1
|
Sims A, Weir DJ, Cole SJ, Hutchinson E. SARS-CoV-2 cellular coinfection is limited by superinfection exclusion. J Virol 2025; 99:e0207724. [PMID: 40116503 PMCID: PMC11998510 DOI: 10.1128/jvi.02077-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/06/2025] [Indexed: 03/23/2025] Open
Abstract
The coinfection of individual cells is a requirement for exchange between two or more virus genomes, which is a major mechanism driving virus evolution. Coinfection is restricted by a mechanism known as superinfection exclusion (SIE), which prohibits the infection of a previously infected cell by a related virus after a period of time. SIE regulates coinfection for many different viruses, but its relevance to the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was unknown. In this study, we investigated this using a pair of SARS-CoV-2 variant viruses encoding distinct fluorescent reporter proteins. We show for the first time that SARS-CoV-2 coinfection of individual cells is limited temporally by SIE. We defined the kinetics of the onset of SIE for SARS-CoV-2 in this system, showing that the potential for coinfection starts to diminish within the first hour of primary infection and then falls exponentially as the time between the two infection events is increased. We then asked how these kinetics would affect the potential for coinfection with viruses during a spreading infection. We used plaque assays to model the localized spread of SARS-CoV-2 observed in infected tissue and showed that the kinetics of SIE restrict coinfection-and therefore sites of possible genetic exchange-to a small interface of infected cells between spreading viral infections. This indicates that SIE, by reducing the likelihood of coinfection of cells, likely reduces the opportunities for genetic exchange between different strains of SARS-CoV-2 and therefore is an underappreciated factor in shaping SARS-CoV-2 evolution. IMPORTANCE Since SARS-CoV-2 first emerged in 2019, it has continued to evolve, occasionally generating variants of concern. One of the ways that SARS-CoV-2 can evolve is through recombination, where genetic information is swapped between different genomes. Recombination requires the coinfection of cells; therefore, factors impacting coinfection are likely to influence SARS-CoV-2 evolution. Coinfection is restricted by SIE, a phenomenon whereby a previously infected cell becomes increasingly resistant to subsequent infection. Here we report that SIE is activated following SARS-CoV-2 infection and reduces the likelihood of coinfection exponentially following primary infection. Furthermore, we show that SIE prevents coinfection of cells at the boundary between two expanding areas of infection, the scenario most likely to lead to recombination between different SARS-CoV-2 lineages. Our work suggests that SIE reduces the likelihood of recombination between SARS-CoV-2 genomes and therefore likely shapes SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Anna Sims
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, United Kingdom
| | - Daniel J. Weir
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, United Kingdom
| | - Sarah J. Cole
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, United Kingdom
| | - Edward Hutchinson
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, United Kingdom
| |
Collapse
|
2
|
Hick TAH, Zotler T, Bosveld D, Geertsema C, van Oers MM, Pijlman GP. Venezuelan equine encephalitis virus non-structural protein 3 dictates superinfection exclusion in mammalian cells. NPJ VIRUSES 2024; 2:43. [PMID: 40295792 PMCID: PMC11721081 DOI: 10.1038/s44298-024-00055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/13/2024] [Indexed: 04/30/2025]
Abstract
Superinfection exclusion (SIE) prevents secondary infections of already infected cells. Arthritogenic alphaviruses induce SIE via early proteolytical cleavage of replicase precursor by non-structural protein 2 (nsP2). Here, we explore the SIE mechanism of the encephalitic Venezuelan equine encephalitis virus (VEEV). Using single-cell imaging techniques and VEEV replicons encoding green or red fluorescent proteins, we observed full SIE capacity in three hours. Transient expression of VEEV nsP3, but not nsP2, reduced alphavirus replication, suggesting a key role for VEEV nsP3 in the SIE mechanism. In particular, the VEEV nsP3 C-terminal hypervariable domain (HVD) was found to be required and sufficient for the SIE of VEEV and the more distantly related Sindbis virus. As the nsP3 HVD is known to bind multiple host proteins to form RNA replication complexes and modulate the cellular stress response, we propose that sequestering essential host protein(s) by VEEV nsP3 interferes with RNA replication of the superinfecting alphavirus.
Collapse
Affiliation(s)
- Tessy A H Hick
- Laboratory of Virology, Wageningen University and Research, Wageningen, The Netherlands
| | - Taja Zotler
- Laboratory of Virology, Wageningen University and Research, Wageningen, The Netherlands
| | - Davita Bosveld
- Laboratory of Virology, Wageningen University and Research, Wageningen, The Netherlands
| | - Corinne Geertsema
- Laboratory of Virology, Wageningen University and Research, Wageningen, The Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, Wageningen, The Netherlands
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Hick TAH, Geertsema C, Nguyen W, Bishop CR, van Oosten L, Abbo SR, Dumenil T, van Kuppeveld FJM, Langereis MA, Rawle DJ, Tang B, Yan K, van Oers MM, Suhrbier A, Pijlman GP. Safety concern of recombination between self-amplifying mRNA vaccines and viruses is mitigated in vivo. Mol Ther 2024; 32:2519-2534. [PMID: 38894543 PMCID: PMC11405153 DOI: 10.1016/j.ymthe.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/02/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
Self-amplifying mRNA (SAM) vaccines can be rapidly deployed in the event of disease outbreaks. A legitimate safety concern is the potential for recombination between alphavirus-based SAM vaccines and circulating viruses. This theoretical risk needs to be assessed in the regulatory process for SAM vaccine approval. Herein, we undertake extensive in vitro and in vivo assessments to explore recombination between SAM vaccine and a wide selection of alphaviruses and a coronavirus. SAM vaccines were found to effectively limit alphavirus co-infection through superinfection exclusion, although some co-replication was still possible. Using sensitive cell-based assays, replication-competent alphavirus chimeras were generated in vitro as a result of rare, but reproducible, RNA recombination events. The chimeras displayed no increased fitness in cell culture. Viable alphavirus chimeras were not detected in vivo in C57BL/6J, Rag1-/- and Ifnar-/- mice, in which high levels of SAM vaccine and alphavirus co-replicated in the same tissue. Furthermore, recombination between a SAM-spike vaccine and a swine coronavirus was not observed. In conclusion we state that although the ability of SAM vaccines to recombine with alphaviruses might be viewed as an environmental safety concern, several key factors substantially mitigate against in vivo emergence of chimeric viruses from SAM vaccine recipients.
Collapse
Affiliation(s)
- Tessy A H Hick
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Corinne Geertsema
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Wilson Nguyen
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Cameron R Bishop
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Linda van Oosten
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Sandra R Abbo
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Troy Dumenil
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Frank J M van Kuppeveld
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Martijn A Langereis
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Daniel J Rawle
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; Global Virus Network Centre of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD 4072 and 4029, Australia.
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
4
|
Joseph RE, Bozic J, Werling KL, Krizek RS, Urakova N, Rasgon JL. Eilat virus (EILV) causes superinfection exclusion against West Nile virus (WNV) in a strain-specific manner in Culex tarsalis mosquitoes. J Gen Virol 2024; 105:002017. [PMID: 39189607 PMCID: PMC11348563 DOI: 10.1099/jgv.0.002017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
West Nile virus (WNV) is the leading cause of mosquito-borne illness in the USA. There are currently no human vaccines or therapies available for WNV, and vector control is the primary strategy used to control WNV transmission. The WNV vector Culex tarsalis is also a competent host for the insect-specific virus (ISV) Eilat virus (EILV). ISVs such as EILV can interact with and cause superinfection exclusion (SIE) against human pathogenic viruses in their shared mosquito host, altering vector competence for these pathogenic viruses. The ability to cause SIE and their host restriction make ISVs a potentially safe tool to target mosquito-borne pathogenic viruses. In the present study, we tested whether EILV causes SIE against WNV in mosquito C6/36 cells and C. tarsalis mosquitoes. The titres of both WNV strains - WN02-1956 and NY99 - were suppressed by EILV in C6/36 cells as early as 48-72 h post-superinfection at both m.o.i. values tested in our study. The titres of WN02-1956 at both m.o.i. values remained suppressed in C6/36 cells, whereas those of NY99 showed some recovery towards the final timepoint. The mechanism of SIE remains unknown, but EILV was found to interfere with NY99 attachment in C6/36 cells, potentially contributing to the suppression of NY99 titres. However, EILV had no effect on the attachment of WN02-1956 or internalization of either WNV strain under superinfection conditions. In C. tarsalis, EILV did not affect the infection rate of either WNV strain at either timepoint. However, in mosquitoes, EILV enhanced NY99 infection titres at 3 days post-superinfection, but this effect disappeared at 7 days post-superinfection. In contrast, WN02-1956 infection titres were suppressed by EILV at 7 days post-superinfection. The dissemination and transmission of both WNV strains were not affected by superinfection with EILV at either timepoint. Overall, EILV caused SIE against both WNV strains in C6/36 cells; however, in C. tarsalis, SIE caused by EILV was strain specific potentially owing to differences in the rate of depletion of shared resources by the individual WNV strains.
Collapse
Affiliation(s)
- Renuka E. Joseph
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Jovana Bozic
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Kristine L. Werling
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Rachel S. Krizek
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Nadya Urakova
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Jason L. Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
5
|
Li LH, Chiu W, Huang YA, Rasulova M, Vercruysse T, Thibaut HJ, Ter Horst S, Rocha-Pereira J, Vanhoof G, Borrenberghs D, Goethals O, Kaptein SJF, Leyssen P, Neyts J, Dallmeier K. Multiplexed multicolor antiviral assay amenable for high-throughput research. Nat Commun 2024; 15:42. [PMID: 38168091 PMCID: PMC10761739 DOI: 10.1038/s41467-023-44339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
To curb viral epidemics and pandemics, antiviral drugs are needed with activity against entire genera or families of viruses. Here, we develop a cell-based multiplex antiviral assay for high-throughput screening against multiple viruses at once, as demonstrated by using three distantly related orthoflaviviruses: dengue, Japanese encephalitis and yellow fever virus. Each virus is tagged with a distinct fluorescent protein, enabling individual monitoring in cell culture through high-content imaging. Specific antisera and small-molecule inhibitors are employed to validate that multiplexing approach yields comparable inhibition profiles to single-virus infection assays. To facilitate downstream analysis, a kernel is developed to deconvolute and reduce the multidimensional quantitative data to three cartesian coordinates. The methodology is applicable to viruses from different families as exemplified by co-infections with chikungunya, parainfluenza and Bunyamwera viruses. The multiplex approach is expected to facilitate the discovery of broader-spectrum antivirals, as shown in a pilot screen of approximately 1200 drug-like small-molecules.
Collapse
Affiliation(s)
- Li-Hsin Li
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
- Molecular Vaccinology and Vaccine Discovery group, Leuven, Belgium
| | - Winston Chiu
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Yun-An Huang
- KU Leuven Department of Neuroscience, Research Group Neurophysiology, Laboratory for Circuit Neuroscience, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie, Neuro-Electronics Research Flanders (NERF), Leuven, Belgium
| | - Madina Rasulova
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy (TPVC), Leuven, Belgium
| | - Thomas Vercruysse
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy (TPVC), Leuven, Belgium
- AstriVax, Heverlee, Belgium
| | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy (TPVC), Leuven, Belgium
| | - Sebastiaan Ter Horst
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
- Cerba Research, Rotterdam, The Netherlands
| | - Joana Rocha-Pereira
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Greet Vanhoof
- Janssen Therapeutics Discovery, Janssen Pharmaceutica, NV, Beerse, Belgium
| | | | - Olivia Goethals
- Janssen Global Public Health, Janssen Pharmaceutica, NV, Beerse, Belgium
| | - Suzanne J F Kaptein
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Pieter Leyssen
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium.
- Molecular Vaccinology and Vaccine Discovery group, Leuven, Belgium.
| |
Collapse
|
6
|
Reitmayer CM, Levitt E, Basu S, Atkinson B, Fragkoudis R, Merits A, Lumley S, Larner W, Diaz AV, Rooney S, Thomas CJE, von Wyschetzki K, Rausalu K, Alphey L. Mimicking superinfection exclusion disrupts alphavirus infection and transmission in the yellow fever mosquito Aedes aegypti. Proc Natl Acad Sci U S A 2023; 120:e2303080120. [PMID: 37669371 PMCID: PMC10500260 DOI: 10.1073/pnas.2303080120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/13/2023] [Indexed: 09/07/2023] Open
Abstract
Multiple viruses, including pathogenic viruses, bacteriophages, and even plant viruses, cause a phenomenon termed superinfection exclusion whereby a currently infected cell is resistant to secondary infection by the same or a closely related virus. In alphaviruses, this process is thought to be mediated, at least in part, by the viral protease (nsP2) which is responsible for processing the nonstructural polyproteins (P123 and P1234) into individual proteins (nsP1-nsP4), forming the viral replication complex. Taking a synthetic biology approach, we mimicked this naturally occurring phenomenon by generating a superinfection exclusion-like state in Aedes aegypti mosquitoes, rendering them refractory to alphavirus infection. By artificially expressing Sindbis virus (SINV) and chikungunya virus (CHIKV) nsP2 in mosquito cells and transgenic mosquitoes, we demonstrated a reduction in both SINV and CHIKV viral replication rates in cells following viral infection as well as reduced infection prevalence, viral titers, and transmission potential in mosquitoes.
Collapse
Affiliation(s)
| | - Emily Levitt
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking GU24 0NF, United Kingdom
| | - Sanjay Basu
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking GU24 0NF, United Kingdom
| | - Barry Atkinson
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking GU24 0NF, United Kingdom
| | - Rennos Fragkoudis
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking GU24 0NF, United Kingdom
| | - Andres Merits
- Applied Virology, Institute of Technology, University of Tartu, Tartu50411, Estonia
| | - Sarah Lumley
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking GU24 0NF, United Kingdom
| | - Will Larner
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking GU24 0NF, United Kingdom
| | - Adriana V. Diaz
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking GU24 0NF, United Kingdom
| | - Sara Rooney
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking GU24 0NF, United Kingdom
| | - Callum J. E. Thomas
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking GU24 0NF, United Kingdom
| | | | - Kai Rausalu
- Applied Virology, Institute of Technology, University of Tartu, Tartu50411, Estonia
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking GU24 0NF, United Kingdom
| |
Collapse
|
7
|
Joseph RE, Bozic J, Werling KL, Urakova N, Rasgon JL. Eilat virus (EILV) causes superinfection exclusion against West NILE virus (WNV) in a strain specific manner in Culex tarsalis mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542294. [PMID: 37292979 PMCID: PMC10245884 DOI: 10.1101/2023.05.25.542294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
West Nile virus (WNV) is the leading cause of mosquito-borne illness in the United States. There are currently no human vaccines or therapies available for WNV, and vector control is the primary strategy used to control WNV transmission. The WNV vector Culex tarsalis is also a competent host for the insect-specific virus (ISV) Eilat virus (EILV). ISVs such as EILV can interact with and cause superinfection exclusion (SIE) against human pathogenic viruses in their shared mosquito host, altering vector competence for these pathogenic viruses. The ability to cause SIE and their host restriction make ISVs a potentially safe tool to target mosquito-borne pathogenic viruses. In the present study, we tested whether EILV causes SIE against WNV in mosquito C6/36 cells and Culex tarsalis mosquitoes. The titers of both WNV strains-WN02-1956 and NY99-were suppressed by EILV in C6/36 cells as early as 48-72 h post superinfection at both multiplicity of infections (MOIs) tested in our study. The titers of WN02-1956 at both MOIs remained suppressed in C6/36 cells, whereas those of NY99 showed some recovery towards the final timepoint. The mechanism of SIE remains unknown, but EILV was found to interfere with NY99 attachment in C6/36 cells, potentially contributing to the suppression of NY99 titers. However, EILV had no effect on the attachment of WN02-1956 or internalization of either WNV strain under superinfection conditions. In Cx. tarsalis, EILV did not affect the infection rate of either WNV strain at either timepoint. However, in mosquitoes, EILV enhanced NY99 infection titers at 3 days post superinfection, but this effect disappeared at 7 days post superinfection. In contrast, WN02-1956 infection titers were suppressed by EILV at 7 days post-superinfection. The dissemination and transmission of both WNV strains were not affected by superinfection with EILV at either timepoint. Overall, EILV caused SIE against both WNV strains in C6/36 cells; however, in Cx. tarsalis, SIE caused by EILV was strain specific potentially owing to differences in the rate of depletion of shared resources by the individual WNV strains.
Collapse
Affiliation(s)
- Renuka E. Joseph
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, United States
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Jovana Bozic
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, United States
| | - Kristine L. Werling
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- Current affiliation: Sherlock Biosciences, Watertown, Massachusetts, United States
| | - Nadya Urakova
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- Current affiliation: Oxford University, Oxford, United Kingdom
| | - Jason L. Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, United States
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
8
|
Cottis S, Blisnick AA, Failloux AB, Vernick KD. Determinants of Chikungunya and O'nyong-Nyong Virus Specificity for Infection of Aedes and Anopheles Mosquito Vectors. Viruses 2023; 15:589. [PMID: 36992298 PMCID: PMC10051923 DOI: 10.3390/v15030589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Mosquito-borne diseases caused by viruses and parasites are responsible for more than 700 million infections each year. Anopheles and Aedes are the two major vectors for, respectively, malaria and arboviruses. Anopheles mosquitoes are the primary vector of just one known arbovirus, the alphavirus o'nyong-nyong virus (ONNV), which is closely related to the chikungunya virus (CHIKV), vectored by Aedes mosquitoes. However, Anopheles harbor a complex natural virome of RNA viruses, and a number of pathogenic arboviruses have been isolated from Anopheles mosquitoes in nature. CHIKV and ONNV are in the same antigenic group, the Semliki Forest virus complex, are difficult to distinguish via immunodiagnostic assay, and symptomatically cause essentially the same human disease. The major difference between the arboviruses appears to be their differential use of mosquito vectors. The mechanisms governing this vector specificity are poorly understood. Here, we summarize intrinsic and extrinsic factors that could be associated with vector specificity by these viruses. We highlight the complexity and multifactorial aspect of vectorial specificity of the two alphaviruses, and evaluate the level of risk of vector shift by ONNV or CHIKV.
Collapse
Affiliation(s)
- Solène Cottis
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris Cité, CNRS UMR2000, F-75015 Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Université UPMC Paris VI, 75252 Paris, France
| | - Adrien A. Blisnick
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Anna-Bella Failloux
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Kenneth D. Vernick
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris Cité, CNRS UMR2000, F-75015 Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Université UPMC Paris VI, 75252 Paris, France
| |
Collapse
|
9
|
In Vitro and In Vivo Coinfection and Superinfection Dynamics of Mayaro and Zika Viruses in Mosquito and Vertebrate Backgrounds. J Virol 2023; 97:e0177822. [PMID: 36598200 PMCID: PMC9888278 DOI: 10.1128/jvi.01778-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Globalization and climate change have contributed to the simultaneous increase and spread of arboviral diseases. Cocirculation of several arboviruses in the same geographic region provides an impetus to study the impacts of multiple concurrent infections within an individual vector mosquito. Here, we describe coinfection and superinfection with the Mayaro virus (Togaviridae, Alphavirus) and Zika virus (Flaviviridae, Flavivirus) in vertebrate and mosquito cells, as well as Aedes aegypti adult mosquitoes, to understand the interaction dynamics of these pathogens and effects on viral infection, dissemination, and transmission. Aedes aegypti mosquitoes were able to be infected with and transmit both pathogens simultaneously. However, whereas Mayaro virus was largely unaffected by coinfection, it had a negative impact on infection and dissemination rates for Zika virus compared to single infection scenarios. Superinfection of Mayaro virus atop a previous Zika virus infection resulted in increased Mayaro virus infection rates. At the cellular level, we found that mosquito and vertebrate cells were also capable of being simultaneously infected with both pathogens. Similar to our findings in vivo, Mayaro virus negatively affected Zika virus replication in vertebrate cells, displaying complete blocking under certain conditions. Viral interference did not occur in mosquito cells. IMPORTANCE Epidemiological and clinical studies indicate that multiple arboviruses are cocirculating in human populations, leading to some individuals carrying more than one arbovirus at the same time. In turn, mosquitoes can become infected with multiple pathogens simultaneously (coinfection) or sequentially (superinfection). Coinfection and superinfection can have synergistic, neutral, or antagonistic effects on viral infection dynamics and ultimately have impacts on human health. Here we investigate the interaction between Zika virus and Mayaro virus, two emerging mosquito-borne pathogens currently circulating together in Latin America and the Caribbean. We find a major mosquito vector of these viruses-Aedes aegypti-can carry and transmit both arboviruses at the same time. Our findings emphasize the importance of considering co- and superinfection dynamics during vector-pathogen interaction studies, surveillance programs, and risk assessment efforts in epidemic areas.
Collapse
|
10
|
Colunga-Saucedo M, Rubio-Hernandez EI, Coronado-Ipiña MA, Rosales-Mendoza S, Castillo CG, Comas-Garcia M. Construction of a Chikungunya Virus, Replicon, and Helper Plasmids for Transfection of Mammalian Cells. Viruses 2022; 15:132. [PMID: 36680173 PMCID: PMC9864538 DOI: 10.3390/v15010132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
The genome of Alphaviruses can be modified to produce self-replicating RNAs and virus-like particles, which are useful virological tools. In this work, we generated three plasmids for the transfection of mammalian cells: an infectious clone of Chikungunya virus (CHIKV), one that codes for the structural proteins (helper plasmid), and another one that codes nonstructural proteins (replicon plasmid). All of these plasmids contain a reporter gene (mKate2). The reporter gene in the replicon RNA and the infectious clone are synthesized from subgenomic RNA. Co-transfection with the helper and replicon plasmids has biotechnological/biomedical applications because they allow for the delivery of self-replicating RNA for the transient expression of one or more genes to the target cells.
Collapse
Affiliation(s)
- Mayra Colunga-Saucedo
- Sección de Genómica Médica, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Edson I. Rubio-Hernandez
- Laboratorio de Células Troncales Humanas, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Miguel A. Coronado-Ipiña
- Sección de Microscopía de Alta Resolución, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Sergio Rosales-Mendoza
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Claudia G. Castillo
- Laboratorio de Células Troncales Humanas, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Mauricio Comas-Garcia
- Sección de Genómica Médica, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
- Sección de Microscopía de Alta Resolución, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78295, Mexico
| |
Collapse
|
11
|
Bermúdez-Méndez E, Bronsvoort KF, Zwart MP, van de Water S, Cárdenas-Rey I, Vloet RPM, Koenraadt CJM, Pijlman GP, Kortekaas J, Wichgers Schreur PJ. Incomplete bunyavirus particles can cooperatively support virus infection and spread. PLoS Biol 2022; 20:e3001870. [PMID: 36378688 PMCID: PMC9665397 DOI: 10.1371/journal.pbio.3001870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Bunyaviruses lack a specific mechanism to ensure the incorporation of a complete set of genome segments into each virion, explaining the generation of incomplete virus particles lacking one or more genome segments. Such incomplete virus particles, which may represent the majority of particles produced, are generally considered to interfere with virus infection and spread. Using the three-segmented arthropod-borne Rift Valley fever virus as a model bunyavirus, we here show that two distinct incomplete virus particle populations unable to spread autonomously are able to efficiently complement each other in both mammalian and insect cells following co-infection. We further show that complementing incomplete virus particles can co-infect mosquitoes, resulting in the reconstitution of infectious virus that is able to disseminate to the mosquito salivary glands. Computational models of infection dynamics predict that incomplete virus particles can positively impact virus spread over a wide range of conditions, with the strongest effect at intermediate multiplicities of infection. Our findings suggest that incomplete particles may play a significant role in within-host spread and between-host transmission, reminiscent of the infection cycle of multipartite viruses.
Collapse
Affiliation(s)
- Erick Bermúdez-Méndez
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
| | - Kirsten F. Bronsvoort
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Mark P. Zwart
- Department of Microbial Ecology, The Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Sandra van de Water
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Ingrid Cárdenas-Rey
- Department of Bacteriology, Host-Pathogen Interactions and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Rianka P. M. Vloet
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | | | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jeroen Kortekaas
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
| | - Paul J. Wichgers Schreur
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- * E-mail:
| |
Collapse
|
12
|
Cherkashchenko L, Rausalu K, Basu S, Alphey L, Merits A. Expression of Alphavirus Nonstructural Protein 2 (nsP2) in Mosquito Cells Inhibits Viral RNA Replication in Both a Protease Activity-Dependent and -Independent Manner. Viruses 2022; 14:v14061327. [PMID: 35746799 PMCID: PMC9228716 DOI: 10.3390/v14061327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 01/02/2023] Open
Abstract
Alphaviruses are positive-strand RNA viruses, mostly being mosquito-transmitted. Cells infected by an alphavirus become resistant to superinfection due to a block that occurs at the level of RNA replication. Alphavirus replication proteins, called nsP1-4, are produced from nonstructural polyprotein precursors, processed by the protease activity of nsP2. Trans-replicase systems and replicon vectors were used to study effects of nsP2 of chikungunya virus and Sindbis virus on alphavirus RNA replication in mosquito cells. Co-expressed wild-type nsP2 reduced RNA replicase activity of homologous virus; this effect was reduced but typically not abolished by mutation in the protease active site of nsP2. Mutations in the replicase polyprotein that blocked its cleavage by nsP2 reduced the negative effect of nsP2 co-expression, confirming that nsP2-mediated inhibition of RNA replicase activity is largely due to nsP2-mediated processing of the nonstructural polyprotein. Co-expression of nsP2 also suppressed the activity of replicases of heterologous alphaviruses. Thus, the presence of nsP2 inhibits formation and activity of alphavirus RNA replicase in protease activity-dependent and -independent manners. This knowledge improves our understanding about mechanisms of superinfection exclusion for alphaviruses and may aid the development of anti-alphavirus approaches.
Collapse
Affiliation(s)
- Liubov Cherkashchenko
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (L.C.); (K.R.)
| | - Kai Rausalu
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (L.C.); (K.R.)
| | - Sanjay Basu
- The Pirbright Institute, Ash Road, Pirbright GU24 ONF, UK; (S.B.); (L.A.)
| | - Luke Alphey
- The Pirbright Institute, Ash Road, Pirbright GU24 ONF, UK; (S.B.); (L.A.)
| | - Andres Merits
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (L.C.); (K.R.)
- Correspondence:
| |
Collapse
|