have upregulation of both inflammatory and fibrosis-related pathways like the TGF-β signaling pathway, IL-17 signaling, the arachidonic acid metabolism pathway and ECM-receptor interaction. In addition to this, we found elevated levels of sPLA2-IIA in plasma samples of IPF patients in our cohort. PLA2G3, PLA2G10 and PLA2G12B are found in to be increased in certain epithelial cells of IPF patients. Thus, these findings indicate that these five isoforms have a disease-dominant role along with innate immune roles as these isoforms are found predominantly in structural cells of IPF patients. Further, we have targeted sPLA2 in mice model of bleomycin-induced lung fibrosis by pBPB, a known sPLA2 inhibitor. pBPB treatment attenuated lung fibrosis induced by bleomycin along with a reduction in TGF-β and deposition of extracellular matrix in lung. Thus, these findings indicate that these sPLA2 isoforms especially PLA2G2A may serve as a therapeutic target in lung fibrosis.
Collapse
|
18
|
Wertheim BM, Wang RS, Guillermier C, Hütter CV, Oldham WM, Menche J, Steinhauser ML, Maron BA. Proline and glucose metabolic reprogramming supports vascular endothelial and medial biomass in pulmonary arterial hypertension. JCI Insight 2023; 8:163932. [PMID: 36626231 PMCID: PMC9977503 DOI: 10.1172/jci.insight.163932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
In pulmonary arterial hypertension (PAH), inflammation promotes a fibroproliferative pulmonary vasculopathy. Reductionist studies emphasizing single biochemical reactions suggest a shift toward glycolytic metabolism in PAH; however, key questions remain regarding the metabolic profile of specific cell types within PAH vascular lesions in vivo. We used RNA-Seq to profile the transcriptome of pulmonary artery endothelial cells (PAECs) freshly isolated from an inflammatory vascular injury model of PAH ex vivo, and these data were integrated with information from human gene ontology pathways. Network medicine was then used to map all aa and glucose pathways to the consolidated human interactome, which includes data on 233,957 physical protein-protein interactions. Glucose and proline pathways were significantly close to the human PAH disease module, suggesting that these pathways are functionally relevant to PAH pathobiology. To test this observation in vivo, we used multi-isotope imaging mass spectrometry to map and quantify utilization of glucose and proline in the PAH pulmonary vasculature at subcellular resolution. Our findings suggest that elevated glucose and proline avidity underlie increased biomass in PAECs and the media of fibrosed PAH pulmonary arterioles. Overall, these data show that anabolic utilization of glucose and proline are fundamental to the vascular pathology of PAH.
Collapse
Affiliation(s)
| | - Rui-Sheng Wang
- Division of Cardiovascular Medicine, Department of Medicine.,Channing Division of Network Medicine, Department of Medicine; and
| | - Christelle Guillermier
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Center for NanoImaging, Cambridge, Massachusetts, USA
| | - Christiane Vr Hütter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - William M Oldham
- Division of Pulmonary and Critical Medicine, Department of Medicine
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria.,Faculty of Mathematics, University of Vienna, Vienna, Austria
| | - Matthew L Steinhauser
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Center for NanoImaging, Cambridge, Massachusetts, USA.,Division of Cardiovascular Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
19
|
Chen H, Durinck S, Patel H, Foreman O, Mesh K, Eastham J, Caothien R, Newman RJ, Roose-Girma M, Darmanis S, Warming S, Lattanzi A, Liang Y, Haley B. Population-wide gene disruption in the murine lung epithelium via AAV-mediated delivery of CRISPR-Cas9 components. MOLECULAR THERAPY - METHODS & CLINICAL DEVELOPMENT 2022; 27:431-449. [DOI: 10.1016/j.omtm.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022]
|
20
|
Rendeiro AF, Ravichandran H, Kim J, Borczuk AC, Elemento O, Schwartz RE. Persistent alveolar type 2 dysfunction and lung structural derangement in post-acute COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.11.28.22282811. [PMID: 36482970 PMCID: PMC9727772 DOI: 10.1101/2022.11.28.22282811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
SARS-CoV-2 infection can manifest as a wide range of respiratory and systemic symptoms well after the acute phase of infection in over 50% of patients. Key questions remain on the long-term effects of infection on tissue pathology in recovered COVID-19 patients. To address these questions we performed multiplexed imaging of post-mortem lung tissue from 12 individuals who died post-acute COVID-19 (PC) and compare them to lung tissue from patients who died during the acute phase of COVID-19, or patients who died with idiopathic pulmonary fibrosis (IPF), and otherwise healthy lung tissue. We find evidence of viral presence in the lung up to 359 days after the acute phase of disease, including in patients with negative nasopharyngeal swab tests. The lung of PC patients are characterized by the accumulation of senescent alveolar type 2 cells, fibrosis with hypervascularization of peribronchial areas and alveolar septa, as the most pronounced pathophysiological features. At the cellular level, lung disease of PC patients, while distinct, shares pathological features with the chronic pulmonary disease of IPF. which may help rationalize interventions for PC patients. Altogether, this study provides an important foundation for the understanding of the long-term effects of SARS-CoV-2 pulmonary infection at the microanatomical, cellular, and molecular level.
Collapse
Affiliation(s)
- André F Rendeiro
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Current address: CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT 25.3, 1090, Vienna, Austria
| | - Hiranmayi Ravichandran
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Junbum Kim
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Alain C Borczuk
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Current address: Northwell Health, Department of Pathology and Laboratory Medicine, Greenvale, NY
| | - Olivier Elemento
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
21
|
Kimura S, Yokoyama S, Pilon AL, Kurotani R. Emerging role of an immunomodulatory protein secretoglobin 3A2 in human diseases. Pharmacol Ther 2022; 236:108112. [PMID: 35016921 PMCID: PMC9271138 DOI: 10.1016/j.pharmthera.2022.108112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/27/2022]
Abstract
Secretoglobin (SCGB) 3A2 was first identified in 2001 as a protein exhibiting similarities in amino acid sequence and gene structure to SCGB1A1, a multi-functional cytokine-like molecule highly expressed in airway epithelial Club cells that was the first identified and extensively studied member of the SCGB gene superfamily. SCGB3A2 is a small secretory protein of ~10 kDa that forms a dimer and a tetramer. SCGB3A2 is predominantly expressed in airway epithelial Club cells, and has anti-inflammatory, growth factor, anti-fibrotic, and anti-cancer activities that influence various lung diseases. This review summarizes the current understanding of SCGB3A2 biological functions and its role in human diseases with emphasis on its mechanisms of actions and signaling pathway.
Collapse
Affiliation(s)
- Shioko Kimura
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Shigetoshi Yokoyama
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | - Reiko Kurotani
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
22
|
Kumar A, Elko E, Bruno SR, Mark ZF, Chamberlain N, Mihavics BK, Chandrasekaran R, Walzer J, Ruban M, Gold C, Lam YW, Ghandikota S, Jegga AG, Gomez JL, Janssen-Heininger YM, Anathy V. Inhibition of PDIA3 in club cells attenuates osteopontin production and lung fibrosis. Thorax 2022; 77:669-678. [PMID: 34400514 PMCID: PMC8847543 DOI: 10.1136/thoraxjnl-2021-216882] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/29/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND The role of club cells in the pathology of idiopathic pulmonary fibrosis (IPF) is not well understood. Protein disulfide isomerase A3 (PDIA3), an endoplasmic reticulum-based redox chaperone required for the functions of various fibrosis-related proteins; however, the mechanisms of action of PDIA3 in pulmonary fibrosis are not fully elucidated. OBJECTIVES To examine the role of club cells and PDIA3 in the pathology of pulmonary fibrosis and the therapeutic potential of inhibition of PDIA3 in lung fibrosis. METHODS Role of PDIA3 and aberrant club cells in lung fibrosis was studied by analyses of human transcriptome dataset from Lung Genomics Research Consortium, other public resources, the specific deletion or inhibition of PDIA3 in club cells and blocking SPP1 downstream of PDIA3 in mice. RESULTS PDIA3 and club cell secretory protein (SCGB1A1) signatures are upregulated in IPF compared with control patients. PDIA3 or SCGB1A1 increases also correlate with a decrease in lung function in patients with IPF. The bleomycin (BLM) model of lung fibrosis showed increases in PDIA3 in SCGB1A1 cells in the lung parenchyma. Ablation of Pdia3, specifically in SCGB1A1 cells, decreases parenchymal SCGB1A1 cells along with fibrosis in mice. The administration of a PDI inhibitor LOC14 reversed the BLM-induced parenchymal SCGB1A1 cells and fibrosis in mice. Evaluation of PDIA3 partners revealed that SPP1 is a major interactor in fibrosis. Blocking SPP1 attenuated the development of lung fibrosis in mice. CONCLUSIONS Our study reveals a new relationship with distally localised club cells, PDIA3 and SPP1 in lung fibrosis and inhibition of PDIA3 or SPP1 attenuates lung fibrosis.
Collapse
Affiliation(s)
- Amit Kumar
- Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Evan Elko
- Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Sierra R Bruno
- Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Zoe F Mark
- Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Nicolas Chamberlain
- Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | | | - Ravishankar Chandrasekaran
- Department of Pulmonary, Critical Care Medicine, Larner College of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Joseph Walzer
- Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Mona Ruban
- Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Clarissa Gold
- Department of Biology & Vermont Biomedical Research Network Proteomics Facility, University of Vermont, Burlington, Vermont, USA
| | - Ying Wai Lam
- Department of Biology & Vermont Biomedical Research Network Proteomics Facility, University of Vermont, Burlington, Vermont, USA
| | - Sudhir Ghandikota
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Computer Science, University of Cincinnati College of Engineering and Applied Science, Cincinnati, Ohio, USA
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Computer Science, University of Cincinnati College of Engineering and Applied Science, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jose L Gomez
- Internal Medicine-Pulmonary, Critical Care and Sleep Section, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Vikas Anathy
- Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
23
|
Zhang M, Guo FR. BSDE: barycenter single-cell differential expression for case-control studies. Bioinformatics 2022; 38:2765-2772. [PMID: 35561165 PMCID: PMC9113363 DOI: 10.1093/bioinformatics/btac171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Single-cell sequencing brings about a revolutionarily high resolution for finding differentially expressed genes (DEGs) by disentangling highly heterogeneous cell tissues. Yet, such analysis is so far mostly focused on comparing between different cell types from the same individual. As single-cell sequencing becomes cheaper and easier to use, an increasing number of datasets from case-control studies are becoming available, which call for new methods for identifying differential expressions between case and control individuals. RESULTS To bridge this gap, we propose barycenter single-cell differential expression (BSDE), a nonparametric method for finding DEGs for case-control studies. Through the use of optimal transportation for aggregating distributions and computing their distances, our method overcomes the restrictive parametric assumptions imposed by standard mixed-effect-modeling approaches. Through simulations, we show that BSDE can accurately detect a variety of differential expressions while maintaining the type-I error at a prescribed level. Further, 1345 and 1568 cell type-specific DEGs are identified by BSDE from datasets on pulmonary fibrosis and multiple sclerosis, among which the top findings are supported by previous results from the literature. AVAILABILITY AND IMPLEMENTATION R package BSDE is freely available from doi.org/10.5281/zenodo.6332254. For real data analysis with the R package, see doi.org/10.5281/zenodo.6332566. These can also be accessed thorough GitHub at github.com/mqzhanglab/BSDE and github.com/mqzhanglab/BSDE_pipeline. The two single-cell sequencing datasets can be download with UCSC cell browser from cells.ucsc.edu/?ds=ms and cells.ucsc.edu/?ds=lung-pf-control. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mengqi Zhang
- Department of Surgery, Perelman Medical School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
24
|
Korfei M, Mahavadi P, Guenther A. Targeting Histone Deacetylases in Idiopathic Pulmonary Fibrosis: A Future Therapeutic Option. Cells 2022; 11:1626. [PMID: 35626663 PMCID: PMC9139813 DOI: 10.3390/cells11101626] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with limited therapeutic options, and there is a huge unmet need for new therapies. A growing body of evidence suggests that the histone deacetylase (HDAC) family of transcriptional corepressors has emerged as crucial mediators of IPF pathogenesis. HDACs deacetylate histones and result in chromatin condensation and epigenetic repression of gene transcription. HDACs also catalyse the deacetylation of many non-histone proteins, including transcription factors, thus also leading to changes in the transcriptome and cellular signalling. Increased HDAC expression is associated with cell proliferation, cell growth and anti-apoptosis and is, thus, a salient feature of many cancers. In IPF, induction and abnormal upregulation of Class I and Class II HDAC enzymes in myofibroblast foci, as well as aberrant bronchiolar epithelium, is an eminent observation, whereas type-II alveolar epithelial cells (AECII) of IPF lungs indicate a significant depletion of many HDACs. We thus suggest that the significant imbalance of HDAC activity in IPF lungs, with a "cancer-like" increase in fibroblastic and bronchial cells versus a lack in AECII, promotes and perpetuates fibrosis. This review focuses on the mechanisms by which Class I and Class II HDACs mediate fibrogenesis and on the mechanisms by which various HDAC inhibitors reverse the deregulated epigenetic responses in IPF, supporting HDAC inhibition as promising IPF therapy.
Collapse
Affiliation(s)
- Martina Korfei
- Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, D-35392 Giessen, Germany; (P.M.); (A.G.)
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), D-35392 Giessen, Germany
| | - Poornima Mahavadi
- Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, D-35392 Giessen, Germany; (P.M.); (A.G.)
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), D-35392 Giessen, Germany
| | - Andreas Guenther
- Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, D-35392 Giessen, Germany; (P.M.); (A.G.)
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), D-35392 Giessen, Germany
- Lung Clinic, Evangelisches Krankenhaus Mittelhessen, D-35398 Giessen, Germany
- European IPF Registry and Biobank, D-35392 Giessen, Germany
| |
Collapse
|
25
|
Chakraborty A, Mastalerz M, Ansari M, Schiller HB, Staab-Weijnitz CA. Emerging Roles of Airway Epithelial Cells in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11061050. [PMID: 35326501 PMCID: PMC8947093 DOI: 10.3390/cells11061050] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease with incompletely understood aetiology and limited treatment options. Traditionally, IPF was believed to be mainly caused by repetitive injuries to the alveolar epithelium. Several recent lines of evidence, however, suggest that IPF equally involves an aberrant airway epithelial response, which contributes significantly to disease development and progression. In this review, based on recent clinical, high-resolution imaging, genetic, and single-cell RNA sequencing data, we summarize alterations in airway structure, function, and cell type composition in IPF. We furthermore give a comprehensive overview on the genetic and mechanistic evidence pointing towards an essential role of airway epithelial cells in IPF pathogenesis and describe potentially implicated aberrant epithelial signalling pathways and regulation mechanisms in this context. The collected evidence argues for the investigation of possible therapeutic avenues targeting these processes, which thus represent important future directions of research.
Collapse
|
26
|
Wijk SC, Prabhala P, Löfdahl A, Nybom A, Lang S, Brunnström H, Bjermer L, Westergren-Thorsson G, Magnusson M. Ciliated (FOXJ1+) Cells Display Reduced Ferritin Light Chain in the Airways of Idiopathic Pulmonary Fibrosis Patients. Cells 2022; 11:cells11061031. [PMID: 35326483 PMCID: PMC8947470 DOI: 10.3390/cells11061031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Cell-based therapies hold great promise in re-establishing organ function for many diseases, including untreatable lung diseases such as idiopathic pulmonary fibrosis (IPF). However, many hurdles still remain, in part due to our lack of knowledge about the disease-driving mechanisms that may affect the cellular niche and thereby possibly hinder the function of any transplanted cells by imposing the disease phenotype onto the newly generated progeny. Recent findings have demonstrated increased ciliation of lung cells from IPF patients, but how this affects ciliated cell function and the airway milieu is not well-known. Here, we performed single-cell RNA sequencing on primary ciliated (FOJ1+) cells isolated from IPF patients and from healthy control donors. The sequencing identified multiple biological processes, such as cilium morphogenesis and cell signaling, that were significantly changed between IPF and healthy ciliated cells. Ferritin light chain (FTL) was downregulated in IPF, which suggests that iron metabolism may be affected in the IPF ciliated cells. The RNA expression was confirmed at the protein level with histological localization in lung tissue, prompting future functional assays to reveal the potential role of FTL. Taken together, our data demonstrate the importance of careful analyses in pure cell populations to better understand the IPF disease mechanism.
Collapse
Affiliation(s)
- Sofia C. Wijk
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, 223 62 Lund, Sweden; (S.C.W.); (P.P.)
| | - Pavan Prabhala
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, 223 62 Lund, Sweden; (S.C.W.); (P.P.)
| | - Anna Löfdahl
- Division of Lung Biology, Department of Experimental Medical Science, Lund University, 223 62 Lund, Sweden; (A.L.); (A.N.); (G.W.-T.)
| | - Annika Nybom
- Division of Lung Biology, Department of Experimental Medical Science, Lund University, 223 62 Lund, Sweden; (A.L.); (A.N.); (G.W.-T.)
| | - Stefan Lang
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, 223 62 Lund, Sweden;
| | - Hans Brunnström
- Department of Clinical Sciences, Lund University, 223 62 Lund, Sweden;
| | - Leif Bjermer
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences, Lund University, 223 62 Lund, Sweden;
| | - Gunilla Westergren-Thorsson
- Division of Lung Biology, Department of Experimental Medical Science, Lund University, 223 62 Lund, Sweden; (A.L.); (A.N.); (G.W.-T.)
| | - Mattias Magnusson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, 223 62 Lund, Sweden; (S.C.W.); (P.P.)
- Correspondence: ; Tel.: +46-46-222-06-08
| |
Collapse
|
27
|
Ulrich BJ, Kharwadkar R, Chu M, Pajulas A, Muralidharan C, Koh B, Fu Y, Gao H, Hayes TA, Zhou HM, Goplen NP, Nelson AS, Liu Y, Linnemann AK, Turner MJ, Licona-Limón P, Flavell RA, Sun J, Kaplan MH. Allergic airway recall responses require IL-9 from resident memory CD4 + T cells. Sci Immunol 2022; 7:eabg9296. [PMID: 35302861 PMCID: PMC9295820 DOI: 10.1126/sciimmunol.abg9296] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Asthma is a chronic inflammatory lung disease with intermittent flares predominately mediated through memory T cells. Yet, the identity of long-term memory cells that mediate allergic recall responses is not well defined. In this report, using a mouse model of chronic allergen exposure followed by an allergen-free rest period, we characterized a subpopulation of CD4+ T cells that secreted IL-9 as an obligate effector cytokine. IL-9-secreting cells had a resident memory T cell phenotype, and blocking IL-9 during a recall challenge or deleting IL-9 from T cells significantly diminished airway inflammation and airway hyperreactivity. T cells secreted IL-9 in an allergen recall-specific manner, and secretion was amplified by IL-33. Using scRNA-seq and scATAC-seq, we defined the cellular identity of a distinct population of T cells with a proallergic cytokine pattern. Thus, in a recall model of allergic airway inflammation, IL-9 secretion from a multicytokine-producing CD4+ T cell population was required for an allergen recall response.
Collapse
Affiliation(s)
- Benjamin J Ulrich
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rakshin Kharwadkar
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michelle Chu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Charanya Muralidharan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Byunghee Koh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yongyao Fu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tristan A Hayes
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hong-Ming Zhou
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Nick P Goplen
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Rochester, MN 55902, USA
| | - Andrew S Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amelia K Linnemann
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Matthew J Turner
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Paula Licona-Limón
- Departamento de Biologia Celular y del Desarrollo, Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México, Mexico City 04020, Mexico
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06510, USA
| | - Jie Sun
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Rochester, MN 55902, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
28
|
Ekanger CT, Zhou F, Bohan D, Lotsberg ML, Ramnefjell M, Hoareau L, Røsland GV, Lu N, Aanerud M, Gärtner F, Salminen PR, Bentsen M, Halvorsen T, Ræder H, Akslen LA, Langeland N, Cox R, Maury W, Stuhr LEB, Lorens JB, Engelsen AST. Human Organotypic Airway and Lung Organoid Cells of Bronchiolar and Alveolar Differentiation Are Permissive to Infection by Influenza and SARS-CoV-2 Respiratory Virus. Front Cell Infect Microbiol 2022; 12:841447. [PMID: 35360113 PMCID: PMC8964279 DOI: 10.3389/fcimb.2022.841447] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has led to the initiation of unprecedented research efforts to understand the pathogenesis mediated by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). More knowledge is needed regarding the cell type-specific cytopathology and its impact on cellular tropism. Furthermore, the impact of novel SARS-CoV-2 mutations on cellular tropism, alternative routes of entry, the impact of co-infections, and virus replication kinetics along the respiratory tract remains to be explored in improved models. Most applied virology models are not well suited to address the remaining questions, as they do not recapitulate the histoarchitecture and cellular composition of human respiratory tissues. The overall aim of this work was to establish from single biopsy specimens, a human adult stem cell-derived organoid model representing the upper respiratory airways and lungs and explore the applicability of this model to study respiratory virus infection. First, we characterized the organoid model with respect to growth pattern and histoarchitecture, cellular composition, and functional characteristics. Next, in situ expression of viral entry receptors, including influenza virus-relevant sialic acids and SARS-CoV-2 entry receptor ACE2 and TMPRSS2, were confirmed in organoids of bronchiolar and alveolar differentiation. We further showed successful infection by pseudotype influenza A H7N1 and H5N1 virus, and the ability of the model to support viral replication of influenza A H7N1 virus. Finally, successful infection and replication of a clinical isolate of SARS-CoV-2 were confirmed in the organoids by TCID50 assay and immunostaining to detect intracellular SARS-CoV-2 specific nucleocapsid and dsRNA. The prominent syncytia formation in organoid tissues following SARS-CoV-2 infection mimics the findings from infected human tissues in situ. We conclude that the human organotypic model described here may be particularly useful for virology studies to evaluate regional differences in the host response to infection. The model contains the various cell types along the respiratory tract, expresses respiratory virus entry factors, and supports successful infection and replication of influenza virus and SARS-CoV-2. Thus, the model may serve as a relevant and reliable tool in virology and aid in pandemic preparedness, and efficient evaluation of antiviral strategies.
Collapse
Affiliation(s)
- Camilla Tvedt Ekanger
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers, University of Bergen (CCBIO), Department of Clinical Medicine, Bergen, Norway
- The Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Fan Zhou
- The Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Dana Bohan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Maria Lie Lotsberg
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers, University of Bergen (CCBIO), Department of Clinical Medicine, Bergen, Norway
| | - Maria Ramnefjell
- Centre for Cancer Biomarkers, University of Bergen (CCBIO), Department of Clinical Medicine, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Laurence Hoareau
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Gro Vatne Røsland
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers, University of Bergen (CCBIO), Department of Clinical Medicine, Bergen, Norway
| | - Ning Lu
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers, University of Bergen (CCBIO), Department of Clinical Medicine, Bergen, Norway
| | - Marianne Aanerud
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Fabian Gärtner
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Pirjo Riitta Salminen
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Section of Cardiothoracic Surgery, Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Mariann Bentsen
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Thomas Halvorsen
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Helge Ræder
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Lars A. Akslen
- Centre for Cancer Biomarkers, University of Bergen (CCBIO), Department of Clinical Medicine, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Nina Langeland
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Rebecca Cox
- The Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | | | - James B. Lorens
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers, University of Bergen (CCBIO), Department of Clinical Medicine, Bergen, Norway
| | - Agnete S. T. Engelsen
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers, University of Bergen (CCBIO), Department of Clinical Medicine, Bergen, Norway
- *Correspondence: Agnete S. T. Engelsen,
| |
Collapse
|
29
|
Using intracellular SCGB1A1-sorted, formalin-fixed club cells for successful transcriptomic analysis. Biochem Biophys Res Commun 2022; 604:151-157. [PMID: 35305419 DOI: 10.1016/j.bbrc.2022.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/20/2022]
Abstract
As opposed to surface marker staining, certain cell types can only be recognized by intracellular markers. Intracellular staining for use in cell sorting remains challenging. Fixation and permeabilization steps for intracellular staining and the presence of RNases notably affect preservation of high-quality mRNA. We report the work required for the optimization of a successful protocol for microarray analysis of intracellular target-sorted, formalin-fixed human bronchial club cells. Cells obtained from differentiated air-liquid interface cultures were stained with the most characteristic intracellular markers for club cell (SCGB1A1+) sorting. A benchmarked intracellular staining protocol was carried out before flow cytometry. The primary outcome was the extraction of RNA sufficient quality for microarray analysis as assessed by Bioanalyzer System. Fixation with 4% paraformaldehyde coupled with 0.1% Triton/0.1% saponin permeabilization obtained optimal results for SCGB1A1 staining. Addition of RNase inhibitors throughout the protocol and within the appropriate RNA extraction kit (Formalin-Fixed-Paraffin-Embedded) dramatically improved RNA quality, resulting in samples eligible for microarray analysis. The protocol resulted in successful cell sorting according to specific club cell intracellular marker without using cell surface marker. The protocol also preserved RNA of sufficient quality for subsequent microarray transcriptomic analysis, and we were able to generate transcriptomic signature of club cells.
Collapse
|
30
|
Molecular pathways and role of epigenetics in the idiopathic pulmonary fibrosis. Life Sci 2022; 291:120283. [PMID: 34998839 DOI: 10.1016/j.lfs.2021.120283] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with unknown etiological factors that can progress to other dangerous diseases like lung cancer. Environmental and genetic predisposition are the two major etiological or risk factors involved in the pathology of the IPF. Among the environmental risk factors, smoking is one of the major causes for the development of IPF. Epigenetic pathways like nucleosomes remodeling, DNA methylation, histone modifications and miRNA mediated genes play a crucial role in development of IPF. Mutations in the genes make the epigenetic factors as important drug targets in IPF. Transcriptional changes due to environmental factors are also involved in the progression of IPF. The mutations in human telomerase reverse transcriptase (hTERT) have shown decreased life expectancy in IPF patients. The TERT-gene is highly expressed in chronic smokers and makes the role of epigenetics evident. Drug like nintedanib acts through vascular endothelial growth factor receptors (VEGFR), while drug pirfenidone acts through transforming growth factor (TGF), which is useful in IPF. Gefitinib, a tyrosine kinase inhibitor of EGFR, is useful as an anti-fibrosis agent in preclinical models. Newer drugs such as Celgene-CC90001 and FibroGen-FG-3019 are currently under investigations acts through the modulating epigenetic mechanisms. Thus, the study on epigenetics opens a wide window for the discovery of newer drugs. This study provides an elementary analysis of multiple regulators of epigenetics and their roles associated with the pathology of IPF. Further, this review also includes epigenetic drugs under development in preclinical and clinical stages.
Collapse
|
31
|
Ikezoe K, Hackett TL, Peterson S, Prins D, Hague CJ, Murphy D, LeDoux S, Chu F, Xu F, Cooper JD, Tanabe N, Ryerson CJ, Paré PD, Coxson HO, Colby TV, Hogg JC, Vasilescu DM. Small Airway Reduction and Fibrosis is an Early Pathologic Feature of Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2021; 204:1048-1059. [PMID: 34343057 DOI: 10.1164/rccm.202103-0585oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE To improve disease outcomes in idiopathic pulmonary fibrosis (IPF) it is essential to understand its early pathophysiology so that it can be targeted therapeutically. OBJECTIVES Perform three-dimensional (3D) assessment of the IPF lung micro-structure using stereology and multi-resolution computed tomography (CT) imaging. METHODS Explanted lungs from IPF patients (n=8) and donor controls (n=8) were inflated with air and frozen. CT scans were used to assess large airways. Unbiased, systematic uniform random (SUR) samples (n=8/lung) were scanned with microCT for stereological assessment of small airways (number, airway wall and lumen area) and parenchymal fibrosis (volume fraction of tissue, alveolar surface area, and septal wall thickness). RESULTS The total number of airways on clinical CT was greater in IPF lungs than control lungs (p<0.01), due to an increase in the wall (p<0.05) and lumen area (p<0.05) resulting in more visible airways with a lumen larger than 2 mm. In IPF tissue samples without microscopic fibrosis, assessed by the volume fraction of tissue using microCT, there was a reduction in the number of the terminal (p<0.01) and transitional (p<0.001) bronchioles, and an increase in terminal bronchiole wall area (p<0.001) compared to control lungs. In IPF tissue samples with microscopic parenchymal fibrosis, terminal bronchioles had increased airway wall thickness (p<0.05), and dilated airway lumens (p<0.001) leading to honeycomb cyst formations. CONCLUSION This study has important implications for the current thinking on how the lung tissue is remodeled in IPF, and highlights small airways as a potential target to modify IPF outcomes.
Collapse
Affiliation(s)
- Kohei Ikezoe
- The University of British Columbia Centre for Heart Lung Innovation, 539747, Vancouver, British Columbia, Canada
| | - Tillie-Louise Hackett
- The University of British Columbia Centre for Heart Lung Innovation, 539747, Vancouver, British Columbia, Canada
| | | | - Dante Prins
- The University of British Columbia Centre for Heart Lung Innovation, 539747, Vancouver, British Columbia, Canada
| | - Cameron J Hague
- The University of British Columbia Department of Radiology, 478400, Vancouver, British Columbia, Canada
| | - Darra Murphy
- The University of British Columbia Department of Radiology, 478400, Vancouver, British Columbia, Canada
| | - Stacey LeDoux
- The University of British Columbia Centre for Heart Lung Innovation, 539747, Vancouver, British Columbia, Canada
| | - Fanny Chu
- The University of British Columbia Centre for Heart Lung Innovation, 539747, Vancouver, British Columbia, Canada
| | - Feng Xu
- The University of British Columbia Centre for Heart Lung Innovation, 539747, Pathology and Lab Medicine, Vancouver, British Columbia, Canada
| | - Joel D Cooper
- University of Pennsylvania, 6572, Thoracic surgery, Philadelphia, Pennsylvania, United States
| | - Naoya Tanabe
- Kyoto University Graduate School of Medicine Department of Respiratory Medicine, 215651, Kyoto, Japan
| | - Christopher J Ryerson
- The University of British Columbia Centre for Heart Lung Innovation, 539747, Medicine, Vancouver, British Columbia, Canada
| | - Peter D Paré
- The University of British Columbia Centre for Heart Lung Innovation, 539747, Vancouver, British Columbia, Canada
| | - Harvey O Coxson
- The University of British Columbia Centre for Heart Lung Innovation, 539747, Vancouver, British Columbia, Canada
| | - Thomas V Colby
- Mayo Clinic Department of Laboratory Medicine and Pathology, 195112, Rochester, Minnesota, United States
| | - James C Hogg
- The University of British Columbia Centre for Heart Lung Innovation, 539747, Vancouver, British Columbia, Canada
| | - Dragoş M Vasilescu
- The University of British Columbia Centre for Heart Lung Innovation, 539747, Vancouver, British Columbia, Canada;
| |
Collapse
|
32
|
Cigarette Smoke Specifically Affects Small Airway Epithelial Cell Populations and Triggers the Expansion of Inflammatory and Squamous Differentiation Associated Basal Cells. Int J Mol Sci 2021; 22:ijms22147646. [PMID: 34299265 PMCID: PMC8305830 DOI: 10.3390/ijms22147646] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022] Open
Abstract
Smoking is a major risk factor for chronic obstructive pulmonary disease (COPD) and causes remodeling of the small airways. However, the exact smoke-induced effects on the different types of small airway epithelial cells (SAECs) are poorly understood. Here, using air–liquid interface (ALI) cultures, single-cell RNA-sequencing reveals previously unrecognized transcriptional heterogeneity within the small airway epithelium and cell type-specific effects upon acute and chronic cigarette smoke exposure. Smoke triggers detoxification and inflammatory responses and aberrantly activates and alters basal cell differentiation. This results in an increase of inflammatory basal-to-secretory cell intermediates and, particularly after chronic smoke exposure, a massive expansion of a rare inflammatory and squamous metaplasia associated KRT6A+ basal cell state and an altered secretory cell landscape. ALI cultures originating from healthy non-smokers and COPD smokers show similar responses to cigarette smoke exposure, although an increased pro-inflammatory profile is conserved in the latter. Taken together, the in vitro models provide high-resolution insights into the smoke-induced remodeling of the small airways resembling the pathological processes in COPD airways. The data may also help to better understand other lung diseases including COVID-19, as the data reflect the smoke-dependent variable induction of SARS-CoV-2 entry factors across SAEC populations.
Collapse
|
33
|
Cellular and functional heterogeneity of the airway epithelium. Mucosal Immunol 2021; 14:978-990. [PMID: 33608655 PMCID: PMC7893625 DOI: 10.1038/s41385-020-00370-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/15/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
The airway epithelium protects us from environmental insults, which we encounter with every breath. Not only does it passively filter large particles, it also senses potential danger and alerts other cells, including immune and nervous cells. Together, these tissues orchestrate the most appropriate response, balancing the need to eliminate the danger with the risk of damage to the host. Each cell subset within the airway epithelium plays its part, and when impaired, may contribute to the development of respiratory disease. Here we highlight recent advances regarding the cellular and functional heterogeneity along the airway epithelium and discuss how we can use this knowledge to design more effective, targeted therapeutics.
Collapse
|