1
|
Tilahun M, Gedefie A, Seid A, Debash H, Shibabaw A. Prevalence of phenotypic drug resistance profiles and multi-drug-resistant Pseudomonas and Acinetobacter species recovered from clinical specimens in Ethiopia: a systematic review and meta-analysis. BMC Infect Dis 2025; 25:737. [PMID: 40410730 PMCID: PMC12103049 DOI: 10.1186/s12879-025-11136-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 05/16/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND Antimicrobial-resistant Pseudomonas and Acinetobacter species are emerging as serious public health risks, both globally and in resource-limited countries such as Ethiopia. These microorganisms cause serious, life-threatening infections and are becoming increasingly resistant to commonly prescribed antibiotics. The high prevalence and resistance patterns of these bacteria need immediate action to inform treatment guidelines, increase infection control measure, and develop effective public health policies. This systematic review and meta-analysis aimed to assess the prevalence of phenotypic drug resistance profiles and multi-drug-resistant Pseudomonas and Acinetobacter species recovered from clinical specimens in Ethiopia. METHODS This systematic review and meta-analysis, which followed PRISMA principles, analyzed data from PubMed, Scopus, and Google Scholar to determine the prevalence and antibiotic resistance trends of Pseudomonas and Acinetobacter species in Ethiopia. Eligible studies were extracted by using Microsoft Excel and exported to STATA version 17 for analysis. The pooled prevalence was estimated using a random-effects model, and heterogeneity was examined using the I2 statistic. Publication bias was investigated using funnel plot analysis and Egger's test, and sensitivity analysis was used to assess the impact of individual studies on the total pooled findings. RESULT Of the 1,375 studies identified, 187 were eligible for qualitative analysis, leading to the inclusion of 65 studies in the meta-analysis. This analysis encompassed a total of 1,264 isolates, with 364 identified as Pseudomonas and Acinetobacter species. The systematic review revealed a pooled prevalence of 19.12% (95% CI: 14.86-23.38) for Pseudomonas species and 12.46% (95% CI: 5.82-19.10) for Acinetobacter species. The combined prevalence of both pathogens was 25.31 (95% CI: 18.61-32.00) with substantial heterogeneity (I2 = 93.6%, p < 0.001). across the studies. Pseudomonas exhibited high resistance rates to amoxicillin-clavulanic Acid (83.73%) and tetracycline (89.15%), while Acinetobacter showed 87.21% resistance to tetracycline and 79.72% to ceftriaxone. The overall pooled prevalence of MDR Pseudomonas species was 72.73% (95% CI: 67.02-78.44), and for Acinetobacter species, it reached 84.69% (95% CI: 78.78-90.59), respectively. Moreover, the pooled prevalence of MDR for both species isolated from clinical samples in Ethiopia was 74.79% (95% CI: 70.14-79.43), with significant heterogeneity (I2 = 99.7%, p < 0.001) across the studies. CONCLUSION The pooled prevalence of Pseudomonas and Acinetobacter species and their antibiotic resistance were alarmingly high in clinical samples in Ethiopia. These findings highlight the crucial need for more antimicrobial surveillance, stronger stewardship programs, and targeted research to combat the growing threat of resistance. Strategic public health policies are required to decrease these pathogens.
Collapse
Affiliation(s)
- Mihret Tilahun
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wollo University, P.O. Box 1145, Dessie, Ethiopia.
| | - Alemu Gedefie
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wollo University, P.O. Box 1145, Dessie, Ethiopia
| | - Abdurahaman Seid
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wollo University, P.O. Box 1145, Dessie, Ethiopia
| | - Habtu Debash
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wollo University, P.O. Box 1145, Dessie, Ethiopia
| | - Agumas Shibabaw
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wollo University, P.O. Box 1145, Dessie, Ethiopia
| |
Collapse
|
2
|
Asmare Z, Tamrat E, Erkihun M, Endalamaw K, Alelign D, Getie M, Sisay A, Gashaw Y, Reta MA. Antimicrobial resistance pattern of Acinetobacter baumannii clinical isolate in Ethiopia. A systematic review and meta-analysis. BMC Infect Dis 2025; 25:518. [PMID: 40221655 PMCID: PMC11994026 DOI: 10.1186/s12879-025-10923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a growing global health threat. Acinetobacter baumannii (A. baumannii) emerged as one of the most concerning critical priority pathogens due to its ability to develop resistance to multiple antimicrobial agents. In Ethiopia, the public health impact of AMR is increasingly significant, with A. baumannii responsible for a variety of infections. Although A. baumannii causes a range of infections in Ethiopian patients, the drug resistance status of the clinical isolates has not been thoroughly assessed. Therefore, this systematic review and meta-analysis aimed to determine the country-wide AMR of A. baumannii. METHODS This systematic review and meta-analysis followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We conducted a search of articles on PubMed, Web of Science, Science Direct, Scopes electronic databases, Google Scholar search engine, and institutional repositories/libraries for studies published between 2015 and 2024. Eligible studies on A. baumannii-related infections and AMR in Ethiopia were assessed for quality using the Joanna Briggs Institute (JBI) criteria. Data on study characteristics were extracted, and statistical analyses, including heterogeneity (Invers of variance), publication bias (Eggers test), and subgroup analyses, were performed using STATA 17.0. A random effect model was used to compute the pooled prevalence of AMR. RESULTS This systematic review and meta-analysis of 26 Ethiopian studies (26,539 participants) found an A. baumannii prevalence of 3.99% (95% CI: 3.01-4.98%) and 9.13% of all bacterial infections (95% CI: 6.73-11.54%). The most common infections were surgical site infections, urinary tract infections, pneumonia, and sepsis. Pooled resistance to antibiotics varied, with amikacin showing the lowest resistance (20.27%) (95% CI: 11.51-29.03) and cefotaxime the highest (83.18) (95% CI: 71.87-94.48). A pooled multi-drug resistant (MDR) A. baumannii was found in 88.22% (95% CI: 82.28-94.15) of isolates, with regional and infection-type variations, particularly in higher prevalence in Oromia and Amhara regions and sepsis cases. CONCLUSION This systematic review underscores the alarming rise of antimicrobial resistance in A. baumannii, particularly against carbapenems. The findings highlight a high prevalence of MDR A. baumannii and widespread extended-spectrum beta-lactamase production, with notable regional variations in resistance patterns. These high resistance rates reinforce A. baumannii as a critical global health threat, necessitating urgent interventions such as enhanced antimicrobial stewardship programs, improved infection control measures, and the development of alternative treatment strategies. Healthcare professionals, policymakers, and researchers must collaborate to mitigate the clinical and public health impact of this pathogen. PROTOCOL REGISTRATION This systematic review and meta-analysis was registered on PROSPERO (Registration ID: CRD42024623927).
Collapse
Affiliation(s)
- Zelalem Asmare
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Injibara University, Injibara, Ethiopia.
| | - Ephrem Tamrat
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Mulat Erkihun
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Kirubel Endalamaw
- Department of Diagnostic Laboratory, Shegaw Motta General Hospital, PO Box 50, East Gojjam, Motta Town, Ethiopia
| | - Dagninet Alelign
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Injibara University, Injibara, Ethiopia
| | - Molla Getie
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Injibara University, Injibara, Ethiopia
| | - Assefa Sisay
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Yalewayker Gashaw
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Melese Abate Reta
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, Woldia, Ethiopia
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, Prinshof, 0084, South Africa
| |
Collapse
|
3
|
Houlihan E, McCormick A, Connor CO', Knowles SJ. Prevalence study of antimicrobial resistant organisms in very preterm neonates. Ir J Med Sci 2025; 194:623-629. [PMID: 40009276 DOI: 10.1007/s11845-025-03903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Preterm neonates have underdeveloped organs, a fragile skin barrier and an immature immune system rendering them susceptible to infection. These infants are at an increased risk of developing a healthcare-associated infection because of antibiotic exposure, invasive monitoring and the general risk of outbreaks within a hospital setting. The aim of this study was to investigate the prevalence of antimicrobial resistant organism carriage in very preterm neonates (i.e. born ≤ 32 weeks gestation) in the neonatal intensive care unit (NICU). METHODS Neonates born ≤ 32 weeks' gestation in NMH from September 2022 to January 2023 were included. Swabs were taken at admission and fortnightly until week 10 of life. Screening investigations included ESBL (Extended Spectrum Beta-Lactamases) and AmpC producers, organisms resistant to gentamicin and ciprofloxacin, CPE (Carbapenemase-producing Enterobacterales), MRSA (Methicillin-resistant Staphylococcus aureus) and VRE (Vancomycin-resistant Enterococci). This differed from baseline screening by frequency of screening, and the recording of presence of AmpC-producers and ciprofloxacin-resistance. Ethical approval was sought and granted. RESULTS Overall, 20 out of the 53 neonates (38%) included in the study were colonised with one or more resistant-gram-negative organism; 5 with ESBL (9%), 2 resistant to gentamicin (4%), 6 resistant to ciprofloxacin (11%) and 14 (26%) with AmpC producers. Three (6%) resistant gram-negative bacilli were detected on admission screens, and resistance rates peaked at week 4 where 14 screens were positive. No CPE, MRSA or VRE were isolated. DISCUSSION/CONCLUSION This study highlights the prevalence of antibiotic-resistant organisms in a vulnerable patient cohort, the very preterm infants. This review should prompt revision of the importance of infection prevention and control, antimicrobial stewardship and regular MDRO (multi-drug resistant organism) screening in the neonatal critical care setting.
Collapse
Affiliation(s)
- Elaine Houlihan
- Department of Clinical Microbiology, National Maternity Hospital, Holles Street, Dublin, D02YH21, Ireland.
| | - Anna McCormick
- Department of Clinical Microbiology, National Maternity Hospital, Holles Street, Dublin, D02YH21, Ireland
| | - Carol O ' Connor
- Department of Clinical Microbiology, National Maternity Hospital, Holles Street, Dublin, D02YH21, Ireland
| | - Susan J Knowles
- Department of Clinical Microbiology, National Maternity Hospital, Holles Street, Dublin, D02YH21, Ireland
| |
Collapse
|
4
|
Tanga CTF, Makouloutou-Nzassi P, Mbehang Nguema PP, Düx A, Lendzele Sevidzem S, Mavoungou JF, Leendertz FH, Mintsa-Nguema R. Antimicrobial Resistance in African Great Apes. Antibiotics (Basel) 2024; 13:1140. [PMID: 39766531 PMCID: PMC11672706 DOI: 10.3390/antibiotics13121140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Antibiotic-resistant bacteria pose a significant global public health threat that demands serious attention. The proliferation of antimicrobial resistance (AMR) is primarily attributed to the overuse of antibiotics in humans, livestock, and the agro-industry. However, it is worth noting that antibiotic-resistant genes (ARGs) can be found in all ecosystems, even in environments where antibiotics have never been utilized. African great apes (AGAs) are our closest living relatives and are known to be susceptible to many of the same pathogens (and other microorganisms) as humans. AGAs could therefore serve as sentinels for human-induced AMR spread into the environment. They can potentially also serve as reservoirs for AMR. AGAs inhabit a range of environments from remote areas with little anthropogenic impact, over habitats that are co-used by AGAs and humans, to captive settings with close human-animal contacts like zoos and sanctuaries. This provides opportunities to study AMR in relation to human interaction. This review examines the literature on AMR in AGAs, identifying knowledge gaps. RESULTS Of the 16 articles reviewed, 13 focused on wild AGAs in habitats with different degrees of human presence, 2 compared wild and captive apes, and 1 study tested captive apes alone. Ten studies included humans working with or living close to AGA habitats. Despite different methodologies, all studies detected AMR in AGAs. Resistance to beta-lactams was the most common (36%), followed by resistance to aminoglycosides (22%), tetracyclines (15%), fluoroquinolones (10%), sulphonamides (5%), trimethoprim (5%), macrolide (3%), phenicoles (2%) and fosfomycin (1%). CONCLUSIONS While several studies suggest a correlation between increased human contact and higher AMR in AGAs, resistance was also found in relatively pristine habitats. While AGAs clearly encounter bacteria resistant to diverse antibiotics, significant gaps remain in understanding the underlying processes. Comparative studies using standardized methods across different sites would enhance our understanding of the origin and distribution of AMR in AGAs.
Collapse
Affiliation(s)
- Coch Tanguy Floyde Tanga
- Department of Biology and Animal Ecology, Research Institute for Tropical Ecology (IRET/CENAREST), Libreville BP 13354, Gabon; (P.M.-N.); (R.M.-N.)
- Ecole Doctorale des Grandes Ecoles de Libreville, Libreville BP 3989, Gabon
- Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research, Fleischmannstrasse 42, 17489 Greifswald, Germany; (A.D.)
| | - Patrice Makouloutou-Nzassi
- Department of Biology and Animal Ecology, Research Institute for Tropical Ecology (IRET/CENAREST), Libreville BP 13354, Gabon; (P.M.-N.); (R.M.-N.)
- Unit of Research in Health Ecology (URES/CIRMF), Franceville BP 769, Gabon
| | - Pierre Philippe Mbehang Nguema
- Department of Biology and Animal Ecology, Research Institute for Tropical Ecology (IRET/CENAREST), Libreville BP 13354, Gabon; (P.M.-N.); (R.M.-N.)
| | - Ariane Düx
- Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research, Fleischmannstrasse 42, 17489 Greifswald, Germany; (A.D.)
| | - Silas Lendzele Sevidzem
- Laboratoire d’Ecologie des Maladies Transmissibles (LEMAT), Université Libreville Nord (ULN), Libreville BP 1177, Gabon
| | - Jacques François Mavoungou
- Department of Biology and Animal Ecology, Research Institute for Tropical Ecology (IRET/CENAREST), Libreville BP 13354, Gabon; (P.M.-N.); (R.M.-N.)
- Université Internationale de Libreville, Libreville BP 20411, Gabon
| | - Fabian H. Leendertz
- Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research, Fleischmannstrasse 42, 17489 Greifswald, Germany; (A.D.)
| | - Rodrigue Mintsa-Nguema
- Department of Biology and Animal Ecology, Research Institute for Tropical Ecology (IRET/CENAREST), Libreville BP 13354, Gabon; (P.M.-N.); (R.M.-N.)
- Ecole Doctorale des Grandes Ecoles de Libreville, Libreville BP 3989, Gabon
- Laboratoire d’Ecologie des Maladies Transmissibles (LEMAT), Université Libreville Nord (ULN), Libreville BP 1177, Gabon
| |
Collapse
|
5
|
Gebremariam T, Eguale T, Belay T, Kalayu AA, Abula T, Engidawork E. Antibiotic Resistance, and Biofilm Forming Characteristics of Escherichia coli Clinical Isolates at a Hospital in Tigray, Northern Ethiopia. Cureus 2024; 16:e73569. [PMID: 39677066 PMCID: PMC11645175 DOI: 10.7759/cureus.73569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Escherichia coli (E. coli) infections are becoming difficult to treat due to the bacterium's biofilm-forming capabilities and rising resistance to multiple antibiotics, posing a growing clinical challenge. This study assessed the antimicrobial resistance and biofilm formation by Escherichia coli isolates from patients at a hospital in Tigray, Northern Ethiopia. METHOD From patients exhibiting signs of bacterial infection, while excluding recent antibiotic users or those with incomplete data, 417 clinical samples comprised of 84 blood, 108 pus, and 225 urine samples were obtained in a cross-sectional study. The combination disc method was used to test extended-spectrum beta-lactamase (ESBL) production, and Ampicillin C (AmpC) enzyme presence was confirmed with cefoxitin and cefotaxime discs. Data analysis was conducted with SPSS version 22 software, applying ANOVA and logistic regression, with significance set at p<0.05. RESULT Among the 417 samples, 109 (26.1%) tested positive for Escherichia coli. These isolates showed high resistance to ampicillin (84.4%) but lower resistance to meropenem (9.17%). ESBL was detected in 46.8% of isolates and AmpC in 54%, with 48 (44%) isolates positive for both. Strong biofilm formation occurred in 76% of isolates, while only 2.75% were weak producers. Biofilm strength correlated significantly with prior antibiotic use (p=0.028), ward type (p=0.001), and use of indwelling devices (p=0.000). CONCLUSION In northern Ethiopia, Escherichia coli isolates showed resistance to major antibiotic classes like beta-lactams, fluoroquinolones, and aminoglycosides. This high resistance and biofilm development highlight the critical need for interventions to curb resistance spread, with a focus on antibiofilm research and enhanced infection prevention measures.
Collapse
Affiliation(s)
- Teklay Gebremariam
- Department of Pharmacology, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, ETH
| | - Tadesse Eguale
- Microbiology Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, ETH
| | - Tesfaye Belay
- Department of Applied Sciences and Mathematics, School of Stem, Blue Field State College, Bluefield, USA
| | - Alem A Kalayu
- Department of Microbiology, Immunology and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, ETH
| | - Teferra Abula
- Department of Pharmacology, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, ETH
| | - Ephrem Engidawork
- Department of Pharmacology, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, ETH
| |
Collapse
|
6
|
Mukomena PN, Simuunza M, Munsaka S, Kwenda G, Bumbangi F, Yamba K, Kabwe J, Kayembe JM, Muma JB. Antimicrobial resistance profiles of and associated risk factors for Pseudomonas aeruginosa nosocomial infection among patients at two tertiary healthcare facilities in Lusaka and Copperbelt Provinces, Zambia. JAC Antimicrob Resist 2024; 6:dlae139. [PMID: 39286817 PMCID: PMC11403203 DOI: 10.1093/jacamr/dlae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/28/2024] [Indexed: 09/19/2024] Open
Abstract
Background Antimicrobial resistance (AMR) of pathogens such as Pseudomonas aeruginosa is among the top 10 threats to global health. However, clinical and molecular data are scarce in Zambia. We, therefore, evaluated the AMR profiles of P. aeruginosa nosocomial infections (NIs). Methods A year-long hospital-based cross-sectional study was conducted at two large tertiary-level hospitals in Zambia. Patients with current or previous hospital contact were screened for NIs. The current study focused on patients diagnosed with P. aeruginosa NIs. Clinical specimens were collected for bacteriological culture, and PCR amplification of 16S rRNA gene fragments was performed on pure isolates. Hospital or NIs were defined as infections that arise during hospitalization, occurring at least 48 h after admission. The Kirby-Bauer's disk diffusion method was used to evaluate antibiotic resistance patterns. The association between AMR and risk factors was analysed using the χ2 test. Results Eight hundred and forty-one patients were screened, and clinical specimens were collected and analysed. Of them, 116 (13.7%) were diagnosed with P. aeruginosa NIs. The participants' ages ranged from 15 to 98 years, with a mean of 51 (SD ± 18). Catheter-associated urinary tract infections (57%) were the most common, followed by pressure sores (38.7%). P. aeruginosa isolates were primarily susceptible to amikacin, which had the highest resistance to FEP. We observed a high prevalence of multidrug resistance (73.6%). The AMR was associated with carbapenem-hydrolysing β-lactamase gene blaOXA-51 and surgical care. Conclusions This study has demonstrated that multidrug-resistant P. aeruginosa is prevalent in hospitals in Zambia's Lusaka and Ndola districts and possibly countrywide.
Collapse
Affiliation(s)
- Patrice Ntanda Mukomena
- Department of Medicine, School of Medicine, Eden University, Lusaka, Zambia
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Martin Simuunza
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Sody Munsaka
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Geoffrey Kwenda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Flavien Bumbangi
- Department of Medicine, School of Medicine, Eden University, Lusaka, Zambia
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Kaunda Yamba
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Josephine Kabwe
- Department of Medicine, School of Medicine, Eden University, Lusaka, Zambia
| | - Jean-Marie Kayembe
- Department of Medicine, School of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - John Bwalya Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| |
Collapse
|
7
|
Santella B, Boccella M, Folliero V, Iervolino D, Pagliano P, Fortino L, Serio B, Vozzella EA, Schiavo L, Galdiero M, Capunzo M, Boccia G, Franci G. Antimicrobial Susceptibility Profiles of Klebsiella pneumoniae Strains Collected from Clinical Samples in a Hospital in Southern Italy. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:5548434. [PMID: 38698837 PMCID: PMC11065490 DOI: 10.1155/2024/5548434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Infections caused by antibiotic-resistant bacteria represent a serious threat to global public health. Recently, due to its increased resistance to carbapenems and β-lactams, Klebsiella pneumoniae has become one of the main causes of septicemia, pneumonia, and urinary tract infections. It is crucial to take immediate action and implement effective measures to prevent further spread of this issue. This study aims to report the prevalence and antibiotic resistance rates of K. pneumoniae strains isolated from clinical specimens from 2015 to 2020 at the University Hospital of Salerno, Italy. More than 3,800 isolates were collected from urine cultures, blood cultures, respiratory samples, and others. K. pneumoniae isolates showed broad resistance to penicillin and cephalosporins, and increased susceptibility to fosfomycin and gentamicin. Extended spectrum beta-lactamase (ESBL) isolates accounted for 20-22%. A high percentage of strains tested were resistant to carbapenems, with an average of 40% to meropenem and 44% to ertapenem. The production of ESBLs and resistance to carbapenems is one of the major public health problems. Constant monitoring of drug-resistant isolates is crucial for developing practical approaches in implementing antimicrobial therapy and reducing the spread of K. pneumoniae in nosocomial environments.
Collapse
Affiliation(s)
- Biagio Santella
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi 84081, Italy
| | - Mariarosaria Boccella
- Department of Laboratory and Infectious Disease Sciences, Agostino Gemelli University Hospital IRCCS, Rome 00168, Italy
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi 84081, Italy
| | - Domenico Iervolino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome 00185, Italy
| | - Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi 84081, Italy
| | - Luigi Fortino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi 84081, Italy
| | - Bianca Serio
- A.O.U. San Giovanni di Dio e Ruggi D'Aragona, Salerno 84131, Italy
| | | | - Luigi Schiavo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi 84081, Italy
| | - Massimiliano Galdiero
- U.O.C. of Virology and Microbiology, University Hospital “Luigi Vanvitelli”, Naples 80138, Italy
| | - Mario Capunzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi 84081, Italy
- DAI Department of Health Hygiene and Evaluative Medicine, U.O.C. Clinical Pathology and Microbiological, A.O.U. San Giovanni di Dio e Ruggi D'Aragona, Salerno 84131, Italy
| | - Giovanni Boccia
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi 84081, Italy
- DAI Department of Health Hygiene and Evaluative Medicine, U.O.C. Clinical Pathology and Microbiological, A.O.U. San Giovanni di Dio e Ruggi D'Aragona, Salerno 84131, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi 84081, Italy
- DAI Department of Health Hygiene and Evaluative Medicine, U.O.C. Clinical Pathology and Microbiological, A.O.U. San Giovanni di Dio e Ruggi D'Aragona, Salerno 84131, Italy
| |
Collapse
|
8
|
Mansouri S, Savari M, Malakian A, Abbasi Montazeri E. High prevalence of multidrug-resistant Enterobacterales carrying extended-spectrum beta-lactamase and AmpC genes isolated from neonatal sepsis in Ahvaz, Iran. BMC Microbiol 2024; 24:136. [PMID: 38658819 PMCID: PMC11040821 DOI: 10.1186/s12866-024-03285-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVES In the recent years, multidrug resistant (MDR) neonatal septicemia-causing Enterobacterales has been dramatically increased due to the extended-spectrum beta-lactamases (ESBLs) and AmpC enzymes. This study aimed to assess the antibiotic resistance pattern, prevalence of ESBLs/AmpC beta-lactamase genes, and Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) fingerprints in Enterobacterales isolated from neonatal sepsis. RESULTS In total, 59 Enterobacterales isolates including 41 (69.5%) Enterobacter species, 15 (25.4%) Klebsiella pneumoniae and 3 (5.1%) Escherichia coli were isolated respectively. Resistance to ceftazidime and cefotaxime was seen in all of isolates. Furthermore, all of them were multidrug-resistant (resistant to three different antibiotic categories). The phenotypic tests showed that 100% of isolates were ESBL-positive. Moreover, AmpC production was observed in 84.7% (n = 50/59) of isolates. Among 59 ESBL-positive isolates, the highest percentage belonged to blaCTX-M-15 gene (66.1%) followed by blaCTX-M (45.8%), blaCTX-M-14 (30.5%), blaSHV (28.8%), and blaTEM (13.6%). The frequency of blaDHA, blaEBC, blaMOX and blaCIT genes were 24%, 24%, 4%, and 2% respectively. ERIC-PCR analysis revealed that Enterobacterales isolates were genetically diverse. The remarkable prevalence of MDR Enterobacterales isolates carrying ESBL and AmpC beta-lactamase genes emphasizes that efficient surveillance measures are essential to avoid the more expansion of drug resistance amongst isolates.
Collapse
Affiliation(s)
- Sima Mansouri
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Savari
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arash Malakian
- Department of Pediatrics, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Effat Abbasi Montazeri
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
9
|
Elawady BA, Mahmoud NR, Badawi HES, Badr AEE, Gohar NM. Antimicrobial activity of cefepime-tazobactam combination against extended spectrum beta-lactamase and/or AmpC beta-lactamase- producing gram-negative bacilli. BMC Infect Dis 2024; 24:434. [PMID: 38654148 DOI: 10.1186/s12879-024-09296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The problem of resistance to beta-lactam antibiotics, which is caused by ESBL and AmpC β-lactamases, is getting worse globally. Infections caused by bacterial isolates harboring these enzymes are difficult to treat with carbapenems being the sole effective treatment option for such infections. The objective of this study was to determine the frequency of ESBLs and AmpC-producing Gram-negative bacilli isolated from clinical specimens and to evaluate the sensitivity of cefepime-tazobactam combination against them. METHODS This is an observational cross-sectional study carried out on 100 Gram-negative bacilli at Theodor Bilharz Research Institute Hospital during the period from February 2015 to January 2016. ESBL production was screened by using the disc diffusion test followed by confirmation by the combined disc confirmatory test, the screening for AmpC production was conducted using the cefoxitin disc test, which was subsequently confirmed by the AmpC disc test. Isolates confirmed positive for ESBL and/ or AmpC production were investigated for their susceptibility to antibiotics. RESULTS Among 100 Gram-negative bacilli, 44 isolates were confirmed as ESBL producers by the combined disc confirmatory test out of 56 isolates that tested positive for ESBL production through the disc diffusion test. The presence of AmpC production was assessed using the cefoxitin disc test, 32 isolates were screened to be AmpC producers, and the AmpC disc test confirmed AmpC production in 9 isolates of them. Using the Mast® D68C set, 32 isolates were ESBL producers, 3 were AmpC producers, and 4 isolates were ESBL/AmpC co-producers. The highest sensitivity was to cefepime-tazobactam (91.48%) followed by the carbapenems. CONCLUSION Cefepime-tazobactam showed remarkable activity against ESBL and/or AmpC-producing Gram-negative bacilli and may be considered as a therapeutic alternative to carbapenems.
Collapse
Affiliation(s)
- Basma Ahmed Elawady
- Medical Microbiology and Immunology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Noha Refaat Mahmoud
- Medical Microbiology and Immunology, Theodor Bilharz Research Institute, Warraq Al Hadar, Egypt
| | - Hala El-Sayed Badawi
- Medical Microbiology and Immunology, Theodor Bilharz Research Institute, Warraq Al Hadar, Egypt
| | - Azza Essam Eldin Badr
- Medical Microbiology and Immunology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noha Mahmoud Gohar
- Medical Microbiology and Immunology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Garba Z, Kaboré B, Bonkoungou IJO, Natama MH, Rouamba T, Haukka K, Kirveskari JP, Tinto H, Sangaré L, Barro N, Kantele A. Phenotypic Detection of Carbapenemase and AmpC-β-Lactamase Production among Extended Spectrum β-Lactamase (ESBL)-Producing Escherichia coli and Klebsiella spp. Isolated from Clinical Specimens. Antibiotics (Basel) 2023; 13:31. [PMID: 38247589 PMCID: PMC10812623 DOI: 10.3390/antibiotics13010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction: Data on antimicrobial resistance (AMR) are sparse across numerous African countries, as microbiological analyses are not routinely conducted and surveillance data are not collected. Accordingly, clinical samples are not routinely tested for carbapenem-resistant bacteria and, therefore, the general understanding of their prevalence in the region remains limited. Methods: Between January 2020 and June 2022, we collected extended spectrum β-lactamase (ESBL)-producing Enterobacterales (ESBL-PE) isolates from five hospitals in Burkina Faso. After an initial culture on ESBL-selective media, the species were identified using API20E and isolates were tested against 13 antimicrobial agents using the disc diffusion method on Mueller-Hinton (MH) agar. ESBL production was confirmed via a double-disc synergy test. Production of carbapenemases and AmpC-β-lactamases and phenotypic co-resistance were determined. Results: Among the 473 ESBL-PE, 356 were ESBL-E. coli (ESBL-Ec) and 117 were Klebsiella spp. (ESBL-K). Of these isolates, 5.3% were carbapenemase and 5.3% were AmpC-β-lactamase-positive. Three types of carbapenemases were identified: 19 NDM, 3 OXA-48-like and 1 VIM. Two isolates produced both NDM and OXA-48-like carbapenemases. Carbapenemase producers were detected at all levels of healthcare. Co-resistance rates were up to 85% for aminoglycosides, 90% for sulfonamides, 95% for fluoroquinolones and 25% for chloramphenicol. Fosfomycin resistance was 6% for ESBL-Ec and 49% for ESBL-K (49%). Conclusions: Some of the ESBL-Ec and ESBL-K co-produced carbapenemases and/or AmpC-β-lactamases at all healthcare levels and in various sample types with high co-resistance rates to non-betalactams. Carbapenem resistance is no longer rare, calling for testing in routine diagnostics, a comprehensive resistance surveillance system and infection control within healthcare.
Collapse
Affiliation(s)
- Zakaria Garba
- Department of Biochemistry and Microbiology, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso; (I.J.O.B.); (N.B.)
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Ouagadougou 11 BP 218, Burkina Faso; (B.K.); (M.H.N.); (T.R.); (H.T.)
| | - Bérenger Kaboré
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Ouagadougou 11 BP 218, Burkina Faso; (B.K.); (M.H.N.); (T.R.); (H.T.)
| | - Isidore J. O. Bonkoungou
- Department of Biochemistry and Microbiology, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso; (I.J.O.B.); (N.B.)
| | - Magloire H. Natama
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Ouagadougou 11 BP 218, Burkina Faso; (B.K.); (M.H.N.); (T.R.); (H.T.)
| | - Toussaint Rouamba
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Ouagadougou 11 BP 218, Burkina Faso; (B.K.); (M.H.N.); (T.R.); (H.T.)
| | - Kaisa Haukka
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland;
- Human Microbiome Research Program, Medical Faculty, University of Helsinki, 00014 Helsinki, Finland
| | - Juha P. Kirveskari
- Helsinki Innovation Services Ltd., University of Helsinki, 00014 Helsinki, Finland;
| | - Halidou Tinto
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Ouagadougou 11 BP 218, Burkina Faso; (B.K.); (M.H.N.); (T.R.); (H.T.)
| | - Lassana Sangaré
- Department of Health Sciences, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso;
| | - Nicolas Barro
- Department of Biochemistry and Microbiology, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso; (I.J.O.B.); (N.B.)
| | - Anu Kantele
- Human Microbiome Research Program, Medical Faculty, University of Helsinki, 00014 Helsinki, Finland
- Meilahti Infectious Diseases and Vaccine Research Center MeiVac, Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
11
|
Myataza A, Thomas J, Smith AM. Characterization of Salmonella enterica serovar Isangi from South Africa, 2020-2021. BMC Infect Dis 2023; 23:791. [PMID: 37957562 PMCID: PMC10644633 DOI: 10.1186/s12879-023-08786-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND We describe the genotypic characteristics and antimicrobial resistance (AMR) determinants of Salmonella enterica serovar Isangi (Salmonella Isangi) clinical isolates in South Africa from 2020 through 2021. METHODS During the years 2020 to 2021, the Centre for Enteric Diseases of the National Institute for Communicable Diseases, a national reference centre in South Africa for human infections resulting from enteric bacterial pathogens, investigated a total of 3549 clinical isolates of Salmonella species. Whole genome sequencing (WGS) was performed using Illumina NextSeq Technology. WGS data was analyzed using Centre for Genomic Epidemiology-based tools and EnteroBase web-based platform. Genotypic relatedness and cluster analysis was investigated based on core-genome multilocus sequence typing. RESULTS Forty-nine isolates were confirmed to be Salmonella Isangi, with most submitted from Gauteng Province (24/49, 49%). The most prevalent sequence type was ST335 (48/49, 98%), and the remaining 1 isolate was ST216. All ST335 isolates were genotypically multidrug-resistant (MDR), with resistance to fluoroquinolones, chloramphenicol, trimethoprim-sulfamethoxazole and tetracycline; the ST216 isolate was resistant only to aminoglycosides. All ST335 isolates carried ESBL genes, the most common being blaCTX-M-15. Five clusters (consisting of isolates related within five allele differences) were detected, all being ST335. CONCLUSIONS Most Salmonella Isangi isolates in South Africa are MDR and ESBL-positive. Ongoing monitoring of the epidemiology and AMR profile of this serovar is important for public health and treatment guidelines.
Collapse
Affiliation(s)
- Asive Myataza
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa.
| | - Juno Thomas
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Anthony M Smith
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
12
|
Beshah D, Desta AF, Woldemichael GB, Belachew EB, Derese SG, Zelelie TZ, Desalegn Z, Tessema TS, Gebreselasie S, Abebe T. High burden of ESBL and carbapenemase-producing gram-negative bacteria in bloodstream infection patients at a tertiary care hospital in Addis Ababa, Ethiopia. PLoS One 2023; 18:e0287453. [PMID: 37368908 DOI: 10.1371/journal.pone.0287453] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Bloodstream infection due to beta-lactamase and carbapenemase-producing gram-negative bacteria poses a substantial challenge to the effectiveness of antimicrobial treatments. Therefore, this study aimed to investigate the magnitude of beta-lactamase, carbapenemase-producing gram-negative bacteria, and associated risk factors of bloodstream infections in patients at a tertiary care hospital, in Addis Ababa, Ethiopia. METHODS An institutional-based cross-sectional study was conducted with convenience sampling techniques from September 2018 to March 2019. Blood cultures were analyzed from 1486 bloodstream infection suspected patients across all age groups. The blood sample was collected using two BacT/ALERT blood culture bottles for each patient. Gram stain, colony characteristics, and conventional biochemical tests were used to classify the gram-negative bacteria at the species level. Antimicrobial susceptibility testing was carried out to screen beta-lactam and carbapenem drug-resistant bacteria. The E-test was conducted for extended-spectrum-beta-lactamase and AmpC-beta-lactamase-producers. A modified and EDTA-modified carbapenem inactivation method was conducted for carbapenemase and metallo-beta-lactamases producers. Data collected using structured questionnaires and medical records were reviewed, encoded, and cleaned using EpiData V3.1. software. The cleaned data were exported and analyzed using SPSS version 24 software. Descriptive statistics and multivariate logistic registration models were used to describe and assess factors associated with acquiring drug-resistant bacteria infection. A p-value <0.05 was considered statistically significant. RESULT Among 1486 samples, 231 gram-negative bacteria were identified; of these, 195(84.4%) produce drug-hydrolyzing enzymes, and 31(13.4%) produce more than one drug-hydrolyzing enzyme. We found 54.0% and 25.7% of the gram-negative bacteria to be extended-spectrum-beta-lactamase and carbapenemase-producing, respectively. The extended-spectrum-beta-lactamase plus AmpC-beta-lactamase-producing bacteria account for 6.9%. Among the different isolates Klebsiella pneumonia 83(36.7%) was the highest drug-hydrolyzing enzyme-producing bacteria. Acinetobacter spp 25(53.2%) was the most carbapenemase producer. Extended-spectrum-beta-lactamase and carbapenemase-producing bacteria were high in this study. A significant association between age groups and extended-spectrum-beta-lactamase producer bacterial infection was seen, with a high prevalence in neonates (p = <0.001). Carbapenemase showed a significant association with patients admitted to the intensive care unit (p = 0.008), general surgery (p = 0.001), and surgical intensive care unit (p = 0.007) departments. Delivery of neonates by caesarean section, and insertion of medical instruments into the body were exposing factors for carbapenem-resistant bacterial infection. Chronic illnesses were associated with an extended-spectrum-beta-lactamase-producing bacterial infection. Klebsiella pneumonia and Acinetobacter species showed the greatest rates of extensively drug-resistant (37.3%) and pan-drug-resistance (76.5%), respectively. According to the results of this study, the pan-drug-resistance prevalence was found to be alarming. CONCLUSION Gram-negative bacteria were the main pathogens responsible for drug-resistant bloodstream infections. A high percentage of extended-spectrum-beta-lactamase and carbapenemase-producer bacteria were found in this study. Neonates were more susceptible to extended-spectrum-beta-lactamase and AmpC-beta-lactamase-producer bacteria. Patients in general surgery, caesarean section delivery, and intensive care unit were more susceptible to carbapenemase-producer bacteria. The suction machines, intravenous lines, and drainage tubes play an important role in the transmission of carbapenemase and metallo-beta-lactamase-producing bacteria. The hospital management and other stakeholders should work on infection prevention protocol implementation. Moreover, special attention should be given to all types of Klebsiella pneumoniae and pan-drug resistance Acinetobacter spp transmission dynamics, drug resistance genes, and virulence factors.
Collapse
Affiliation(s)
- Daniel Beshah
- Microbial Cellular and Molecular Biology Department, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Diagnostic Laboratory, Tikur Anbessa Specialized Hospital, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Adey Feleke Desta
- Microbial Cellular and Molecular Biology Department, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gurja Belay Woldemichael
- Microbial Cellular and Molecular Biology Department, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Esmael Besufikad Belachew
- Department of Biology, College of Natural and Computational Sciences, Mizan-Tepi University, Tepi, Ethiopia
| | - Solomon Gizaw Derese
- Department of Diagnostic Laboratory, Tikur Anbessa Specialized Hospital, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tizazu Zenebe Zelelie
- Department of Medical Laboratory Science, Debre Berhan University, Debre Berhan, Ethiopia
| | - Zelalem Desalegn
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Solomon Gebreselasie
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tamrat Abebe
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
13
|
Shibabaw A, Sahle Z, Metaferia Y, Atlaw A, Adenew B, Gedefie A, Tilahun M, Ebrahim E, Kassa Y, Debash H, Wang SH. Epidemiology and prevention of hospital-acquired carbapenem-resistant Enterobacterales infection in hospitalized patients, Northeast Ethiopia. IJID REGIONS 2023; 7:77-83. [PMID: 37009574 PMCID: PMC10050477 DOI: 10.1016/j.ijregi.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVE Carbapenemase-producing carbapenem-resistant Enterobacterales (CP-CRE) are usually healthcare associated. The aim of this study was to investigate the epidemiology of hospital-acquired CRE and multi-drug-resistant infections, and identify associated risk factors in hospitalized patients in Northeast Ethiopia. METHODS This cross-sectional study was conducted in patients admitted with sepsis between January and June 2021. Demographic and clinical data were collected using questionnaires. In total, 384 samples were collected and cultured based on source of infection. Bacterial species identification was performed using biochemical tests, and drug susceptibility testing was done using the Kirby-Bauer disk diffusion method. The modified carbapenem inactivation method was employed for carbapenemase detection. Data were analysed using Statistical Package for the Social Sciences. RESULTS The overall rate of CP-CRE infection was 14.6%. Bloodstream infections and urinary tract infections were the predominant hospital-acquired infections (HAIs). The majority of CP-CRE were Escherichia coli and Klebsiella pneumoniae, and accounted for 4.9%. Chronic underlying disease (adjusted odds ratio (AOR): 7.9, 95% confidence interval (CI): 1.9-31.5), number of beds per room (AOR: 11, 95% CI: 1.7-75) and eating raw vegetables (AOR: 11, 95% CI: 3.4-40) were significantly associated with hospital-acquired CRE infection. CONCLUSIONS The rate of CP-CRE infection found in this study is concerning. There is a need for further evaluation of risk factors and measures to decrease HAI. Hand hygiene, increased laboratory capacity, improved infection prevention measures, and antimicrobial stewardship programmes are needed in healthcare settings to halt the transmission of CP-CRE.
Collapse
Affiliation(s)
- Agumas Shibabaw
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Zenawork Sahle
- Department of Medical Laboratory Sciences, Debre Berhan Health Science College, Debre Berhan, Ethiopia
| | - Yeshi Metaferia
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Asgdew Atlaw
- Department of Medical Laboratory Sciences, Debre Berhan Health Science College, Debre Berhan, Ethiopia
| | - Behailu Adenew
- Department of Medical Laboratory Sciences, Debre Berhan Comprehensive Specialized Hospital, Debre Berhan, Ethiopia
| | - Alemu Gedefie
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Mihret Tilahun
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Endris Ebrahim
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Yeshimebet Kassa
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Habtu Debash
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Shu-Hua Wang
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, and Global One Health initiative, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
14
|
Yamba K, Lukwesa-Musyani C, Samutela MT, Kapesa C, Hang’ombe MB, Mpabalwani E, Hachaambwa L, Fwoloshi S, Chanda R, Mpundu M, Kashweka G, Nakazwe R, Mudenda S, Muma JB. Phenotypic and genotypic antibiotic susceptibility profiles of Gram-negative bacteria isolated from bloodstream infections at a referral hospital, Lusaka, Zambia. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001414. [PMID: 36963041 PMCID: PMC10021926 DOI: 10.1371/journal.pgph.0001414] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/29/2022] [Indexed: 05/31/2023]
Abstract
Bloodstream infections (BSI) caused by antimicrobial-resistant (AMR) Gram-negative bacteria (GNB) are a significant cause of morbidity and mortality. Third-generation cephalosporins (3GCs) have been used as empiric treatment for BSI and other invasive infections for years; however, their overuse could promote the emergence of extended-spectrum beta-lactamases (ESBLs). Thus, this study aimed to determine the epidemiological, clinical and microbiological features and the effects of antimicrobial resistance on the outcomes of BSIs at a referral hospital in Lusaka, Zambia. This was a six-month prospective facility-based study undertaken at a referral hospital in Lusaka, Zambia. As part of the routine diagnosis and patient care, blood samples for bacteriological culture were collected from patients presenting with fever and processed for pathogen identification and antimicrobial susceptibility testing using the VITEK 2 Compact instrument. ESBLs and plasmid-mediated quinolone resistance (PMQR) associated genes were determined using the polymerase chain reaction method. Patient information was collected using a structured data collection sheet and entered in CSpro 7.6. Data were analysed in WHOnet and STATA version 14. A total of 88 GNB were isolated, of which 76% were Enterobacterales, 14% Acinetobacter baumannii and 8% Pseudomonas aeruginosa. Resistance to third and fourth-generation cephalosporins was 75% and 32%, respectively. Noteworthy was the high prevalence (68%) of inappropriate empirical treatment, carbapenem resistance (7%), multi-drug resistance (83%) and ESBL-producers (76%). In comparison to E. coli as a causative agent of BSI, the odds of death were significantly higher among patients infected with Acinetobacter baumannii (OR = 3.8). The odds of death were also higher in patients that received 3GCs as empiric treatment than in those that received 4GCs or other (none cephalosporin) treatment options. Structured surveillance, yearly antibiogram updates, improved infection control and a well functional antimicrobial stewardship (AMS) program, are of utmost importance in improving appropriate antimicrobial treatment selection and favourable patient outcomes.
Collapse
Affiliation(s)
- Kaunda Yamba
- Department of Pathology & Microbiology Laboratory, University Teaching Hospitals, Lusaka, Zambia
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Chileshe Lukwesa-Musyani
- Department of Pathology & Microbiology Laboratory, University Teaching Hospitals, Lusaka, Zambia
| | - Mulemba Tillika Samutela
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia Lusaka, Zambia
- Department of Paraclinical Studies, University of Zambia, School of Veterinary Medicine, Lusaka, Zambia
| | - Christine Kapesa
- Department of Pathology & Microbiology Laboratory, University Teaching Hospitals, Lusaka, Zambia
| | - Mudenda Bernard Hang’ombe
- Department of Paraclinical Studies, University of Zambia, School of Veterinary Medicine, Lusaka, Zambia
| | - Evans Mpabalwani
- Department of Paediatrics & Child Health, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Lottie Hachaambwa
- Department of Internal Medicine, Infectious Diseases Unit, University Teaching Hospital, Lusaka, Zambia
| | - Sombo Fwoloshi
- Department of Internal Medicine, Infectious Diseases Unit, University Teaching Hospital, Lusaka, Zambia
| | - Raphael Chanda
- Department of Pathology & Microbiology Laboratory, University Teaching Hospitals, Lusaka, Zambia
| | - Mirfin Mpundu
- ReAct Africa, Honnington Close, Greystone Park, Harare, Zimbabwe
| | - Glory Kashweka
- Department of Pathology & Microbiology Laboratory, University Teaching Hospitals, Lusaka, Zambia
| | - Ruth Nakazwe
- Department of Pathology & Microbiology Laboratory, University Teaching Hospitals, Lusaka, Zambia
| | - Steward Mudenda
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - John Bwalya Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| |
Collapse
|
15
|
Shaaban M, Elshaer SL, Abd El-Rahman OA. Prevalence of extended-spectrum β-lactamases, AmpC, and carbapenemases in Proteus mirabilis clinical isolates. BMC Microbiol 2022; 22:247. [PMID: 36221063 PMCID: PMC9552493 DOI: 10.1186/s12866-022-02662-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Proteus mirabilis is an opportunistic pathogen, causing a variety of community-acquired and nosocomial illnesses. It poses a potential threat to patients via the production of β-lactamases, which decrease the efficacy of antimicrobial treatment and impair the management of its pathogenicity. Hence, this study was established to determine the prevalence of extended-spectrum β-lactamases (ESBLs), AmpC, and carbapenemases of P. mirabilis isolated from various clinical specimens. Results Proteus mirabilis was identified in 20.7% (58/280) of specimens. ESBL producers were present at a rate of 51.7% (30/58). All AmpC-positive isolates (n = 20) produced ESBLs as well, so 66.7% of ESBL-producing isolates coproduced AmpC enzymes. The modified Hodge test confirmed carbapenemase production in six out of seven imipenem nonsusceptible isolates. Of these, only two (5.7%) isolates were also ESBL-and AmpC-positive. Antibiotic resistance reached the highest level for cotrimoxazole (62.1%, n = 36/58 isolates) and the lowest for imipenem (12.1%, n = 7/58 isolates). The levels of multidrug-resistant (MDR) was 41.4% among the tested isolates. The blaSHV (83.3%), blaAmpC (80%), and blaVIM-1 (50%) were the most detected genes in phenotypically confirmed ESBL-, AmpC-, and carbapenemase-producing isolates, respectively. Besides, more than a half of the tested P. mirabilis strains (53%) coproduced ESBLs and AmpC. Moreover, two isolates coproduced ESBLs and AmpC together with carbapenemases. Furthermore, dendrogram analysis showed great genetic divergence based on the 21 different enterobacterial repetitive intergenic consensus (ERIC) patterns (P1–P21) through the 34 β-lactamase producers. ERIC analysis distinguished clonal similarities between isolates 21 and 22 in P2 and 9 and 10 in P4, which were isolated from the same clinical source and possessed similar patterns of β-lactamase-encoding genes. Conclusion Hence, there is an urgent need to monitor hospitalized patients and improve healthcare in order to reduce the incidence of infection and outbreaks of infection with antibiotic-resistant Proteus. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02662-3.
Collapse
Affiliation(s)
- Mona Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Soha Lotfy Elshaer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Ola A Abd El-Rahman
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11651, Egypt
| |
Collapse
|
16
|
Cruz-López F, Martínez-Meléndez A, Morfin-Otero R, Rodriguez-Noriega E, Maldonado-Garza HJ, Garza-González E. Efficacy and In Vitro Activity of Novel Antibiotics for Infections With Carbapenem-Resistant Gram-Negative Pathogens. Front Cell Infect Microbiol 2022; 12:884365. [PMID: 35669117 PMCID: PMC9163340 DOI: 10.3389/fcimb.2022.884365] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022] Open
Abstract
Infections by Gram-negative multi-drug resistant (MDR) bacterial species are difficult to treat using available antibiotics. Overuse of carbapenems has contributed to widespread resistance to these antibiotics; as a result, carbapenem-resistant Enterobacterales (CRE), A. baumannii (CRAB), and P. aeruginosa (CRPA) have become common causes of healthcare-associated infections. Carbapenems, tigecycline, and colistin are the last resource antibiotics currently used; however, multiple reports of resistance to these antimicrobial agents have been documented worldwide. Recently, new antibiotics have been evaluated against Gram-negatives, including plazomicin (a new aminoglycoside) to treat CRE infection, eravacycline (a novel tetracycline) with in vitro activity against CRAB, and cefiderocol (a synthetic conjugate) for the treatment of nosocomial pneumonia by carbapenem-non-susceptible Gram-negative isolates. Furthermore, combinations of known β-lactams with recently developed β-lactam inhibitors, such as ceftazidime-avibactam, ceftolozane-tazobactam, ceftazidime-tazobactam, and meropenem-vaborbactam, has been suggested for the treatment of infections by extended-spectrum β-lactamases, carbapenemases, and AmpC producer bacteria. Nonetheless, they are not active against all carbapenemases, and there are reports of resistance to these combinations in clinical isolates.This review summarizes and discusses the in vitro and clinical evidence of the recently approved antibiotics, β-lactam inhibitors, and those in advanced phases of development for treating MDR infections caused by Gram-negative multi-drug resistant (MDR) bacterial species.
Collapse
Affiliation(s)
- Flora Cruz-López
- Subdirección Académica de Químico Farmacéutico Biólogo, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Adrian Martínez-Meléndez
- Subdirección Académica de Químico Farmacéutico Biólogo, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Rayo Morfin-Otero
- Instituto de Patología Infecciosa y Experimental "Dr. Francisco Ruiz Sánchez", Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Eduardo Rodriguez-Noriega
- Instituto de Patología Infecciosa y Experimental "Dr. Francisco Ruiz Sánchez", Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Héctor J Maldonado-Garza
- Servicio de Gastroenterología, Hospital Universitario 'Dr. José Eleuterio González', Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Elvira Garza-González
- Laboratorio de Microbiología Molecular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| |
Collapse
|
17
|
Sahle Z, Engidaye G, Shenkute D, Metaferia Y, Shibabaw A. High Prevalence of Multi-Drug Resistance and Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae Among Hospitalized Patients Presumptive for Bacterial Infection at Debre Berhan Comprehensive Specialized Hospital, Ethiopia. Infect Drug Resist 2022; 15:2639-2656. [PMID: 35642212 PMCID: PMC9148578 DOI: 10.2147/idr.s363988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Background Multi-drug resistant Enterobacteriaceae (MDR-E), primarily extended-spectrum beta-lactamase producers (ESBLs), have emerged as a major public health concern. This study aimed to determine the prevalence of multi-drug resistance and extended-spectrum beta-lactamase-producing Enterobacteriaceae among hospitalized patients presumptive for bacterial infections at Debre Berhan Comprehensive Specialized Hospital, Ethiopia. Methods A hospital-based cross-sectional study was conducted from January to May 2021. A total of 384 hospitalized patients presumptive for bacterial infections were included in the study. Urine, wound, blood, stool, and sputum samples were collected and cultured on MacConkey agar, Cysteine Lactose Electrolyte Deficient medium, and Blood agar. Identification was done using a panel of biochemical tests. The antimicrobial susceptibility test was done by disc diffusion. Screening of ESBL production was done by using cefotaxime and ceftazidime and confirmed by the combination disk method per clinical laboratory standard institute guidelines. Data analysis was performed by Statistical Package for Social Sciences software version 25, and a P-value ≤0.05 was considered as statistically significant. Results Out of 384 study participants, a total of 164 Enterobacteriaceae were isolated. The overall multi-drug resistance rate (MDR) was 92.1%. The overall prevalence of ESBL-PE was 104 (63.4%). E. coli 50 (30.5%) and K. pneumoniae 24 (14.6%) were the predominant ESBL producers. The highest ESBL producers E. coli (13.4%) and K. pneumoniae (6.1%) were isolated from urine sample. History of antibiotic use for the last three months (P-value=0.01), admission in neonatal intensive care unit (P-value=0.02), history of hospital stays (P-value=0.01), and chronic disease (P-value=0.04) showed statistically significant association with ESBL-PE infection. Conclusion The prevalence of MDR-E and ESBL-PE was high. Therefore, strong infection prevention and control measures and careful selection of antibiotics are needed in the study area to block the transmission and infection in the healthcare setting.
Collapse
Affiliation(s)
- Zenawork Sahle
- Department of Medical Laboratory Science, Debre Berhan Health Science College, Debre Berhan, Ethiopia
| | - Getabalew Engidaye
- Department of Medical Laboratory Science, Debre Berhan Health Science College, Debre Berhan, Ethiopia
| | - Demissew Shenkute
- Department of Medical Laboratory Science, College of Health Sciences, Debre Berhan University, Debre Berhan, Ethiopia
| | - Yeshi Metaferia
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Agumas Shibabaw
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| |
Collapse
|
18
|
Whole-Genome Characterisation of ESBL-Producing E. coli Isolated from Drinking Water and Dog Faeces from Rural Andean Households in Peru. Antibiotics (Basel) 2022; 11:antibiotics11050692. [DOI: 10.3390/antibiotics11050692] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
E. coli that produce extended-spectrum β-lactamases (ESBLs) are major multidrug-resistant bacteria. In Peru, only a few reports have characterised the whole genome of ESBL enterobacteria. We aimed to confirm the identity and antimicrobial resistance (AMR) profile of two ESBL isolates from dog faeces and drinking water of rural Andean households and determine serotype, phylogroup, sequence type (ST)/clonal complex (CC), pathogenicity, virulence genes, ESBL genes, and their plasmids. To confirm the identity and AMR profiles, we used the VITEK®2 system. Whole-genome sequencing (WGS) and bioinformatics analysis were performed subsequently. Both isolates were identified as E. coli, with serotypes -:H46 and O9:H10, phylogroups E and A, and ST/CC 5259/- and 227/10, respectively. The isolates were ESBL-producing, carbapenem-resistant, and not harbouring carbapenemase-encoding genes. Isolate 1143 ST5259 harboured the astA gene, encoding the EAST1 heat-stable toxin. Both genomes carried ESBL genes (blaEC-15, blaCTX-M-8, and blaCTX-M-55). Nine plasmids were detected, namely IncR, IncFIC(FII), IncI, IncFIB(AP001918), Col(pHAD28), IncFII, IncFII(pHN7A8), IncI1, and IncFIB(AP001918). Finding these potentially pathogenic bacteria is worrisome given their sources and highlights the importance of One-Health research efforts in remote Andean communities.
Collapse
|
19
|
Jomehzadeh N, Ahmadi K, Rahmani Z. Prevalence of plasmid-mediated AmpC β-lactamases among uropathogenic Escherichia coli isolates in southwestern Iran. Osong Public Health Res Perspect 2021; 12:390-395. [PMID: 34965688 PMCID: PMC8721271 DOI: 10.24171/j.phrp.2021.0272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE This study was undertaken to evaluate AmpC β-lactamase-producing Escherichia coli urine isolates and to characterize the frequency of plasmid-mediated AmpC (pAmpC)-encoding genes. METHODS Antimicrobial susceptibility tests were performed using the disk diffusion technique. AmpC β-lactamase production was assessed with a phenotypic inhibitor-based method. The presence of 6 pAmpC-encoding cluster genes was detected by multiplex polymerase chain reaction (PCR). RESULTS The proportion of antibiotic resistance of E. coli isolates ranged from 7.4% to 90.5%, and more than half (51.6%) of the total isolates were multidrug-resistant (MDR). Among the 95 E. coli isolates, 60 (63.2%) were found to be cefoxitin-resistant, but only 14 (14.7%) isolates were confirmed as AmpC β-lactamase-producers. In the PCR assay, pAmpC-encoding genes were found in 15 (15.8%) isolates, and blaDHA was the most prevalent type. However, blaFOX, blaMOX, and blaACC genes were not detected in the isolates. CONCLUSION Our findings contributed valuable information concerning antibiotic resistance, confirmatory phenotypic testing for AmpC production, and pAmpC β-lactamase gene content in E. coli isolates in southwestern Iran. The level of MDR recorded in AmpC-producing strains of this study was worrying; therefore, implementing strong infection control approaches to reduce the MDR burden is recommended.
Collapse
Affiliation(s)
- Nabi Jomehzadeh
- Department of Microbiology, School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Khadijeh Ahmadi
- Department of Microbiology, School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | | |
Collapse
|
20
|
Thiagarajan S, Stephen S, Kanagamuthu S, Ambroise S, Viswanathan P, Chinnakali P, Ganesh RN. Predisposition of Blood group Non-secretors to Urinary tract infection with Escherichia coli Anti-microbial Resistance and Acute Kidney Injury. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021; 15:2085-2097. [DOI: 10.22207/jpam.15.4.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Urinary tract infection (UTI) causes significant renal damage and disease severity is compounded by antimicrobial resistance (AMR) and other comorbidities in the patient. Blood group antigens secreted in body fluids (secretor status) are known to play a role in bacterial adhesion and we studied its influence on AMR in UTI. A total of 2758 patients with UTI were studied with urine culture, qualitative and semiquantitative urine microscopy, serum creatinine and secretor status in saliva samples by adsorption-inhibition method. Of these, AMR from 300 patients with E. coli infection were assessed as per CLSI 2019 guidelines and extended-spectrum beta-lactamase (ESBL) genes (bla TEM, bla CTX-M, bla SHV) and NDM1 genes were studied using TaqMan probes in Real-time polymerase chain reaction. Patients with UTI were followed up for two weeks. Female patients had higher predilection (57%) for E. coli infection while patients with diabetes or non-secretors had none. In our study, ESBL producers were seen in 62% of the E. coli isolates and fosfomycin had 100% susceptibility. Non-secretors were significantly associated with acute kidney injury (AKI), AMR and ESBL genes. Multidrug-resistance (MDR) was noted in 127/160 (79.4%) ESBL and 17/18 (94%) NDM1 gene encoding strains. Quantitative urine microscopy scoring predicted AKI both at presentation and at end of follow up. ESBL producers were common in our study population and non-secretors had a significant association with AMR genes. Urine microscopy scoring system may be a useful tool to predict AKI in patients with UTI.
Collapse
|
21
|
Sewunet T, Asrat D, Woldeamanuel Y, Ny S, Westerlund F, Aseffa A, Giske CG. Polyclonal spread of bla CTX-M-15 through high-risk clones of Escherichia coli at a tertiary hospital in Ethiopia. J Glob Antimicrob Resist 2021; 29:405-412. [PMID: 34775133 DOI: 10.1016/j.jgar.2021.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/18/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE The burden of antimicrobial resistance and spread of epidemic clones are rarely reported from low-income countries. We aimed to investigate genome-based epidemiology of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC) at a tertiary hospital in Jimma, Ethiopia. METHODS Bacteria were isolated from clinical specimens obtained from Jimma Medical Center and subjected to species identification (MALDI-TOF), antibiotic susceptibility testing (disk diffusion), and whole genome sequencing (Illumina HiSeq2500). Genomic data analysis was performed using the Enterobase and Center for Genomic Epidemiology bioinformatics pipelines. A maximum likelihood tree was generated using FastTree/2.1.8 based on SNPs in shared genomic regions to identify transmission clusters. RESULT E. coli isolates (n=261) were collected from 1,087 single non-repeat clinical specimens over a period of five months in 2016. The prevalence of ESBL-EC was (54.7%, 143/261), and 96% of these isolates were resistant to multiple classes of antibiotics. ESBL-gene blaCTX-M-15 was present in 88.4.% of the isolates (122/138). Genes conferring resistance to aminoglycosides and ciprofloxacin - aac(6')-Ib-cr (62.3%, 86/138), phenicols - catB3 (56.5%, 78/138), sulfonamides - sul1 (68.1%, 94/138), trimethoprim - dfrA17 (57.9%, 80/138) and macrolides - mph(A) (67.3%, 93/138) were detected. The most prevalent sequence types were ST410 (23%), ST648 (17%), ST131 (10%), and ST167 (7%). Isolates of same sequence type collected from different units of the hospital were highly similar in SNP-analysis. CONCLUSION A high prevalence of ESBL, and dissemination of blaCTX-M-15 through multiple high-risk clones of E. coli, was detected. The nosocomial spread of multidrug-resistant ESBL-EC within the hospital puts vulnerable patients at risk for difficult-to-treat infections.
Collapse
Affiliation(s)
- Tsegaye Sewunet
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Ethiopia; School of Laboratory Sciences, Jimma University, Jimma, Ethiopia; Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Sweden.
| | - Daniel Asrat
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Ethiopia
| | | | - Sofia Ny
- Public Health Agency of Sweden, Sweden
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, Sweden
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Christian G Giske
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Sweden; Karolinska University Hospital, Clinical Microbiology, Sweden
| |
Collapse
|
22
|
Richter L, du Plessis EM, Duvenage S, Allam M, Ismail A, Korsten L. Whole Genome Sequencing of Extended-Spectrum- and AmpC- β-Lactamase-Positive Enterobacterales Isolated From Spinach Production in Gauteng Province, South Africa. Front Microbiol 2021; 12:734649. [PMID: 34659162 PMCID: PMC8517129 DOI: 10.3389/fmicb.2021.734649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
The increasing occurrence of multidrug-resistant (MDR) extended-spectrum β-lactamase- (ESBL) and/or AmpC β-lactamase- (AmpC) producing Enterobacterales in irrigation water and associated irrigated fresh produce represents risks related to the environment, food safety, and public health. In South Africa, information about the presence of ESBL/AmpC-producing Enterobacterales from non-clinical sources is limited, particularly in the water-plant-food interface. This study aimed to characterize 19 selected MDR ESBL/AmpC-producing Escherichia coli (n=3), Klebsiella pneumoniae (n=5), Serratia fonticola (n=10), and Salmonella enterica (n=1) isolates from spinach and associated irrigation water samples from two commercial spinach production systems within South Africa, using whole genome sequencing (WGS). Antibiotic resistance genes potentially encoding resistance to eight different classes were present, with bla CTX-M-15 being the dominant ESBL encoding gene and bla ACT-types being the dominant AmpC encoding gene detected. A greater number of resistance genes across more antibiotic classes were seen in all the K. pneumoniae strains, compared to the other genera tested. From one farm, bla CTX-M-15-positive K. pneumoniae strains of the same sequence type 985 (ST 985) were present in spinach at harvest and retail samples after processing, suggesting successful persistence of these MDR strains. In addition, ESBL-producing K. pneumoniae ST15, an emerging high-risk clone causing nosocomical outbreaks worldwide, was isolated from irrigation water. Known resistance plasmid replicon types of Enterobacterales including IncFIB, IncFIA, IncFII, IncB/O, and IncHI1B were observed in all strains following analysis with PlasmidFinder. However, bla CTX-M-15 was the only β-lactamase resistance gene associated with plasmids (IncFII and IncFIB) in K. pneumoniae (n=4) strains. In one E. coli and five K. pneumoniae strains, integron In191 was observed. Relevant similarities to human pathogens were predicted with PathogenFinder for all 19 strains, with a confidence of 0.635-0.721 in S. fonticola, 0.852-0.931 in E. coli, 0.796-0.899 in K. pneumoniae, and 0.939 in the S. enterica strain. The presence of MDR ESBL/AmpC-producing E. coli, K. pneumoniae, S. fonticola, and S. enterica with similarities to human pathogens in the agricultural production systems reflects environmental and food contamination mediated by anthropogenic activities, contributing to the spread of antibiotic resistance genes.
Collapse
Affiliation(s)
- Loandi Richter
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| | - Erika M. du Plessis
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| | - Stacey Duvenage
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| | - Mushal Allam
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| |
Collapse
|
23
|
Thiagarajan S, Stephen S, Kanagamuthu S, Ambroise S, Viswanathan P, Chinnakali P, Ganesh RN. Predisposition of Blood group Non-secretors to Urinary tract infection with Escherichia coli Anti-microbial Resistance and Acute Kidney Injury. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: https://doi.org/10.22207/jpam.15.4.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Urinary tract infection (UTI) causes significant renal damage and disease severity is compounded by antimicrobial resistance (AMR) and other comorbidities in the patient. Blood group antigens secreted in body fluids (secretor status) are known to play a role in bacterial adhesion and we studied its influence on AMR in UTI. A total of 2758 patients with UTI were studied with urine culture, qualitative and semiquantitative urine microscopy, serum creatinine and secretor status in saliva samples by adsorption-inhibition method. Of these, AMR from 300 patients with E. coli infection were assessed as per CLSI 2019 guidelines and extended-spectrum beta-lactamase (ESBL) genes (bla TEM, bla CTX-M, bla SHV) and NDM1 genes were studied using TaqMan probes in Real-time polymerase chain reaction. Patients with UTI were followed up for two weeks. Female patients had higher predilection (57%) for E. coli infection while patients with diabetes or non-secretors had none. In our study, ESBL producers were seen in 62% of the E. coli isolates and fosfomycin had 100% susceptibility. Non-secretors were significantly associated with acute kidney injury (AKI), AMR and ESBL genes. Multidrug-resistance (MDR) was noted in 127/160 (79.4%) ESBL and 17/18 (94%) NDM1 gene encoding strains. Quantitative urine microscopy scoring predicted AKI both at presentation and at end of follow up. ESBL producers were common in our study population and non-secretors had a significant association with AMR genes. Urine microscopy scoring system may be a useful tool to predict AKI in patients with UTI.
Collapse
|
24
|
Antimicrobial Activity of Selected Medicinal Plants from a Sub-Saharan African Country against Bacterial Pathogens from Post-Operative Wound Infections. Med Sci (Basel) 2021; 9:medsci9020023. [PMID: 33807402 PMCID: PMC8103275 DOI: 10.3390/medsci9020023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Globally, the application of medicinal plants in the management of acute and chronic wounds can be considered a common occurrence in most traditional medicine practices. In view of this, many plants in the tropical and subtropical regions have been screened for their wound-healing activities. Consequently, plants having antimicrobial activity against multidrug-resistant (MD-R) pathogens can be considered great assets. Therefore, this study evaluated ethanolic and aqueous extracts of five medicinal plants (Psidium guajava, Myrianthus arboreus, Alchornea cordifolia, Momordica charantia, and Justicia flava) for their antimicrobial activities against MD-R bacterial pathogens isolated from post-operative wounds; Methods: This involved the aqueous and ethanolic extraction of the selected medicinal plants. Preliminary phytochemical constituents of the plants were examined. The agar well diffusion method was then used to determine the antibacterial activity of the leaves against reference strains (Escherichia coli ATCC 25922, Salmonella typhi ATCC 19430, Pseudomonas aeruginosa ATCC 27853 and Staphylococcus aureus ATCC 25923, and a Methicillin-Resistant Staphylococcus aureus strain) as well as the MDR clinical isolates (E. coli, P. aeruginosa, S. aureus and CoNS) from the wounds; Results: The preliminary phytochemical analysis of the leaves showed the presence of saponins, phenolics, and reducing sugars in almost all the plants tested. All plant extracts were observed to have some antimicrobial activity against at least one reference strain. For the clinical MDR isolates, A. cordifolia from this study showed highest inhibition to growth of all bacteria used. Activity of J. flava against S. aureus was highest as compared to that of E.coli and P. aeruginosa. Similar observation was made for M. arboreus, P. guajava and M. charantia where the highest activity was observed against S. aureus; Conclusion: This study has mainly shown that P. guajava, M. arboreus, A. cordifolia, M. charantia, and J. flava exhibits antimicrobial activities against MD-R bacterial pathogens isolated from post-operative wounds. Also, these plants has bioactive phytochemical compounds with potential medicinal values for the treatment of numerous infections. Therefore, these plants may be helpful in the management of acute and chronic wounds, especially in traditional medicine practices.
Collapse
|
25
|
Prevalence of Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Ethiopia: A Systematic Review and Meta-Analysis. Int J Microbiol 2021; 2021:6669778. [PMID: 33859697 PMCID: PMC8026286 DOI: 10.1155/2021/6669778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/19/2021] [Accepted: 03/21/2021] [Indexed: 11/25/2022] Open
Abstract
Background Antimicrobial resistance especially caused by extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-PE) has become a global public health concern. Globally, these isolates have remained the most important causes of several infections and associated mortality. Their rapid spread in Ethiopia is associated with a lack of regular surveillance and antibiotic stewardship programs. Isolates of ESBL-PE from different regions of Ethiopia were searched exhaustively. However, published data regarding the pooled estimate of ESBL-PE are not conducted in Ethiopia. For this reason, we systematically reviewed laboratory-based studies to summarize the overall pooled prevalence of the isolates recovered from various human specimens. Methods An exhaustive literature search was carried out using the major electronic databases including PubMed, Web of Science, MEDLINE, EMBASE, CINAHL, Google Scholar, Cochrane Library, Scopus, and Wiley Online Library to identify potentially relevant studies without date restriction. Original articles which address the research question were identified, screened, and included using the PRISMA follow diagram. Data extraction form was prepared in Microsoft Excel, and data quality was assessed by using 9-point Joanna Briggs Institute critical appraisal tools. Then, data were exported to STATA 16.0 software for analyses of pooled estimation of outcome measures. Estimation of outcome measures at 95% confidence interval was performed using Der-Simonian-Laird's random-effects model. Finally, results were presented via text, figures, and tables. Results A comprehensive electronic database literature search has yielded a total of 86 articles. Among the total, 68 original articles were excluded after the review process. A total of 18 studies with 1191 bacterial isolates recovered from 7919 various clinical samples sizes were included for systematic review and meta-analysis. In this study, the pooled prevalence of ESBL-PE was 18% (95% CI: 9–26). Nine out of the total (50%) reviewed articles were studied using the combination disk test. Likewise, E. coli and K. pneumoniae (50% both) were the predominant isolates of ESBL-PE in addition to other isolates such as Salmonella spp. and Shigella spp. Conclusion This meta-analysis has shown a low pooled estimate of ESBL-PE in Ethiopia.
Collapse
|