1
|
Brassea-Pérez E, Vázquez-Medina JP, Hernández-Camacho CJ, Ramírez-Jirano LJ, Gaxiola-Robles R, Labrada-Martagón V, Zenteno-Savín T. Species-specific responses to di (2-ethylhexyl) phthalate reveal activation of defense signaling pathways in California sea lion but not in human skeletal muscle cells in primary culture. Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110106. [PMID: 39647646 DOI: 10.1016/j.cbpc.2024.110106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/12/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Higher antioxidant defenses in marine than terrestrial mammals allow them to cope with oxidative stress associated with diving-induced ischemia/reperfusion. Does this adaptation translate to inherent resistance to other stressors? We analyzed oxidative stress indicators in cells derived from human and California sea lion (Zalophus californianus) skeletal muscle upon exposure to di (2-ethylhexyl) phthalate (DEHP). Human abdominal muscle biopsies were collected from healthy women undergoing planned cesarean surgery. California sea lion samples were collected postmortem from stranded animals. Skeletal muscle cells derived from each species were exposed to 1 mM DEHP for 13 days (n = 25) or maintained under control (untreated) conditions (n = 25). Superoxide radical (O2•-) production, oxidative damage and antioxidant enzyme activities were measured using spectrophotometric methods. Gene expression was analyzed by RT-qPCR. DEHP exposure increased O2•- production and superoxide dismutase (SOD) activity in both species. Glutathione S-transferase (GST) activity and protein carbonyl levels increased in human but not in California sea lion cells. In contrast, glutathione peroxidase (GPx) and catalase (CAT) activities increased in California sea lion but not in human cells exposed to DEHP. In human cells, DEHP increased microsomal GST1 and GST (κ, μ, θ, ω, and ᴢ), while suppressing 8-oxoguanine DNA glycosylase (OGG1), CAT, glutathione reductase (GR), and nuclear factor erythroid 2-related factor 2 (NRF2) expression, suggesting increased oxidative stress and phase two detoxification processes. In California sea lion cells, DEHP increased OGG1, NRF2, GPx2 and SOD3 expression, suggesting activation of antioxidant defenses, which potentially contribute to maintaining redox homeostasis, avoiding oxidative damage.
Collapse
Affiliation(s)
- Elizabeth Brassea-Pérez
- Centro de Investigaciones Biológicas del Noroeste S.C., Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Col. Playa Palo Santa Rita Sur, C.P. 23096, La Paz, Baja California Sur, Mexico
| | - José Pablo Vázquez-Medina
- Deparment of Integrative Biology, University of California, Berkeley, Harmon Way 1005, 94720-3140, Berkeley, CA, USA
| | - Claudia J Hernández-Camacho
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional, s/n, Col. Playa Palo de Santa Rita Sur, C.P. 23096, La Paz, Baja California Sur, Mexico
| | - Luis Javier Ramírez-Jirano
- Centro de Investigación Biomédica del Occidente, Sierra Mojada 800, Col. Independencia, C.P. 44340, Guadalajara, Jalisco, Mexico
| | - Ramón Gaxiola-Robles
- Unidad de Medicina Familiar No.40, Instituto Mexicano del Seguro Social, Calle del Sol s/n Entre Calle Niebla y Calle Rio Colonia, La Fuente, C.P. 23083, La Paz, Baja California Sur, Mexico
| | - Vanessa Labrada-Martagón
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec #1570, Col. Privadas del Pedregal, C.P. 78295, San Luis Potosí, San Luis Potosí, Mexico
| | - Tania Zenteno-Savín
- Centro de Investigaciones Biológicas del Noroeste S.C., Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Col. Playa Palo Santa Rita Sur, C.P. 23096, La Paz, Baja California Sur, Mexico.
| |
Collapse
|
2
|
de Lima LF, Piccinin INL, Martha GG, Lopes S, Rodrigues TCS, Marmontel M, Kolesnikovas CKM, Maraschin M. Phthalate ester and cholesterol profiles of blubber samples of the free-ranging Amazon River dolphin (Cetacea: Iniidae: Inia geoffrensis) in the Brazilian Amazon. MARINE POLLUTION BULLETIN 2024; 209:117211. [PMID: 39489054 DOI: 10.1016/j.marpolbul.2024.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
This study assessed the exposure of free-ranging Amazon River dolphins (Inia geoffrensis) to phthalate esters (PAE) in a remote area of the Brazilian Amazon. Blubber samples were analyzed for four PAEs - dimethyl phthalate, diethyl phthalate, dibutyl phthalate, and di(2-ethylhexyl) phthalate - and cholesterol contents to evaluate potential metabolic disturbances. All dolphins were contaminated with at least two PAEs, with DEHP (242.16 ng/μL) and DBP (191.62 ng/μL) being the most frequent, detected in 93 % and 79 % of the sample, respectively. Significant positive correlations were found between DBP and DEP (r = 0.857), DEHP and DEP (r = 0.794), and DBP and body length (r = 0.642), suggesting bioaccumulation. Despite the cholesterol data not showing a correlation with the other findings, these results highlight PAE pollution in a supposedly pristine environment and their potential impact on the health and conservation of Amazon River dolphins' health and Amazonian ecosystem.
Collapse
Affiliation(s)
- Lucas Fazardo de Lima
- Laboratório de Morfogênese e Bioquímica Vegetal, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
| | | | - Giulia Galani Martha
- Laboratório de Morfogênese e Bioquímica Vegetal, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Susane Lopes
- Laboratório de Morfogênese e Bioquímica Vegetal, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | | | | | - Marcelo Maraschin
- Laboratório de Morfogênese e Bioquímica Vegetal, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
3
|
Sambolino A, Alves F, Rodriguez M, Weyn M, Ferreira R, Correia AM, Rosso M, Kaufmann M, Cordeiro N, Dinis A. Phthalates and fatty acid markers in free-ranging cetaceans from an insular oceanic region: Ecological niches as drivers of contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124693. [PMID: 39122173 DOI: 10.1016/j.envpol.2024.124693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Plastic additives, such as phthalates, are ubiquitous contaminants that can have detrimental impacts on marine organisms and overall ecosystems' health. Valuable information about the status and resilience of marine ecosystems can be obtained through the monitoring of key indicator species, such as cetaceans. In this study, fatty acid profiles and phthalates were examined in blubber biopsies of free-ranging individuals from two delphinid species (short-finned pilot whale - Globicephala macrorhynchus, n = 45; common bottlenose dolphin - Tursiops truncatus, n = 39) off Madeira Island (NE Atlantic). This investigation aimed to explore the relations between trophic niches (epipelagic vs. mesopelagic), contamination levels, and the health status of individuals within different ecological and biological groups (defined by species, residency patterns and sex). Multivariate analysis of selected dietary fatty acids revealed a clear niche segregation between the two species. Di-n-butylphthalate (DBP), diethyl phthalate (DEP), and bis(2-ethylhexyl) phthalate (DEHP) were the most prevalent among the seven studied phthalates, with the highest concentration reached by DEHP in a bottlenose dolphin (4697.34 ± 113.45 ng/g). Phthalates esters (PAEs) concentration were higher in bottlenose dolphins (Mean ∑ PAEs: 947.56 ± 1558.34 ng/g) compared to pilot whales (Mean ∑ PAEs: 229.98 ± 158.86 ng/g). In bottlenose dolphins, DEHP was the predominant phthalate, whereas in pilot whales, DEP and DBP were more prevalent. Health markers suggested pilot whales might suffer from poorer physiological conditions than bottlenose dolphins, although high metabolic differences were seen between the two species. Phthalate levels showed no differences by ecological or biological groups, seasons, or years. This study is the first to assess the extent of plastic additive contamination in free-ranging cetaceans from a remote oceanic island system, underscoring the intricate relationship between ecological niches and contaminant exposure. Monitoring these chemicals and their potential impacts is vital to assess wild population health, inform conservation strategies, and protect critical species and habitats.
Collapse
Affiliation(s)
- Annalisa Sambolino
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Madeira Island, Portugal; LB3, Faculty of Exact Science and Engineering, University of Madeira, Funchal, Madeira Island, Portugal; Faculty of Life Sciences, University of Madeira, Funchal, Madeira Island, Portugal.
| | - Filipe Alves
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Madeira Island, Portugal; Faculty of Life Sciences, University of Madeira, Funchal, Madeira Island, Portugal
| | - Marta Rodriguez
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Madeira Island, Portugal; LB3, Faculty of Exact Science and Engineering, University of Madeira, Funchal, Madeira Island, Portugal
| | - Mieke Weyn
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Madeira Island, Portugal; Faculty of Life Sciences, University of Madeira, Funchal, Madeira Island, Portugal; Department of Biology, University of Évora, Évora, Portugal
| | - Rita Ferreira
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Madeira Island, Portugal; Faculty of Life Sciences, University of Madeira, Funchal, Madeira Island, Portugal
| | - Ana M Correia
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Matosinhos, Portugal; FCUP-Faculty of Sciences, University of Porto, Porto, Portugal
| | - Massimiliano Rosso
- International Center for Environmental Monitoring - CIMA Research Foundation, Savona, Italy
| | - Manfred Kaufmann
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Madeira Island, Portugal; Faculty of Life Sciences, University of Madeira, Funchal, Madeira Island, Portugal
| | - Nereida Cordeiro
- LB3, Faculty of Exact Science and Engineering, University of Madeira, Funchal, Madeira Island, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Matosinhos, Portugal
| | - Ana Dinis
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Madeira Island, Portugal; Faculty of Life Sciences, University of Madeira, Funchal, Madeira Island, Portugal
| |
Collapse
|
4
|
Lewin WC, Sühring R, Fries E, Solomon M, Brinkmann M, Weltersbach MS, Strehlow HV, Freese M. Soft plastic fishing lures as a potential source of chemical pollution - Chemical analyses, toxicological relevance, and anglers' perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173884. [PMID: 38885719 DOI: 10.1016/j.scitotenv.2024.173884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Soft plastic lures (SPLs) are commonly used artificial lures in recreational angling. Anglers regularly lose SPLs while fishing and there is little knowledge about the environmental impacts of lost SPLs. As with other plastic items, SPLs contain phthalates and other persistent additives that may leach into water. In this study, 16 randomly chosen SPLs of common models were analyzed for the leaching of persistent, water-soluble plastic additives, including phthalates. The estrogenicity of sample extracts from a subsample of 10 SPLs was assessed using luciferase reporter gene bioassays. Over a period of 61 days, 10 of the 16 SPLs leached the targeted phthalates dimethyl phthalate (DMP), diethyl phthalate (DEP), benzyl butyl phthalate (BBP) and di-n-butyl phthalate (DnBP) at median detectable concentrations ranging from 10 ng/g sample BBP to a median of 1001 ng/g DMP as well as 45 persistent, mobile, and toxic (PMT) plastic additives. DEP was detected most frequently in 8 SPLs, followed by BBP (2 SPLs), DMP (2 SPLs) and DnBP (1 SPL). The extract from one SPL with comparatively low phthalate and PMT plastic additive levels was active in the bioassay, indicating high endocrine-disruptive potential, presumably due to unknown additives that were not among the target substances of the methodology used in this study. The study was supplemented by a mail survey among anglers, in which attitudes of anglers towards SPLs were investigated. The survey indicated that SPL loss is a common event during angling. Most participants were concerned about potential ecological impacts of SPLs, wanted the ingredients of SPLs to be labelled and supported legal restrictions concerning toxic ingredients of SPLs. The study shows that SPLs are a potential source of environmental pollution, may pose human health risks and need further investigation, considering the frequent use of SPLs in recreational angling.
Collapse
Affiliation(s)
- Wolf-Christian Lewin
- Thünen Institute of Baltic Sea Fisheries, Alter Hafen Süd 2, 18069 Rostock, Germany.
| | - Roxana Sühring
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, ON M5B 2K3, Canada
| | - Eric Fries
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, ON M5B 2K3, Canada
| | - Melissa Solomon
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, ON M5B 2K3, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
| | | | - Harry V Strehlow
- Thünen Institute of Baltic Sea Fisheries, Alter Hafen Süd 2, 18069 Rostock, Germany
| | - Marko Freese
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572 Bremerhaven, Germany
| |
Collapse
|
5
|
Plön S, Andra K, Auditore L, Gegout C, Hale PJ, Hampe O, Ramilo-Henry M, Burkhardt-Holm P, Jaigirdar AM, Klein L, Maewashe MK, Müssig J, Ramsarup N, Roussouw N, Sabin R, Shongwe TC, Tuddenham P. Marine mammals as indicators of Anthropocene Ocean Health. NPJ BIODIVERSITY 2024; 3:24. [PMID: 39256530 PMCID: PMC11387633 DOI: 10.1038/s44185-024-00055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/19/2024] [Indexed: 09/12/2024]
Abstract
The current state of marine mammal populations reflects increasing anthropogenic impacts on the global Ocean. Adopting a holistic approach towards marine mammal health, incorporating healthy individuals and healthy populations, these taxa present indicators of the health of the overall Ocean system. Their present deterioration at the animal, population and ecosystem level has implications for human health and the global system. In the Anthropocene, multiple planetary boundaries have already been exceeded, and quiet tipping points in the Ocean may present further uncertainties. Long and short-term monitoring of marine mammal health in the holistic sense is urgently required to assist in evaluating and reversing the impact on Ocean Health and aid in climate change mitigation.
Collapse
Affiliation(s)
- S Plön
- Stellenbosch Institute for Advanced Study (STIAS), Stellenbosch, South Africa.
- Forschungsinstitut für Philosophie Hannover (FIPH), Hannover, Germany.
- Hanse Wissenschaftskolleg (HWK), Delmenhorst, Germany.
| | - K Andra
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - L Auditore
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - C Gegout
- School of Politics and International Relations, University of Nottingham, Nottingham, UK
| | - P J Hale
- Department for the History of Science, Technology & Medicine, University of Oklahoma, Norman, OK, USA
- Hanse-Wissenschaftskolleg, Institute for Advanced Study, Delmenhorst, Germany
| | - O Hampe
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany, Invalidenstraße 43
- Institut für Geologische Wissenschaften, Fachrichtung Paläontologie, Freie Universität Berlin, Berlin, Germany, Malteserstr. 74-100
| | - M Ramilo-Henry
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - P Burkhardt-Holm
- Department of Environmental Sciences, MGU, University of Basel, Basel, Switzerland
| | - A M Jaigirdar
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - L Klein
- European School of Governance (EUSG), Berlin, Germany
- International Federation for Systems Research, Vienna, Austria
| | - M K Maewashe
- Department of Oceanography, University of Cape Town, Cape Town, South Africa
| | - J Müssig
- The Biological Materials Group, Department of Biomimetics, HSB - City University of Applied Sciences, Bremen, Germany
| | - N Ramsarup
- Department of Oceanography, University of Cape Town, Cape Town, South Africa
| | - N Roussouw
- Bayworld Centre for Research and Education (BCRE), Gqeberha, South Africa
| | - R Sabin
- Natural History Museum (NHM), London, UK
| | - T C Shongwe
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | | |
Collapse
|
6
|
Lemos LS, Di Perna AC, Steinman KJ, Robeck TR, Quinete NS. Assessment of Phthalate Esters and Physiological Biomarkers in Bottlenose Dolphins ( Tursiops truncatus) and Killer Whales ( Orcinus orca). Animals (Basel) 2024; 14:1488. [PMID: 38791705 PMCID: PMC11117373 DOI: 10.3390/ani14101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
There is growing concern about the potential adverse health effects of phthalates (PAEs) on human health and the environment due to their extensive use as plasticizers and additives in commercial and consumer products. In this study, we assessed PAE concentrations in serum samples from aquarium-based delphinids (Tursiops truncatus, n = 36; Orcinus orca, n = 42) from California, Florida, and Texas, USA. To better understand the physiological effects of phthalates on delphinids, we also explored potential correlations between phthalates and the biomarkers aldosterone, cortisol, corticosterone, hydrogen peroxide, and malondialdehyde while accounting for sex, age, and reproductive stage. All PAEs were detected in at least one of the individuals. ΣPAE ranges were 5.995-2743 ng·mL-1 in bottlenose dolphins and 5.372-88,675 ng·mL-1 in killer whales. Both species displayed higher mean concentrations of DEP and DEHP. PAEs were detected in newborn delphinids, indicating transference via placenta and/or lactation. Linear mixed model results indicated significant correlations between aldosterone, month, location, status, and ΣPAEs in killer whales, suggesting that aldosterone concentrations are likely affected by the cumulative effects of these variables. This study expands on the knowledge of delphinid physiological responses to PAEs and may influence management and conservation decisions on contamination discharge regulations near these species.
Collapse
Affiliation(s)
- Leila S. Lemos
- Institute of Environment, Florida International University, North Miami, FL 33181, USA
- Emerging Contaminants of Concern Research Laboratory, Department of Chemistry & Biochemistry, College of Arts, Sciences, and Education, Florida International University, North Miami, FL 33181, USA;
| | - Amanda C. Di Perna
- Emerging Contaminants of Concern Research Laboratory, Department of Chemistry & Biochemistry, College of Arts, Sciences, and Education, Florida International University, North Miami, FL 33181, USA;
| | - Karen J. Steinman
- SeaWorld & Busch Gardens Species Preservation Laboratory, United Parks and Resorts, San Diego, CA 92109, USA; (K.J.S.); (T.R.R.)
| | - Todd R. Robeck
- SeaWorld & Busch Gardens Species Preservation Laboratory, United Parks and Resorts, San Diego, CA 92109, USA; (K.J.S.); (T.R.R.)
- United Parks and Resorts, 7007 Sea Harbor Drive, Orlando, FL 32821, USA
| | - Natalia S. Quinete
- Institute of Environment, Florida International University, North Miami, FL 33181, USA
- Emerging Contaminants of Concern Research Laboratory, Department of Chemistry & Biochemistry, College of Arts, Sciences, and Education, Florida International University, North Miami, FL 33181, USA;
| |
Collapse
|
7
|
Hart LB, Dziobak M, Wells RS, McCabe EB, Conger E, Curtin T, Knight M, Weinstein J. Plastic, It's What's for Dinner: A Preliminary Comparison of Ingested Particles in Bottlenose Dolphins and Their Prey. OCEANS (BASEL, SWITZERLAND) 2023; 4:409-422. [PMID: 38766537 PMCID: PMC11101200 DOI: 10.3390/oceans4040028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Microplastic ingestion was reported for common bottlenose dolphins (Tursiops truncatus) inhabiting Sarasota Bay, FL, USA, a community that also has prevalent exposure to plasticizers (i.e., phthalates) at concentrations higher than human reference populations. Exposure sources are currently unknown, but plastic-contaminated prey could be a vector. To explore the potential for trophic exposure, prey fish muscle and gastrointestinal tract (GIT) tissues and contents were screened for suspected microplastics, and particle properties (e.g., color, shape, surface texture) were compared with those observed in gastric samples from free-ranging dolphins. Twenty-nine fish across four species (hardhead catfish, Ariopsis felis; pigfish, Orthopristis chrysoptera; pinfish, Lagodon rhomboides; and Gulf toadfish, Opsanus beta) were collected from Sarasota Bay during September 2022. Overall, 97% of fish (n = 28) had suspected microplastics, and GIT abundance was higher than muscle. Fish and dolphin samples contained fibers and films; however, foams were common in dolphin samples and not observed in fish. Suspected tire wear particles (TWPs) were not in dolphin samples, but 23.1% and 32.0% of fish muscle and GIT samples, respectively, contained at least one suspected TWP. While some similarities in particles were shared between dolphins and fish, small sample sizes and incongruent findings for foams and TWPs suggest further investigation is warranted to understand trophic transfer potential.
Collapse
Affiliation(s)
- Leslie B. Hart
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC 29424, USA
- Center for Coastal Environmental and Human Health, College of Charleston, Charleston, SC 29424, USA
| | - Miranda Dziobak
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC 29424, USA
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Randall S. Wells
- Chicago Zoological Society’s Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, FL 34236, USA
| | - Elizabeth Berens McCabe
- Chicago Zoological Society’s Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, FL 34236, USA
| | - Eric Conger
- Department of Biology, School of Sciences, Mathematics, and Engineering, College of Charleston, Charleston, SC 29424, USA
| | - Tita Curtin
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC 29424, USA
| | - Maggie Knight
- Graduate Program in Marine Biology, Grice Marine Laboratory, College of Charleston, Charleston, SC 29424, USA
| | - John Weinstein
- Department of Biology, The Citadel, Charleston, SC 29409, USA
| |
Collapse
|
8
|
Vighi M, Borrell A, Sahyoun W, Net S, Aguilar A, Ouddane B, Garcia-Garin O. Concentrations of bisphenols and phthalate esters in the muscle of Mediterranean striped dolphins (Stenella coeruleoalba). CHEMOSPHERE 2023; 339:139686. [PMID: 37544523 DOI: 10.1016/j.chemosphere.2023.139686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
Bisphenols (BPs) and phthalate esters (PAEs) are important compounds for the plastics industry, also called "everywhere chemicals" due to their ubiquity in daily use products. Both chemical groups are well-known environmental contaminants, whose presence has been reported in all environmental compartments, and whose effects, mainly associated to endocrine disruption, are detrimental to living organisms. Cetaceans, due to their long life-span, low reproduction rate and high position in the trophic web, are especially vulnerable to the effects of contaminants. However, little is known about BP and PAE concentrations in cetacean tissues, their potential relation to individual biological variables, or their trends over time. Here, the concentration of 10 BPs and 13 PAEs was assessed in the muscle of 30 striped dolphins (Stenella coeruleoalba) stranded along the Spanish Catalan coast (NW Mediterranean) between 1990 and 2018. Six BP and 6 PAE compounds were detected, of which only 4,4'-(cyclohexane-1,1-diyl)diphenol (BPZ) was detected in all the samples, at the highest concentration (mean 16.06 μg g-1 lipid weight). Sex or reproductive condition were largely uninfluential on concentrations: only dimethylphthalate (DMP) concentrations were significantly higher in immature individuals than in adults, and the overall PAE concentrations were significantly higher in males than in females. Temporal variations were only detected in bis(4-hydroxyphenyl)ethane (BPE), diethylphthalate (DEP) and dimethylphthalate (DMP), whose concentrations were lower, and 9,9-Bis(4-hydroxyphenyl)fluorene (BPFL), which were higher, respectively, in samples taken between 2014 and 2018, probably reflecting shifts in the production and use of these chemicals. These results provide the first assessment of concentrations of several BP and PAE compounds in the muscle of an odontocete cetacean.
Collapse
Affiliation(s)
- Morgana Vighi
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology. University of Barcelona, 08028, Barcelona, Spain; Biodiversity Research Institute (IRBio). University of Barcelona, 08028, Barcelona, Spain.
| | - Asunción Borrell
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology. University of Barcelona, 08028, Barcelona, Spain; Biodiversity Research Institute (IRBio). University of Barcelona, 08028, Barcelona, Spain
| | - Wissam Sahyoun
- Université de Lille, Faculté des Sciences et Technologies, Laboratoire LASIRE (UMR 8516 CNRS), Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - Sopheak Net
- Université de Lille, Faculté des Sciences et Technologies, Laboratoire LASIRE (UMR 8516 CNRS), Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - Alex Aguilar
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology. University of Barcelona, 08028, Barcelona, Spain; Biodiversity Research Institute (IRBio). University of Barcelona, 08028, Barcelona, Spain
| | - Baghdad Ouddane
- Université de Lille, Faculté des Sciences et Technologies, Laboratoire LASIRE (UMR 8516 CNRS), Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - Odei Garcia-Garin
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology. University of Barcelona, 08028, Barcelona, Spain; Biodiversity Research Institute (IRBio). University of Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
9
|
Xie Z, Zhang X, Wu J, Wu Y. Risk assessment of phthalate metabolites accumulated in fish to the Indo-Pacific humpback dolphins from their largest habitat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:163094. [PMID: 36996992 DOI: 10.1016/j.scitotenv.2023.163094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Food has consistently been shown to be an important source of exposure to environmental pollutants, drawing attention to the health risks of pollutants in marine mammals with high daily food intake. Here, the dietary exposure risks posed to the Indo-Pacific humpback dolphins from the Pearl River Estuary (PRE), China, by fourteen phthalate metabolites (mPAEs) were evaluated for the first time. On the basis of liquid chromatography-mass spectrometry (LC-MS/MS) analysis, the levels of ∑14mPAEs in ten main species of prey fish (n = 120) of dolphins ranged from 103.0 to 444.5 ng/g wet weight (ww), among which Bombay duck contained a significantly higher body burden of ∑14mPAEs than other prey species. Phthalic acid (PA), monooctyl phthalate (MnOP), monononyl phthalate (MNP), monoethyl phthalate (MEP), monoethylhexyl phthalate (MEHP), mono (5-carboxy-2-ethylpentyl) phthalate (MECPP), monobutyl phthalate (MBP), and monoisobutyl phthalate (MiBP) all had a trophic magnification factor (TMF) greater than unity, indicating the biomagnification potential of these mPAEs in the marine ecosystem of the PRE. A dietary exposure assessment based on the adjusted reference dose values of phthalates (PAEs) showed that bis (2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) may pose a high (HQ > 1) and medium (0.01 < HQ < 1) risk to the dolphin adults and juveniles, respectively. Our results highlight the potential health risks of mPAEs to marine mammals through dietary routes.
Collapse
Affiliation(s)
- Zhenhui Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| | - Jiaxue Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| |
Collapse
|
10
|
Xie Z, Zhang X, Xie Y, Wu J, Wu Y. Occurrences and potential lipid-disrupting effects of phthalate metabolites in humpback dolphins from the South China Sea. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129939. [PMID: 36096058 DOI: 10.1016/j.jhazmat.2022.129939] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Phthalate esters (PAEs) are ubiquitous environmental contaminants, arising growing public concern. Nevertheless, information on the exposure and risks of PAEs in wildlife remains limited. Here, we conducted the first investigation of the occurrences, spatiotemporal trends, and potential risks of twelve metabolites of PAEs (mPAEs) in 74 humpback dolphins from the northern South China Sea during 2005-2020. All twelve mPAEs (∑12mPAEs: 9.6-810.7 ng g-1 wet weight) were detected in the dolphin liver, and seven major mPAEs showed increasing trends during the study period, indicating high PAE contamination in the coastal environment of South China. Monoethylhexyl phthalate accounted for over half of the ∑12mPAE concentrations. The accumulation of mPAEs in the dolphins was neither age-dependent nor sex-specific. Compared to parent PAEs, mPAEs generally induced higher agonistic effects on the dolphin peroxisome proliferator-activated receptor alpha/gamma (PPARA/G) as master regulators of lipid homeostasis. Although short-term in vitro assays revealed no significant activation of dolphin PPARA/G by tissue-relevant doses of mPAEs, long-term in vivo evidence (i.e., correlations between hepatic mPAEs and blubber fatty acids) suggested that chronic exposure to mPAEs might have impacted lipid metabolism in the dolphin. This study highlighted the potential health risks of PAE exposure on marine mammals.
Collapse
Affiliation(s)
- Zhenhui Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| | - Yanqing Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Jiaxue Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| |
Collapse
|
11
|
Tranganida A, Hall AJ, Armstrong HC, Moss SEW, Bennett KA. Consequences of in vitro benzyl butyl phthalate exposure for blubber gene expression and insulin-induced Akt activation in juvenile grey seals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120688. [PMID: 36402420 DOI: 10.1016/j.envpol.2022.120688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/27/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Plastic and plasticiser pollution of marine environments is a growing concern. Although phthalates, one group of plasticisers, are rapidly metabolised by mammals, they are found ubiquitously in humans and have been linked with metabolic disorders and altered adipose function. Phthalates may also present a threat to marine mammals, which need to rapidly accumulate and mobilise their large fat depots. High molecular weight (HMW) phthalates may be most problematic because they can accumulate in adipose. We used blubber explants from juvenile grey seals to examine the effects of overnight exposure to the HMW, adipogenic phthalate, benzyl butyl phthalate (BBzP) on expression of key adipose-specific genes and on phosphorylation of Akt in response to insulin. We found substantial differences in transcript abundance of Pparγ, Insig2, Fasn, Scd, Adipoq and Lep between moult stages, when animals were also experiencing differing mass changes, and between tissue depths, which likely reflect differences in blubber function. Akt abundance was higher in inner compared to outer blubber, consistent with greater metabolic activity in adipose closer to muscle than skin, and its phosphorylation was stimulated by insulin. Transcript abundance of Pparγ and Fasn (and Adipoq in some animals) were increased by short term (30 min) insulin exposure. In addition, overnight in vitro BBzP exposure altered insulin-induced changes in Pparγ (and Adipoq in some animals) transcript abundance, in a tissue depth and moult stage-specific manner. Basal or insulin-induced Akt phosphorylation was not changed. BBzP thus acted rapidly on the transcript abundance of key adipose genes in an Akt-independent manner. Our data suggest phthalate exposure could alter seal blubber development or function, although the whole animal consequences of these changes are not yet understood. Knowledge of typical phthalate exposures and toxicokinetics would help to contextualise these findings in terms of phthalate-induced metabolic disruption risk and consequences for marine mammal health.
Collapse
Affiliation(s)
- Alexandra Tranganida
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, KY16 8LB, UK; Division of Health Science, School of Applied Sciences, Abertay University, Dundee, DD1 1HG, UK
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, KY16 8LB, UK
| | - Holly C Armstrong
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, KY16 8LB, UK; Division of Health Science, School of Applied Sciences, Abertay University, Dundee, DD1 1HG, UK; School of Psychology and Neuroscience, University of St Andrews, KY16 9JP, UK
| | - Simon E W Moss
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, KY16 8LB, UK
| | - Kimberley A Bennett
- Division of Health Science, School of Applied Sciences, Abertay University, Dundee, DD1 1HG, UK.
| |
Collapse
|
12
|
Garcia-Garin O, Sahyoun W, Net S, Vighi M, Aguilar A, Ouddane B, Víkingsson GA, Chosson V, Borrell A. Intrapopulation and temporal differences of phthalate concentrations in North Atlantic fin whales (Balaenoptera physalus). CHEMOSPHERE 2022; 300:134453. [PMID: 35390406 DOI: 10.1016/j.chemosphere.2022.134453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The fin whale (Balaenoptera physalus) is a migratory filter-feeding species that is susceptible to ingest plastics while lunge feeding across the oceans. Plastic additives, such as phthalates, are compounds that are added to plastics to give them specific characteristics, such as flexibility. These so-called plasticizers are currently raising major concern because of their potential adverse effects on marine fauna. However, little is known about phthalate concentrations in tissues of baleen whales as well as their potential relation with biological variables (i.e., sex, body length and age) and their trends with time. In this study, we assessed the concentration of 13 phthalates in the muscle of 31 fin whales sampled in the feeding grounds off western Iceland between 1986 and 2015. We detected 5 of the 13 phthalates investigated, with di-n-butylphthalate (DBP), diethylphthalate (DEP) and bis(2-ethylhexyl) phthalate (DEHP) being the most abundant. None of the biological variables examined showed a statistically significant relationship with phthalate concentrations. Also, phthalate concentrations did not significantly vary over the 29-year period studied, a surprising result given the global scenario of increasing plastic pollution in the seas. The lack of time trends in phthalate concentration may be due in part to the fact that phthalates also originate from other sources. Although no adverse effects of phthalates on fin whales have been detected to date, further monitoring of these pollutants is required to identify potential toxic effects in the future.
Collapse
Affiliation(s)
- Odei Garcia-Garin
- Department of Evolutionary Biology, Ecology and Environmental Sciences, and Biodiversity Research Institute (IRBio). Faculty of Biology. University of Barcelona, 08028, Barcelona, Spain.
| | - Wissam Sahyoun
- Université de Lille 1, Sciences et Technologies, Laboratoire LASIR (UMR 8516 CNRS), Cité Scientifique, 59655, Villeneuve d'Ascq, France
| | - Sopheak Net
- Université de Lille 1, Sciences et Technologies, Laboratoire LASIR (UMR 8516 CNRS), Cité Scientifique, 59655, Villeneuve d'Ascq, France
| | - Morgana Vighi
- Department of Evolutionary Biology, Ecology and Environmental Sciences, and Biodiversity Research Institute (IRBio). Faculty of Biology. University of Barcelona, 08028, Barcelona, Spain
| | - Alex Aguilar
- Department of Evolutionary Biology, Ecology and Environmental Sciences, and Biodiversity Research Institute (IRBio). Faculty of Biology. University of Barcelona, 08028, Barcelona, Spain
| | - Baghdad Ouddane
- Université de Lille 1, Sciences et Technologies, Laboratoire LASIR (UMR 8516 CNRS), Cité Scientifique, 59655, Villeneuve d'Ascq, France
| | - Gísli A Víkingsson
- Marine and Freshwater Research Institute, Fornubúðum 5, 220, Hafnarfjörður, Iceland
| | - Valerie Chosson
- Marine and Freshwater Research Institute, Fornubúðum 5, 220, Hafnarfjörður, Iceland
| | - Asunción Borrell
- Department of Evolutionary Biology, Ecology and Environmental Sciences, and Biodiversity Research Institute (IRBio). Faculty of Biology. University of Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
13
|
Blasi MF, Avino P, Notardonato I, Di Fiore C, Mattei D, Gauger MFW, Gelippi M, Cicala D, Hochscheid S, Camedda A, de Lucia GA, Favero G. Phthalate esters (PAEs) concentration pattern reflects dietary habitats (δ 13C) in blood of Mediterranean loggerhead turtles (Caretta caretta). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113619. [PMID: 35605320 DOI: 10.1016/j.ecoenv.2022.113619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Phthalic acid esters (PAEs) are classified as endocrine disruptors, but it remains unclear if they can enter the marine food-web and result in severe health effects for organisms. Loggerhead turtles (Caretta caretta) can be chronically exposed to PAEs by ingesting plastic debris, but no information is available about PAEs levels in blood, and how these concentrations are related to diet during different life stages. This paper investigated, for the first time, six PAEs in blood of 18 wild-caught Mediterranean loggerhead turtles throughout solid-phase extraction coupled with gas chromatography-ion trap/mass spectrometry. Stable isotope analyses of carbon and nitrogen were also performed to assess the resource use pattern of loggerhead turtles. DEHP (12-63 ng mL-1) and DBP (6-57 ng mL-1) were the most frequently represented PAEs, followed by DiBP, DMP, DEP and DOP. The total PAEs concentration was highest in three turtles (124-260 ng mL-1) whereas three other turtles had concentrations below the detection limit. PAEs were clustered in three groups according to concentration in all samples: DEHP in the first group, DBP, DEP, and DiBP in the second group, and DOP and DMP in the third group. The total phthalates concentration did not differ between large-sized (96.3 ± 86.0 ng mL-1) and small-sized (67.1 ± 34.2 ng mL-1) turtles (p < 0.001). However, DMP and DEP were found only in large-sized turtles and DiBP and DBP had higher concentrations in large-sized turtles. On the other hand, DEHP and DOP were found in both small- and large-sized turtles with similar concentrations, i.e. ~ 21.0/32.0 ng mL-1 and ~ 7.1/9.9 ng mL-1, respectively. Winsored robust models indicated that δ13C is a good predictor for DBP and DiBP concentrations (significant Akaike Information criterion weight, AICwt). Our results indicate that blood is a good matrix to evaluate acute exposure to PAEs in marine turtles. Moreover, this approach is here suggested as a useful tool to explain the internal dose of PAEs in term of dietary habits (δ13C), suggesting that all marine species at high trophic levels may be particularly exposed to PAEs, despite their different dietary habitats and levels of exposure.
Collapse
Affiliation(s)
- Monica Francesca Blasi
- Dipartimento di Biologia Ambientale, Università degli Studi di Roma "La Sapienza", Roma, RM, Italy; Dipartimento Ambiente e Salute, Istituto Superiore di Sanità, Roma, RM, Italy; Filicudi WildLife Conservation, Via Stimpagnato Filicudi, Lipari 98055, ME, Italy.
| | - Pasquale Avino
- Dipartimento Agricoltura, Ambiente e Alimenti, University of Molise, Via De Sanctis, Campobasso I-86100, Italy
| | - Ivan Notardonato
- Dipartimento Agricoltura, Ambiente e Alimenti, University of Molise, Via De Sanctis, Campobasso I-86100, Italy
| | - Cristina Di Fiore
- Dipartimento Agricoltura, Ambiente e Alimenti, University of Molise, Via De Sanctis, Campobasso I-86100, Italy
| | - Daniela Mattei
- Dipartimento Ambiente e Salute, Istituto Superiore di Sanità, Roma, RM, Italy
| | | | - Michelle Gelippi
- Filicudi WildLife Conservation, Via Stimpagnato Filicudi, Lipari 98055, ME, Italy
| | - Davide Cicala
- Laboratory of Experimental Ecology and Aquaculture, Department of Biology - University of Rome Tor Vergata, Rome, Italy
| | - Sandra Hochscheid
- Marine Turtle Research Group, Department of Marine Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Via Nuova Macello 16, Portici 80055, Italy
| | - Andrea Camedda
- IAS-CNR Institute of Anthropic Impact and Sustainability in Marine Environment, National Research Council Oristano Section, Località Sa Mardini, Torregrande, OR 09170, Italy
| | - Giuseppe Andrea de Lucia
- IAS-CNR Institute of Anthropic Impact and Sustainability in Marine Environment, National Research Council Oristano Section, Località Sa Mardini, Torregrande, OR 09170, Italy
| | - Gabriele Favero
- Dipartimento di Biologia Ambientale, Università degli Studi di Roma "La Sapienza", Roma, RM, Italy
| |
Collapse
|
14
|
Dziobak MK, Wells RS, Pisarski EC, Wirth EF, Hart LB. A Correlational Analysis of Phthalate Exposure and Thyroid Hormone Levels in Common Bottlenose Dolphins ( Tursiops truncatus) from Sarasota Bay, Florida (2010-2019). Animals (Basel) 2022; 12:824. [PMID: 35405813 PMCID: PMC8996861 DOI: 10.3390/ani12070824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Phthalates are chemical esters used to enhance desirable properties of plastics, personal care, and cleaning products. Phthalates have shown ubiquitous environmental contamination due to their abundant use and propensity to leach from products to which they are added. Following exposure, phthalates are rapidly metabolized and excreted through urine. Common bottlenose dolphins (Tursiops truncatus) sampled from Sarasota Bay, Florida, have demonstrated prevalent di(2-ethylhexyl) phthalate (DEHP) exposure indicated by detectable urinary mono(2-ethylhexyl) phthalate (MEHP) concentrations. Widespread exposure is concerning due to evidence of endocrine disruption from human and laboratory studies. To better understand how phthalate exposure may impact dolphin health, correlations between relevant hormone levels and detectable urinary MEHP concentrations were examined. Hormone concentrations measured via blood serum samples included triiodothyronine (T3), total thyroxine (T4), and free thyroxine (FT4). Urinary MEHP concentrations were detected in 56% of sampled individuals (n = 50; mean = 8.13 ng/mL; s.d. = 15.99 ng/mL). Adult female and male FT4 was significantly correlated with urinary MEHP concentrations (adult female Kendall's tau = 0.36, p = 0.04; adult male Kendall's tau = 0.42, p = 0.02). Evidence from this study suggests DEHP exposure may be impacting thyroid hormone homeostasis. Cumulative effects of other stressors and resultant endocrine impacts are unknown. Further research is warranted to understand potential health implications associated with this relationship.
Collapse
Affiliation(s)
- Miranda K. Dziobak
- Environmental and Sustainability Studies Graduate Program, College of Charleston, Charleston, SC 29424, USA
- Environmental Health Sciences Graduate Program, University of South Carolina, Columbia, SC 29208, USA
| | - Randall S. Wells
- Chicago Zoological Society’s Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, FL 34236, USA;
| | - Emily C. Pisarski
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Charleston, SC 29412, USA; (E.C.P.); (E.F.W.)
| | - Ed F. Wirth
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Charleston, SC 29412, USA; (E.C.P.); (E.F.W.)
| | - Leslie B. Hart
- Department of Health and Human Performance, College of Charleston, Charleston, SC 29424, USA
| |
Collapse
|
15
|
Dziobak MK, Wells RS, Pisarski EC, Wirth EF, Hart LB. Demographic Assessment of Mono(2-ethylhexyl) Phthalate (MEHP) and Monoethyl Phthalate (MEP) Concentrations in Common Bottlenose Dolphins ( Tursiops truncatus) From Sarasota Bay, FL, USA. GEOHEALTH 2021; 5:e2020GH000348. [PMID: 34036207 PMCID: PMC8137278 DOI: 10.1029/2020gh000348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/22/2021] [Accepted: 04/14/2021] [Indexed: 05/15/2023]
Abstract
Common bottlenose dolphins (Tursiops truncatus) have previously demonstrated exposure to phthalate esters. Phthalates and phthalate esters are commonly added to consumer goods to enhance desirable properties. As the amount of plastic marine debris increases, these chemicals can easily leach from these products into the surrounding environment. To evaluate demographic variability in exposure, eight phthalate metabolites were quantified in urine samples collected from free-ranging bottlenose dolphins sampled in Sarasota Bay, FL, USA (2010-2019; n = 51). Approximately 75% of individual dolphins had detectable concentrations of at least one phthalate metabolite. The most frequently detected metabolites were mono(2-ethylhexyl) phthalate (MEHP; n = 28; GM = 4.57 ng/mL; 95% CI = 2.37-8.80; KM mean = 7.95; s.d. = 15.88) and monoethyl phthalate (MEP; GM = 4.51 ng/mL; 95% CI = 2.77-7.34; ROS mean = 2.24; s.d. = 5.58). Urinary concentrations of MEHP and MEP were not significantly different between sex (MEHP p = 0.09; MEP p = 0.22) or age class (i.e., calf/juvenile vs. adult; MEHP p = 0.67; MEP p = 0.13). Additionally, there were no significant group differences in the likelihood of MEHP or MEP detection for any demographic as determined by a Peto-Peto test. Frequency of detection was similar for both metabolites between males and females (MEHP p = 0.10; MEP p = 0.40) as well as between juveniles and adults (MEHP p = 0.50; MEP: p = 0.60). These findings suggest ubiquitous exposure risk for both sexes and age classes, warranting further investigation into potential sources and health implications.
Collapse
Affiliation(s)
- M. K. Dziobak
- Environmental and Sustainability Studies Graduate ProgramCollege of CharlestonCharlestonSCUSA
| | - R. S. Wells
- Chicago Zoological Society’s Sarasota Dolphin Research Programc/o Mote Marine LaboratorySarasotaFLUSA
| | - E. C. Pisarski
- CSS Inc., (Under Contract to NOAA/NOS/NCCOS)CharlestonSCUSA
| | - E. F. Wirth
- National Oceanic and Atmospheric AdministrationNational Ocean ServiceNational Centers for Coastal Ocean ScienceCharlestonSCUSA
| | - L. B. Hart
- Department of Health and Human PerformanceCollege of CharlestonCharlestonSCUSA
| |
Collapse
|