1
|
Chambers JP, Daum LT, Arulanandam BP, Valdes JJ. Polyunsaturated Fatty Acid Imbalance-A Contributor to SARS CoV-2 Disease Severity. J Nutr Metab 2025; 2025:7075883. [PMID: 40166706 PMCID: PMC11957867 DOI: 10.1155/jnme/7075883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/18/2025] [Indexed: 04/02/2025] Open
Abstract
Overview: SARS CoV-2 infection is accompanied by the development of acute inflammation, resolution of which determines the course of infection and its outcome. If not resolved (brought back to preinjury status), the inflamed state progresses to a severe clinical presentation characterized by uncontrolled cytokine release, systemic inflammation, and in some death. In severe CoV-2 disease, the required balance between protective inflammation and its resolution appears missing, suggesting that the ω-3-derived specialized proresolving mediators (SPMs) needed for resolution are either not present or present at ineffective levels compared to competing ω-6 polyunsaturated fatty acid (PUFA) metabolic derivatives. Aim: To determine whether ω-6 PUFA linoleic acid (LA) metabolites increased in those infected with severe disease compared to uninfected controls. Findings: Increased levels of ω-6 LA metabolites, e.g., arachidonic acid (AA), epoxyeicosatrienoic (EET) acid derivatives of AA (8,9-, 11,12-, and 14,15-EETs), AA-derived hydroxyeicosatetraenoic (HETE) acid, dihydroxylated diols (leukotoxin and isoleukotoxin), and prostaglandin E2 with decreased levels of ω-3-derived inflammation resolving SPMs. Therapeutic treatment of SARS CoV-2 patients with ω-3 PUFA significantly increased 18-HEPE (SPM precursor) and EPA-derived diols (11,12- and 14,15-diHETE), while toxic 9,10- and 12,13-diHOMEs (leukotoxin and iosleukotoxin, respectively) decreased. Conclusion: Unbalanced dietary intake of ω-6/ω-3 PUFAs contributed to SARS CoV-2 disease severity by decreasing ω-3-dependent SPM resolution of inflammation and increasing membrane-associated ferroptotic AA peroxidation.
Collapse
Affiliation(s)
- James P. Chambers
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Luke T. Daum
- Lujo BioScience Laboratory, San Antonio, Texas 78209, USA
| | - Bernard P. Arulanandam
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
2
|
Korpak K, Rossi M, Van Meerhaeghe A, Boudjeltia KZ, Compagnie M. Omega-3 long-chain polyunsaturated fatty acids and their bioactive lipids: A strategy to improve resistance to respiratory tract infectious diseases in the elderly? NUTRITION AND HEALTHY AGING 2024; 9:55-76. [DOI: 10.3233/nha-220184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Age-related changes in organ function, immune dysregulation, and the effects of senescence explain in large part the high prevalence of infections, including respiratory tract infections in older persons. Poor nutritional status in many older persons increases susceptibility to infection and worsens prognosis. Interestingly, there is an association between the amount of saturated fats in the diet and the rate of community-acquired pneumonia. Polyunsaturated fatty acids, particularly omega-3 long chain polyunsaturated fatty acids (ω-3 LC-PUFAs) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have well-known anti-inflammatory, immunomodulatory, and antimicrobial effects, which may, in theory, be largely induced by PUFAs-derived lipids such as specialized pro-resolving mediators (SPMs). In adults, preliminary results of studies show that ω-3 LC-PUFAs supplementation can lead to SPM generation. SPMs have a crucial role in the resolution of inflammation, a factor relevant to survival from infection independent of the pathogen’s virulence. Moreover, the immune system of older adults appears to be more sensitive to ω-3 PUFAs. This review explores the effects of ω-3 LC-PUFAs, and PUFA bioactive lipid-derived SPMs in respiratory tract infections and the possible relevance of these data to infectious disease outcomes in the older population. The hypothesis that PUFAs have beneficial effects via SPM generation will need to be confirmed by animal experiments and patient-derived data.
Collapse
Affiliation(s)
- Kéziah Korpak
- Department of Geriatric Medicine, CHU de Charleroi, Université libre de Bruxelles (ULB), Charleroi, Belgium
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
| | - M. Rossi
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
- Department of Urology, CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
| | - A. Van Meerhaeghe
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
| | - K. Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
| | - M. Compagnie
- Department of Geriatric Medicine, CHU de Charleroi, Université libre de Bruxelles (ULB), Charleroi, Belgium
| |
Collapse
|
3
|
Gonzalez AL, Dungan MM, Smart CD, Madhur MS, Doran AC. Inflammation Resolution in the Cardiovascular System: Arterial Hypertension, Atherosclerosis, and Ischemic Heart Disease. Antioxid Redox Signal 2024; 40:292-316. [PMID: 37125445 PMCID: PMC11071112 DOI: 10.1089/ars.2023.0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
Significance: Chronic inflammation has emerged as a major underlying cause of many prevalent conditions in the Western world, including cardiovascular diseases. Although targeting inflammation has emerged as a promising avenue by which to treat cardiovascular disease, it is also associated with increased risk of infection. Recent Advances: Though previously assumed to be passive, resolution has now been identified as an active process, mediated by unique immunoresolving mediators and mechanisms designed to terminate acute inflammation and promote tissue repair. Recent work has determined that failures of resolution contribute to chronic inflammation and the progression of human disease. Specifically, failure to produce pro-resolving mediators and the impaired clearance of dead cells from inflamed tissue have been identified as major mechanisms by which resolution fails in disease. Critical Issues: Drawing from a rapidly expanding body of experimental and clinical studies, we review here what is known about the role of inflammation resolution in arterial hypertension, atherosclerosis, myocardial infarction, and ischemic heart disease. For each, we discuss the involvement of specialized pro-resolving mediators and pro-reparative cell types, including T regulatory cells, myeloid-derived suppressor cells, and macrophages. Future Directions: Pro-resolving therapies offer the promise of limiting chronic inflammation without impairing host defense. Therefore, it is imperative to better understand the mechanisms underlying resolution to identify therapeutic targets. Antioxid. Redox Signal. 40, 292-316.
Collapse
Affiliation(s)
- Azuah L. Gonzalez
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Matthew M. Dungan
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - C. Duncan Smart
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Meena S. Madhur
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Amanda C. Doran
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Guha Ray A, Odum OP, Wiseman D, Weinstock A. The diverse roles of macrophages in metabolic inflammation and its resolution. Front Cell Dev Biol 2023; 11:1147434. [PMID: 36994095 PMCID: PMC10041730 DOI: 10.3389/fcell.2023.1147434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Macrophages are one of the most functionally diverse immune cells, indispensable to maintain tissue integrity and metabolic health. Macrophages perform a myriad of functions ranging from promoting inflammation, through inflammation resolution to restoring and maintaining tissue homeostasis. Metabolic diseases encompass a growing list of diseases which develop from a mix of genetics and environmental cues leading to metabolic dysregulation and subsequent inflammation. In this review, we summarize the contributions of macrophages to four metabolic conditions-insulin resistance and adipose tissue inflammation, atherosclerosis, non-alcoholic fatty liver disease and neurodegeneration. The role of macrophages is complex, yet they hold great promise as potential therapies to address these growing health concerns.
Collapse
Affiliation(s)
| | | | | | - Ada Weinstock
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Marchand NE, Choi MY, Oakes EG, Cook NR, Stevens E, Gomelskaya N, Kotler G, Manson JE, Lasky-Su J, Mora S, Lee IM, Tatituri R, Costenbader KH. Over-the-counter fish oil supplementation and pro-resolving and pro-inflammatory lipid mediators in rheumatoid arthritis. Prostaglandins Leukot Essent Fatty Acids 2023; 190:102542. [PMID: 36773395 PMCID: PMC10027850 DOI: 10.1016/j.plefa.2023.102542] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Little is known about the effects of over-the-counter fish oil (FO) supplements on circulating omega-3 polyunsaturated fatty acid (n-3 PUFA)-derived specialized pro-resolving mediators (SPMs), nor about whether having a chronic inflammatory disease such as rheumatoid arthritis (RA) influences SPM levels. We investigated associations between over-the-counter n-3 PUFA FO supplementation and circulating SPMs among patients with vs. without RA. METHODS We studied 104 participants: 26 with RA taking FO matched by age and sex to 26 with RA not taking FO, 26 without RA taking FO, and 26 without RA not taking FO. Targeted-liquid chromatography-tandem mass spectroscopy was performed on patient plasma to identify and quantify 27 lipid mediators (including eicosanoids and SPMs). We performed t-tests and then multivariable linear regression analyses to assess whether having RA or taking FO supplements was associated with circulating lipid mediator concentrations, adjusting for age, race, sex, smoking, body mass index, and current medication use (statins, prednisone and immunomodulators among RA cases only). We tested for interactions between FO supplementation and RA status. We also conducted Spearman's correlations between EPA, DHA, and ARA and their downstream metabolites. RESULTS Among patients who were taking FO compared to those who were not, in multivariable- adjusted analyses, SPM substrates EPA and DHA were both elevated as were several of their pro-resolving bioactive products, including 15- and 18-HEPE from EPA, and 14- and 17-HDHA from DHA, which are substrates for specific SPMs. While E-series and D-series resolvins were present and identified, we did not find statistical elevations of other SPMs. Results were similar among patients with RA and patients without RA, taking vs. not taking FO supplementation (no formal statistical interaction observed). There was a strong positive correlation between EPA and DHA and their immediate downstream SPM precursors (18-HEPE and15-HEPE from EPA; 17-HDHA and 14-HDHA from DHA) among all patients. CONCLUSION Patients taking FO supplements, regardless of RA status, not only had higher blood levels of EPA and DHA, but also of their enzymatic products 18-HEPE (E-series resolvin precursors), 15-HEPE and 17-HDHA (D-series resolvin and protectin precursors). Patients with RA, an inflammatory autoimmune disease, may be able to augment some SPM precursor reserves, similarly to matched controls without RA, by taking oral FO supplements.
Collapse
Affiliation(s)
- Nathalie E Marchand
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - May Y Choi
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Division of Rheumatology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Emily G Oakes
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nancy R Cook
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emma Stevens
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Natalya Gomelskaya
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory Kotler
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - JoAnn E Manson
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica Lasky-Su
- Systems Genetics and Genomics Unit, Channing Division of Network Medicine Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Samia Mora
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Center for Lipid Metabolomics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - I-Min Lee
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raju Tatituri
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karen H Costenbader
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Perretti M, Dalli J. Resolution Pharmacology: Focus on Pro-Resolving Annexin A1 and Lipid Mediators for Therapeutic Innovation in Inflammation. Annu Rev Pharmacol Toxicol 2023; 63:449-469. [PMID: 36151051 DOI: 10.1146/annurev-pharmtox-051821-042743] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chronic diseases that affect our society are made more complex by comorbidities and are poorly managed by the current pharmacology. While all present inflammatory etiopathogeneses, there is an unmet need for better clinical management of these diseases and their multiple symptoms. We discuss here an innovative approach based on the biology of the resolution of inflammation. Studying endogenous pro-resolving peptide and lipid mediators, how they are formed, and which target they interact with, can offer innovative options through augmenting the expression or function of pro-resolving pathways or mimicking their actions with novel targeted molecules. In all cases, resolution offers innovation for the treatment of the primary cause of a given disease and/or for the management of its comorbidities, ultimately improving patient quality of life. By implementing resolution pharmacology, we harness the whole physiology of inflammation, with the potential to bring a marked change in the management of inflammatory conditions.
Collapse
Affiliation(s)
- Mauro Perretti
- The William Harvey Research Institute, Faculty of Medicine and Dentistry, and Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom; ,
| | - Jesmond Dalli
- The William Harvey Research Institute, Faculty of Medicine and Dentistry, and Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom; ,
| |
Collapse
|
7
|
Noureddine N, Hartling I, Wawrzyniak P, Srikanthan P, Lou PH, Lucchinetti E, Krämer SD, Rogler G, Zaugg M, Hersberger M. Lipid emulsion rich in n-3 polyunsaturated fatty acids elicits a pro-resolution lipid mediator profile in mouse tissues and in human immune cells. Am J Clin Nutr 2022; 116:786-797. [PMID: 35849016 DOI: 10.1093/ajcn/nqac131] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/07/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Lipid emulsions are a key component of total parenteral nutrition (TPN) and are administered to patients who are unable to ingest their daily required calories orally. Lipid emulsions rich with n-6 (ω-6) PUFAs are known to cause parenteral nutrition-associated liver disease and have inflammatory side effects, whereas n-3 PUFA-rich emulsions have favourable clinical outcomes. OBJECTIVES The present study used targeted lipid mediator analysis to investigate the metabolism of a n-3 PUFA-rich lipid emulsion and a n-6 PUFA-rich lipid emulsion in a mouse model of TPN and in primary human monocyte-derived macrophages (MDMs) and CD4+ T cells. RESULTS Mice given n-3 PUFA-based TPN for 7 d had a less proinflammatory lipid mediator profile compared with those receiving n-6 PUFA-based TPN. This was characterized by higher concentrations of specialized pro-resolving mediators (SPMs) and endocannabinoids, including resolvin D (RvD) 1, maresin (MaR) 1, MaR2, protectin D1 (PD1), protectin DX (PDX), and the endocannabinoids eicosapentaenoyl ethanolamide (EPEA) and docosahexaenoyl ethanolamide (DHEA) in the liver and RvD1, 17R-RvD1, RvD2, RvD3, RvD5, MaR1, MaR2, PD1, PDX, and EPEA and DHEA in the spleen. The spleen was identified as a source of high lipid mediator and SPM formation as lipid mediator concentrations were on average 25-fold higher than in the liver. Additionally, n-3 PUFA-treated primary human MDMs produced RvD5 and the endocannabinoids EPEA and DHEA, which was associated with an increased IL-10 secretion. In contrast, primary human CD4+ T cells showed only an increase in SPM precursors and an increase in the endocannabinoids EPEA and DHEA, which was associated with reduced cytokine expression. CONCLUSIONS This demonstrates that lipid mediators, particularly SPMs and endocannabinoids from spleen, could play a key role in facilitating the favorable clinical outcomes associated with the use of n-3 PUFA-rich lipid emulsions in TPN.
Collapse
Affiliation(s)
- Nazek Noureddine
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Ivan Hartling
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Paulina Wawrzyniak
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Pakeerathan Srikanthan
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Phing-How Lou
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Eliana Lucchinetti
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Stefanie D Krämer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Michael Zaugg
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada.,Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Kotlyarov S, Kotlyarova A. Molecular Pharmacology of Inflammation Resolution in Atherosclerosis. Int J Mol Sci 2022; 23:4808. [PMID: 35563200 PMCID: PMC9104781 DOI: 10.3390/ijms23094808] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Atherosclerosis is one of the most important problems of modern medicine as it is the leading cause of hospitalizations, disability, and mortality. The key role in the development and progression of atherosclerosis is the imbalance between the activation of inflammation in the vascular wall and the mechanisms of its control. The resolution of inflammation is the most important physiological mechanism that is impaired in atherosclerosis. The resolution of inflammation has complex, not fully known mechanisms, in which lipid mediators derived from polyunsaturated fatty acids (PUFAs) play an important role. Specialized pro-resolving mediators (SPMs) represent a group of substances that carry out inflammation resolution and may play an important role in the pathogenesis of atherosclerosis. SPMs include lipoxins, resolvins, maresins, and protectins, which are formed from PUFAs and regulate many processes related to the active resolution of inflammation. Given the physiological importance of these substances, studies examining the possibility of pharmacological effects on inflammation resolution are of interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
9
|
Mora I, Arola L, Caimari A, Escoté X, Puiggròs F. Structured Long-Chain Omega-3 Fatty Acids for Improvement of Cognitive Function during Aging. Int J Mol Sci 2022; 23:3472. [PMID: 35408832 PMCID: PMC8998232 DOI: 10.3390/ijms23073472] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
Although the human lifespan has increased in the past century owing to advances in medicine and lifestyle, the human healthspan has not kept up the same pace, especially in brain aging. Consequently, the role of preventive health interventions has become a crucial strategy, in particular, the identification of nutritional compounds that could alleviate the deleterious effects of aging. Among nutrients to cope with aging in special cognitive decline, the long-chain omega-3 polyunsaturated fatty acids (ω-3 LCPUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have emerged as very promising ones. Due to their neuroinflammatory resolving effects, an increased status of DHA and EPA in the elderly has been linked to better cognitive function and a lower risk of dementia. However, the results from clinical studies do not show consistent evidence and intake recommendations for old adults are lacking. Recently, supplementation with structured forms of EPA and DHA, which can be derived natural forms or targeted structures, have proven enhanced bioavailability and powerful benefits. This review summarizes present and future perspectives of new structures of ω-3 LCPUFAs and the role of "omic" technologies combined with the use of high-throughput in vivo models to shed light on the relationships and underlying mechanisms between ω-3 LCPUFAs and healthy aging.
Collapse
Affiliation(s)
- Ignasi Mora
- Brudy Technology S.L., 08006 Barcelona, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health Unit, 43204 Reus, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
| |
Collapse
|
10
|
Calder PC, Mundi MS. Editorial: Bioactive fatty acids for public and patient benefit - harnessing the full potential. Curr Opin Clin Nutr Metab Care 2022; 25:57-59. [PMID: 35115446 DOI: 10.1097/mco.0000000000000808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Philip C Calder
- School of Human Development and Health, Faculty of Medicine
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Manpreet S Mundi
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Persistent unresolved inflammation results in a number of pathologic respiratory diseases including asthma, cystic fibrosis, acute respiratory distress syndrome (ARDS) and coronavirus disease 2019 (COVID-19)-associated ARDS. Inflammation resolution is an active series of biologic processes orchestrated by a family of bioactive specialized pro-resolving mediators (SPMs) derived from essential omega-3 and omega-6 polyunsaturated fatty acids (PUFAs). In this review, we highlight recent findings on dysregulated inflammation resolution in common respiratory diseases and recent literature on SPM generation with PUFA dietary supplementation with relevance to diseases of respiratory inflammation. RECENT FINDINGS Human studies and preclinical models of diseases of lung inflammation have revealed disequilibrium in the levels of pro-inflammatory versus pro-resolving mediators. Recent studies identified actions for SPMs on regulating prophlogistic host responses and stimulating inflammation resolution pathways in inflammatory respiratory diseases. SUMMARY Dietary marine oils are enriched in PUFAs and contain parent omega-3 and omega-6 fatty acids and precursors for conversion to SPMs. Nutritional supplementation with fish oils can boost SPM levels and offer a therapeutic approach targeting inflammation resolution pathways for diseases of lung inflammation.
Collapse
Affiliation(s)
- R. Elaine Cagnina
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Melody G. Duvall
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julie Nijmeh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bruce D. Levy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Hartling I, Cremonesi A, Osuna E, Lou PH, Lucchinetti E, Zaugg M, Hersberger M. Quantitative profiling of inflammatory and pro-resolving lipid mediators in human adolescents and mouse plasma using UHPLC-MS/MS. Clin Chem Lab Med 2021; 59:1811-1823. [PMID: 34243224 DOI: 10.1515/cclm-2021-0644] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Lipid mediators are bioactive lipids which help regulate inflammation. We aimed to develop an ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method to quantify 58 pro-inflammatory and pro-resolving lipid mediators in plasma, determine preliminary reference ranges for adolescents, and investigate how total parenteral nutrition (TPN) containing omega-3 polyunsaturated fatty acid (n-3 PUFA) or n-6 PUFA based lipid emulsions influence lipid mediator concentrations in plasma. METHODS Lipid mediators were extracted from plasma using SPE and measured using UHPLC-MS/MS. EDTA plasma was collected from healthy adolescents between 13 and 17 years of age to determine preliminary reference ranges and from mice given intravenous TPN for seven days containing either an n-3 PUFA or n-6 PUFA based lipid emulsion. RESULTS We successfully quantified 43 lipid mediators in human plasma with good precision and recovery including several leukotrienes, prostaglandins, resolvins, protectins, maresins, and lipoxins. We found that the addition of methanol to human plasma after blood separation reduces post blood draw increases in 12-hydroxyeicosatetraenoic acid (12-HETE), 12-hydroxyeicosapentaenoic acid (12-HEPE), 12S-hydroxyeicosatrienoic acid (12S-HETrE), 14-hydroxydocosahexaenoic acid (14-HDHA) and thromboxane B2 (TXB2). Compared to the n-6 PUFA based TPN, the n-3 PUFA based TPN increased specialized pro-resolving mediators such as maresin 1 (MaR1), MaR2, protectin D1 (PD1), PDX, and resolvin D5 (RvD5), and decreased inflammatory lipid mediators such as leukotriene B4 (LTB4) and prostaglandin D2 (PGD2). CONCLUSIONS Our method provides an accurate and sensitive quantification of 58 lipid mediators from plasma samples, which we used to establish a preliminary reference range for lipid mediators in plasma samples of adolescents; and to show that n-3 PUFA, compared to n-6 PUFA rich TPN, leads to a less inflammatory lipid mediator profile in mice.
Collapse
Affiliation(s)
- Ivan Hartling
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.,Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Alessio Cremonesi
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ester Osuna
- Human Nutrition Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Phing-How Lou
- Department of Anesthesiology and Pain Medicine, Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | | | - Michael Zaugg
- Department of Anesthesiology and Pain Medicine, Cardiovascular Research Centre, University of Alberta, Edmonton, Canada.,Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.,Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|