1
|
Tian Y, Zong Y, Pang Y, Zheng Z, Ma Y, Zhang C, Gao J. Platelets and diseases: signal transduction and advances in targeted therapy. Signal Transduct Target Ther 2025; 10:159. [PMID: 40374650 DOI: 10.1038/s41392-025-02198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/18/2024] [Accepted: 02/24/2025] [Indexed: 05/17/2025] Open
Abstract
Platelets are essential anucleate blood cells that play pivotal roles in hemostasis, tissue repair, and immune modulation. Originating from megakaryocytes in the bone marrow, platelets are small in size but possess a highly specialized structure that enables them to execute a wide range of physiological functions. The platelet cytoplasm is enriched with functional proteins, organelles, and granules that facilitate their activation and participation in tissue repair processes. Platelet membranes are densely populated with a variety of receptors, which, upon activation, initiate complex intracellular signaling cascades. These signaling pathways govern platelet activation, aggregation, and the release of bioactive molecules, including growth factors, cytokines, and chemokines. Through these mechanisms, platelets are integral to critical physiological processes such as thrombosis, wound healing, and immune surveillance. However, dysregulated platelet function can contribute to pathological conditions, including cancer metastasis, atherosclerosis, and chronic inflammation. Due to their central involvement in both normal physiology and disease, platelets have become prominent targets for therapeutic intervention. Current treatments primarily aim to modulate platelet signaling to prevent thrombosis in cardiovascular diseases or to reduce excessive platelet aggregation in other pathological conditions. Antiplatelet therapies are widely employed in clinical practice to mitigate clot formation in high-risk patients. As platelet biology continues to evolve, emerging therapeutic strategies focus on refining platelet modulation to enhance clinical outcomes and prevent complications associated with platelet dysfunction. This review explores the structure, signaling pathways, biological functions, and therapeutic potential of platelets, highlighting their roles in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Yuchen Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Iqbal M, McLennan AL, Mukhamedshin A, Dinh MTP, Liu Q, Junco JJ, Mohan A, Srivaths PR, Rabin KR, Fogarty TP, Gifford SC, Shevkoplyas SS, Lam FW. Ultra-low extracorporeal volume microfluidic leukapheresis is safe and effective in a rat model. Nat Commun 2025; 16:1930. [PMID: 39994179 PMCID: PMC11850925 DOI: 10.1038/s41467-025-57003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Leukapheresis is a potentially life-saving therapy for children with symptomatic hyperleukocytosis. However, the standard centrifugation-based approach exposes pediatric patients to significant complications due to its large extracorporeal volume, high flow rates, and considerable platelet loss. Here, we tested whether performing cell separation with a high-throughput microfluidic technology could alleviate these limitations. In vitro, our microfluidic devices removed ~85% of large leukocytes and ~90% of spiked leukemic blasts from undiluted human whole blood, while minimizing platelet losses. Multiplexed devices connected in parallel allowed for faster, clinically relevant flow rates in vitro with no difference in leukocyte collection efficiency. When connected to Sprague-Dawley rats, the devices removed large leukocytes with ~80% collection efficiency, reducing the leukocyte count in recirculating blood by nearly half after a 3-hour procedure. Evaluation of plasma biomarkers and end-organ histology revealed no adverse effects compared to sham control. Overall, our study suggests that microfluidics-based leukapheresis is safe and effective at selectively removing leukocytes from circulation, with separation performance sufficiently high to ultimately enable low extracorporeal volume leukapheresis in children.
Collapse
Affiliation(s)
- Mubasher Iqbal
- Department of Biomedical Engineering; University of Houston, Houston, TX, USA
| | - Alexandra L McLennan
- Department of Pediatrics; Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases; Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Anton Mukhamedshin
- Department of Biomedical Engineering; University of Houston, Houston, TX, USA
| | - Mai T P Dinh
- Department of Biomedical Engineering; University of Houston, Houston, TX, USA
| | - Qisheng Liu
- Center for Translational Research on Inflammatory Diseases; Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
- Department of Medicine; Baylor College of Medicine, Houston, TX, USA
| | - Jacob J Junco
- Department of Pediatrics; Baylor College of Medicine, Houston, TX, USA
| | - Arvind Mohan
- Department of Pediatrics; Baylor College of Medicine, Houston, TX, USA
| | | | - Karen R Rabin
- Department of Pediatrics; Baylor College of Medicine, Houston, TX, USA
| | - Thomas P Fogarty
- Department of Pediatrics; Baylor College of Medicine, Houston, TX, USA
| | | | | | - Fong W Lam
- Department of Pediatrics; Baylor College of Medicine, Houston, TX, USA.
- Center for Translational Research on Inflammatory Diseases; Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.
| |
Collapse
|
3
|
Nowaczewska-Kuchta A, Ksiazek-Winiarek D, Szpakowski P, Glabinski A. The Role of Neutrophils in Multiple Sclerosis and Ischemic Stroke. Brain Sci 2024; 14:423. [PMID: 38790402 PMCID: PMC11118671 DOI: 10.3390/brainsci14050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Inflammation plays an important role in numerous central nervous system (CNS) disorders. Its role is ambiguous-it can induce detrimental effects, as well as repair and recovery. In response to injury or infection, resident CNS cells secrete numerous factors that alter blood-brain barrier (BBB) function and recruit immune cells into the brain, like neutrophils. Their role in the pathophysiology of CNS diseases, like multiple sclerosis (MS) and stroke, is highly recognized. Neutrophils alter BBB permeability and attract other immune cells into the CNS. Previously, neutrophils were considered a homogenous population. Nowadays, it is known that various subtypes of these cells exist, which reveal proinflammatory or immunosuppressive functions. The primary goal of this review was to discuss the current knowledge regarding the important role of neutrophils in MS and stroke development and progression. As the pathogenesis of these two disorders is completely different, it gives the opportunity to get insight into diverse mechanisms of neutrophil involvement in brain pathology. Our understanding of the role of neutrophils in CNS diseases is still evolving as new aspects of their activity are being unraveled. Neutrophil plasticity adds another level to their functional complexity and their importance for CNS pathophysiology.
Collapse
Affiliation(s)
| | | | | | - Andrzej Glabinski
- Department of Neurology and Stroke, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland; (A.N.-K.); (D.K.-W.); (P.S.)
| |
Collapse
|
4
|
Lam FW, Brown CA, Ronca SE. Recombinant Rod Domain of Vimentin Reduces SARS-CoV-2 Viral Replication by Blocking Spike Protein-ACE2 Interactions. Int J Mol Sci 2024; 25:2477. [PMID: 38473724 PMCID: PMC10931652 DOI: 10.3390/ijms25052477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 03/14/2024] Open
Abstract
Although the SARS-CoV-2 vaccination is the primary preventive intervention, there are still few antiviral therapies available, with current drugs decreasing viral replication once the virus is intracellular. Adding novel drugs to target additional points in the viral life cycle is paramount in preventing future pandemics. The purpose of this study was to create and test a novel protein to decrease SARS-CoV-2 replication. We created the recombinant rod domain of vimentin (rhRod) in E. coli and used biolayer interferometry to measure its affinity to the SARS-CoV-2 S1S2 spike protein and the ability to block the SARS-CoV-2-ACE2 interaction. We performed plaque assays to measure rhRod's effect on SARS-CoV-2 replication in Vero E6 cells. Finally, we measured lung inflammation in SARS-CoV-2-exposed K18-hACE transgenic mice given intranasal and intraperitoneal rhRod. We found that rhRod has a high affinity for the S1S2 protein with a strong ability to block S1S2-ACE2 interactions. The daily addition of rhRod decreased viral replication in Vero E6 cells starting at 48 h at concentrations >1 µM. Finally, SARS-CoV-2-infected mice receiving rhRod had decreased lung inflammation compared to mock-treated animals. Based on our data, rhRod decreases SARS-CoV-2 replication in vitro and lung inflammation in vivo. Future studies will need to evaluate the protective effects of rhRod against additional viral variants and identify the optimal dosing scheme that both prevents viral replication and host lung injury.
Collapse
Affiliation(s)
- Fong Wilson Lam
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA (S.E.R.)
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
| | - Cameron August Brown
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA (S.E.R.)
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shannon Elizabeth Ronca
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA (S.E.R.)
- William T. Shearer Center for Human Immunobiology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| |
Collapse
|
5
|
Zhou W, Zhang P, Li H. Identifying Oxidative Stress-Related Genes (OSRGs) as Potential Target for Treating Periodontitis Based on Bioinformatics Analysis. Comb Chem High Throughput Screen 2024; 27:1191-1204. [PMID: 37605414 DOI: 10.2174/1386207326666230821102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Periodontitis (PD) is a multifactorial inflammatory disease that is closely associated with periodontopathic bacteria. Numerous studies have demonstrated oxidative stress (OS) contributes to inflammation and is a prime factor in the development of PD. It is imperative to explore the function of newly discovered hub genes associated with OS in the advancement of PD, thereby identifying potential targets for therapeutic intervention. OBJECTIVES The goal of the current study was to identify the oxidative-stress-related genes (OSRGs) associated with periodontitis (PD) development using an integrated bioinformatics method. METHODS DEGs from GEO gene-expression data were identified using the "limma" package. We obtained OSRGs from GeneCards and utilized a Venn diagram to uncover differentially expressed OSRGs (DEOSRGs). After receiving the DEOSRGs, we employed Gene Ontology (GO), Kyoto Encyclopaedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) analytical tools to examine their possible functions and pathways in PD. Receiver operating characteristic (ROC) curves screened for hub genes of PD. RT-qPCR and western blot analysis were used to detect DEOSRG expression in mouse ligature-induced periodontitis gingival tissues. RESULTS The investigation identified 273 OSRGs. Based on PPI analysis, we recognized 20 OSRGs as hub genes. GO and KEGG enrichment analysis indicated that these hub genes were predominantly enriched in leukocyte migration, lymphocyte proliferation, and humoral immune response, and associated with leukocyte trans-endothelial migration, cytokine-cytokine receptor interaction, and NF-κB signaling pathway. Following ROC analysis, VCAM1, ITGAM, FCGR3A, IL1A, PECAM1, and VCAM1were identified as PD prognostic gene. RT-qPCR and western blot analyses confirmed that the expression ITGAM, FCGR3A, and PECAM1 were significantly elevated in the gingival tissues obtained from mice. CONCLUSION This investigation revealed that ITGAM, FCGR3A, and PECAM1 may have a crucial function in the advancement of PD.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, District, Shanghai, 200011, China
| | - Pengfei Zhang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, District, Shanghai, 200011, China
| | - Hao Li
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, District, Shanghai, 200011, China
| |
Collapse
|
6
|
van Loon K, van Breest Smallenburg ME, Huijbers EJM, Griffioen AW, van Beijnum JR. Extracellular vimentin as a versatile immune suppressive protein in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188985. [PMID: 37717859 DOI: 10.1016/j.bbcan.2023.188985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
The interest in finding new targets in the tumor microenvironment for anti-cancer therapy has increased rapidly over the years. More specifically, the tumor-associated blood vessels are a promising target. We recently found that the intermediate filament protein vimentin is externalized by endothelial cells of the tumor vasculature. Extracellular vimentin was shown to sustain angiogenesis by mimicking VEGF and supporting cell migration, as well as endothelial cell anergy, the unresponsiveness of the endothelium to proinflammatory cytokines. The latter hampers immune cell infiltration and subsequently provides escape from tumor immunity. Other studies showed that extracellular vimentin plays a role in sustained systemic and local inflammation. Here we will review the reported roles of extracellular vimentin with a particular emphasis on its involvement in the interactions between immune cells and the endothelium in the tumor microenvironment. To this end, we discuss the different ways by which extracellular vimentin modulates the immune system. Moreover, we review how this protein can alter immune cell-vessel wall adhesion by altering the expression of adhesion proteins, attenuating immune cell infiltration into the tumor parenchyma. Finally, we discuss how vimentin-targeting therapy can reverse endothelial cell anergy and promote immune infiltration, supporting anti-tumor immunity.
Collapse
Affiliation(s)
- Karlijn van Loon
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mathilda E van Breest Smallenburg
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Elisabeth J M Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; CimCure BV, Amsterdam, the Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; CimCure BV, Amsterdam, the Netherlands
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; CimCure BV, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
A novel interaction between extracellular vimentin and fibrinogen in fibrin formation. Thromb Res 2023; 221:97-104. [PMID: 36495717 PMCID: PMC9726209 DOI: 10.1016/j.thromres.2022.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Thrombosis is frequently manifested in critically ill patients with systemic inflammation, including sepsis and COVID-19. The coagulopathy in systemic inflammation is often associated with increased levels of fibrinogen and D-dimer. Because elevated levels of vimentin have been detected in sepsis, we sought to investigate the relationship between vimentin and the increased fibrin formation potential observed in these patients. MATERIALS AND METHODS This hypothesis was examined by using recombinant human vimentin, anti-vimentin antibodies, plasma derived from healthy and critically ill patients, confocal microscopy, co-immunoprecipitation assays, and size exclusion chromatography. RESULTS The level of vimentin in plasma derived from critically ill subjects with systemic inflammation was on average two-fold higher than that of healthy volunteers. We determined that vimentin directly interacts with fibrinogen and enhances fibrin formation. Anti-vimentin antibody effectively blocked fibrin formation ex vivo and caused changes in the fibrin structure in plasma. Additionally, confocal imaging demonstrated plasma vimentin enmeshed in the fibrin fibrils. Size exclusion chromatography column and co-immunoprecipitation assays demonstrated a direct interaction between extracellular vimentin and fibrinogen in plasma from critically ill patients but not in healthy plasma. CONCLUSIONS The results describe that extracellular vimentin engages fibrinogen in fibrin formation. In addition, the data suggest that elevated levels of an apparent aberrant extracellular vimentin potentiate fibrin clot formation in critically ill patients with systemic inflammation; consistent with the notion that plasma vimentin contributes to the pathogenesis of thrombosis.
Collapse
|
8
|
Zhong M, Huang J, Wu Z, Chan KG, Wang L, Li J, Lee LH, Law JWF. Potential Roles of Selectins in Periodontal Diseases and Associated Systemic Diseases: Could They Be Targets for Immunotherapy? Int J Mol Sci 2022; 23:14280. [PMID: 36430760 PMCID: PMC9698067 DOI: 10.3390/ijms232214280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Periodontal diseases are predisposing factors to the development of many systemic disorders, which is often initiated via leukocyte infiltration and vascular inflammation. These diseases could significantly affect human health and quality of life. Hence, it is vital to explore effective therapies to prevent disease progression. Periodontitis, which is characterized by gingival bleeding, disruption of the gingival capillary's integrity, and irreversible destruction of the periodontal supporting bone, appears to be caused by overexpression of selectins in periodontal tissues. Selectins (P-, L-, and E-selectins) are vital members of adhesion molecules regulating inflammatory and immune responses. They are mainly located in platelets, leukocytes, and endothelial cells. Furthermore, selectins are involved in the immunopathogenesis of vascular inflammatory diseases, such as cardiovascular disease, diabetes, cancers, and so on, by mediating leukocyte recruitment, platelet activation, and alteration of endothelial barrier permeability. Therefore, selectins could be new immunotherapeutic targets for periodontal disorders and their associated systemic diseases since they play a crucial role in immune regulation and endothelium dysfunction. However, the research on selectins and their association with periodontal and systemic diseases remains limited. This review aims to discuss the critical roles of selectins in periodontitis and associated systemic disorders and highlights the potential of selectins as therapeutic targets.
Collapse
Affiliation(s)
- Mei Zhong
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Jiangyong Huang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Zhe Wu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
| | - Lijing Wang
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiang Li
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
9
|
Courson JA, Langlois KW, Lam FW. Intravital Microscopy to Study Platelet-Leukocyte-Endothelial Interactions in the Mouse Liver. J Vis Exp 2022:10.3791/64239. [PMID: 36282718 PMCID: PMC9915146 DOI: 10.3791/64239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inflammation and thrombosis are complex processes that occur primarily in the microcirculation. Although standard histology may provide insight into the end pathway for both inflammation and thrombosis, it is not capable of showing the temporal changes that occur throughout the time course of these processes. Intravital microscopy (IVM) is the use of live-animal imaging to gain temporal insight into physiologic processes in vivo. This method is particularly powerful when assessing cellular and protein interactions within the circulation due to the rapid and sequential events that are often necessary for these interactions to occur. While IVM is an extremely powerful imaging methodology capable of viewing complex processes in vivo, there are a number of methodological factors that are important to consider when planning an IVM study. This paper outlines the process of conducting intravital imaging of the liver, identifying important considerations and potential pitfalls that may arise. Thus, this paper describes the use of IVM to study platelet-leukocyte-endothelial interactions in liver sinusoids to study the relative contributions of each in different models of acute liver injury.
Collapse
Affiliation(s)
- Justin A Courson
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center; Department of Medicine, Baylor College of Medicine
| | - Kimberly W Langlois
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center; Department of Medicine, Baylor College of Medicine
| | - Fong W Lam
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center; Department of Pediatrics, Baylor College of Medicine;
| |
Collapse
|
10
|
Regulation of Atherosclerosis by Toll-Like Receptor 4 Induced by Serum Amyloid 1: A Systematic In Vitro Study. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4887593. [PMID: 36158875 PMCID: PMC9499805 DOI: 10.1155/2022/4887593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
Abstract
The objective of this study was to investigate the effects of serum amyloid 1 (SAA1) on activation of endothelial cells, formation of foam cells, platelet aggregation, and monocyte/platelet adhesion to endothelial cells. The effect of SAA1 on the inflammatory activation of endothelial cells was investigated by detecting the expression of inflammatory factors and adhesion molecules. The role of SAA1 in formation of foam cells was verified by detecting lipid deposition and expression of molecules related to the formation of foam cells. After platelets were stimulated by SAA1, the aggregation rate was evaluated to determine the effect of SAA1 on platelet aggregation. Monocytes/platelets were cocultured with human umbilical vein endothelial cells (HUVECs) pretreated with or without SAA1 to determine whether SAA1 affected monocyte/platelet adhesion to endothelial cells. By inhibiting toll-like receptor 4 (TLR4) function, we further identified the role of TLR4 signaling in SAA1-mediated endothelial inflammatory activation, foam-cell formation, and monocyte/platelet adhesion to HUVECs. SAA1 significantly increased the expression of adhesion molecules and inflammatory factors in HUVECs. Moreover, SAA1 also promoted lipid deposition and the expression of inflammatory factors and low-density lipoprotein receptor-1 (LOX-1) in THP-1-derived macrophages. In addition, SAA1 induced platelet aggregation and enhanced monocyte/platelet adhesion to HUVECs. However, the TLR4 antagonist significantly inhibited SAA1-induced endothelial cell activation, foam-cell formation, and monocyte/platelet adhesion to HUVECs and downregulated the expression of myeloid differentiation factor 88 (MyD88), phosphor-inhibitor of nuclear factor κB kinase subunit α/β (P-IKKα/β), phospho-inhibitor of nuclear factor κB subunit α (P-IKBα), and phosphorylation of nuclear transcription factor-κB p65 (P-p65) in SAA1-induced HUVECs and THP-1 cells. Conclusively, it is speculated that SAA1 promotes atherosclerosis through enhancing endothelial cell activation, platelet aggregation, foam-cell formation, and monocyte/platelet adhesion to endothelial cells. These biological functions of SAA1 may depend on the activation of TLR4-related nuclear factor-kappa B (NF-κB) signaling pathway.
Collapse
|
11
|
Garcia C, Compagnon B, Poëtte M, Gratacap MP, Lapébie FX, Voisin S, Minville V, Payrastre B, Vardon-Bounes F, Ribes A. Platelet Versus Megakaryocyte: Who Is the Real Bandleader of Thromboinflammation in Sepsis? Cells 2022; 11:1507. [PMID: 35563812 PMCID: PMC9104300 DOI: 10.3390/cells11091507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Platelets are mainly known for their key role in hemostasis and thrombosis. However, studies over the last two decades have shown their strong implication in mechanisms associated with inflammation, thrombosis, and the immune system in various neoplastic, inflammatory, autoimmune, and infectious diseases. During sepsis, platelets amplify the recruitment and activation of innate immune cells at the site of infection and contribute to the elimination of pathogens. In certain conditions, these mechanisms can lead to thromboinflammation resulting in severe organ dysfunction. Here, we discuss the interactions of platelets with leukocytes, neutrophil extracellular traps (NETs), and endothelial cells during sepsis. The intrinsic properties of platelets that generate an inflammatory signal through the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome are discussed. As an example of immunothrombosis, the implication of platelets in vaccine-induced immune thrombotic thrombocytopenia is documented. Finally, we discuss the role of megakaryocytes (MKs) in thromboinflammation and their adaptive responses.
Collapse
Affiliation(s)
- Cédric Garcia
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (C.G.); (S.V.); (B.P.)
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm UMR1297 and Université Toulouse 3, 31024 Toulouse, France; (B.C.); (M.P.); (M.-P.G.); (F.V.-B.)
| | - Baptiste Compagnon
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm UMR1297 and Université Toulouse 3, 31024 Toulouse, France; (B.C.); (M.P.); (M.-P.G.); (F.V.-B.)
- Pôle Anesthésie-Réanimation, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France;
| | - Michaël Poëtte
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm UMR1297 and Université Toulouse 3, 31024 Toulouse, France; (B.C.); (M.P.); (M.-P.G.); (F.V.-B.)
- Pôle Anesthésie-Réanimation, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France;
| | - Marie-Pierre Gratacap
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm UMR1297 and Université Toulouse 3, 31024 Toulouse, France; (B.C.); (M.P.); (M.-P.G.); (F.V.-B.)
| | - François-Xavier Lapébie
- Service de Médecine Vasculaire, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France;
| | - Sophie Voisin
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (C.G.); (S.V.); (B.P.)
| | - Vincent Minville
- Pôle Anesthésie-Réanimation, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France;
| | - Bernard Payrastre
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (C.G.); (S.V.); (B.P.)
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm UMR1297 and Université Toulouse 3, 31024 Toulouse, France; (B.C.); (M.P.); (M.-P.G.); (F.V.-B.)
| | - Fanny Vardon-Bounes
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm UMR1297 and Université Toulouse 3, 31024 Toulouse, France; (B.C.); (M.P.); (M.-P.G.); (F.V.-B.)
- Pôle Anesthésie-Réanimation, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France;
| | - Agnès Ribes
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (C.G.); (S.V.); (B.P.)
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm UMR1297 and Université Toulouse 3, 31024 Toulouse, France; (B.C.); (M.P.); (M.-P.G.); (F.V.-B.)
| |
Collapse
|
12
|
Surolia R, Antony VB. Pathophysiological Role of Vimentin Intermediate Filaments in Lung Diseases. Front Cell Dev Biol 2022; 10:872759. [PMID: 35573702 PMCID: PMC9096236 DOI: 10.3389/fcell.2022.872759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Vimentin intermediate filaments, a type III intermediate filament, are among the most widely studied IFs and are found abundantly in mesenchymal cells. Vimentin intermediate filaments localize primarily in the cytoplasm but can also be found on the cell surface and extracellular space. The cytoplasmic vimentin is well-recognized for its role in providing mechanical strength and regulating cell migration, adhesion, and division. The post-translationally modified forms of Vimentin intermediate filaments have several implications in host-pathogen interactions, cancers, and non-malignant lung diseases. This review will analyze the role of vimentin beyond just the epithelial to mesenchymal transition (EMT) marker highlighting its role as a regulator of host-pathogen interactions and signaling pathways for the pathophysiology of various lung diseases. In addition, we will also examine the clinically relevant anti-vimentin compounds and antibodies that could potentially interfere with the pathogenic role of Vimentin intermediate filaments in lung disease.
Collapse
Affiliation(s)
| | - Veena B. Antony
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
13
|
Vimentin: Regulation and pathogenesis. Biochimie 2022; 197:96-112. [DOI: 10.1016/j.biochi.2022.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/11/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
|