1
|
Zhang S, Yu J, Bai S, Li S, Qiu Q, Kong X, Xiang C, Liu Z, Yu P, Teng Y. Compound 3d Attenuates Metabolic Dysfunction-Associated Steatohepatitis via Peroxisome Proliferator-Activated Receptor Pathway Activation and Inhibition of Inflammatory and Apoptotic Signaling. Metabolites 2025; 15:296. [PMID: 40422873 DOI: 10.3390/metabo15050296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/28/2025] Open
Abstract
Objectives: Metabolic dysfunction-associated steatohepatitis (MASH) lacks effective therapies. This study aimed to evaluate the therapeutic potential of compound 3d, a novel elafibranor derivative, focusing on its dual mechanisms of PPAR pathway activation and p38 MAPK signaling inhibition. Methods: Integrated in vitro and in vivo approaches were employed. In vitro, free fatty acid (FFA)-induced lipid accumulation in L02 hepatocytes and lipopolysaccharides (LPSs)-stimulated inflammatory responses in RAW264.7 macrophages were used to evaluate lipid metabolism and anti-inflammatory effects. In vivo, a high-fat diet (HFD)-induced MASH model in C57BL/6 mice assessed serum biochemical parameters (triglycerides (TGs), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), alanine aminotransferase (ALT), aspartate transaminase (AST), tumor necrosis factor-α (TNF-α), nitric oxide (NO), and interleukin-6 (IL-6)), liver histopathology (H&E, Oil Red O, Masson staining), and proteomic profiling. Gut microbiota composition was analyzed via 16S rRNA sequencing. Western blotting quantified PPAR isoforms (γ/δ), downstream targets (Acox1, EHHADH, Acaa1), and p38 MAPK pathway proteins (p-p38, caspase-8, Bcl-2). Results: In vitro, 3d significantly reduced lipid accumulation (reduction in TG, p < 0.01) and inflammation (decrease in ALT activity, p < 0.05) in hepatocytes, while suppressing LPSs-induced TNF-α (63% reduction), NO (51% decrease), and IL-6 (48% reduction) in macrophages (p < 0.01). In vivo, 3d (30 mg/kg) lowered serum TG (39% decrease), TC (32% reduction), LDL-C (45% decline), and TNF-α (57% reduction) in HFD-fed mice (p < 0.05 vs. model), normalized AST/ALT levels, and ameliorated hepatic steatosis, ballooning, and fibrosis. Proteomics demonstrated PPARγ/δ activation (2.3-3.1-fold upregulation of Acox1, EHHADH, Acaa1; p < 0.001) and p38 MAPK pathway inhibition (54% reduction in p-p38, 61% decrease in caspase-8; 1.8-fold increase in Bcl-2; p < 0.01). Gut microbiota analysis revealed enrichment of beneficial taxa (Lactobacillus: 2.7-fold increase; Bifidobacterium: 1.9-fold rise) and reduced pathogenic Proteobacteria (68% decrease, p < 0.05). Conclusions: Compound 3d alleviates MASH via PPAR-mediated lipid metabolism enhancement and p38 MAPK-driven inflammation/apoptosis suppression, with additional gut microbiota modulation. These findings highlight 3d as a multi-target therapeutic candidate for MASH.
Collapse
Affiliation(s)
- Shouqing Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiajia Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Sule Bai
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuhan Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Quanyuan Qiu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiangshun Kong
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Cen Xiang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhen Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
2
|
Rabiu L, Zhang P, Liu Z, Tang Y, Gidado KI, Ibrahim A, Saliu MA, Tariq HK, Wan X, Xu S, Xu Z, Zhang G. TIPE2 deficiency amplifies inflammation and immune dysregulation in MASH through modulating hepatic lipid metabolism and immune cell function. Inflamm Res 2025; 74:65. [PMID: 40244311 DOI: 10.1007/s00011-025-02031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Metabolic Dysfunction-Associated Steatohepatitis (MASH) affects nearly 25% of the global population, yet there are no effective pharmacological treatments. Tumor necrosis factor α-induced protein 8-like 2 (TIPE2) is expressed in various immune cells and is crucial for regulating both innate and adaptive immune responses. However, its role in MASH development and the underlying mechanisms remain unclear. METHOD In this study, the role of TIPE2 in MASH was investigated using TIPE2 knockout (KO) mice and human hepatic LO2 cells. Immune cell infiltration, cytokine levels, and gene expression were analyzed. Techniques included flow cytometry for immune cell profiling, cytokine analysis, RNA sequencing, and quantitative PCR (qPCR) for validating gene expression changes. RESULTS TIPE2 was identified as a key regulator in MASH, influencing immune modulation and metabolic processes. TIPE2 KO mice exhibited increased infiltration and activation of natural killer (NK) cells, M1 macrophages, and myeloid-derived suppressor cells (MDSCs), along with elevated pro-inflammatory cytokines such as IFN-gamma, TNF-alpha, IL- 1 beta, and IL- 6. MDSCs from TIPE2 KO mice demonstrated enhanced PD-L1 expression, contributing to chronic liver inflammation through T cell suppression. RNA sequencing revealed that TIPE2 overexpression in human hepatic LO2 cells upregulated genes associated with amino acid biosynthesis, carbon metabolism, lipid regulation, glycolysis, and gluconeogenesis. These findings were supported by qPCR analyses of liver samples from mice, confirming TIPE2's role in maintaining lipid homeostasis and modulating immune responses. CONCLUSION The study highlights the pivotal role of TIPE2 in immune regulation and its influence on immune cell activation and inflammatory responses, which are critical in MASH progression. By exploring TIPE2-mediated immune regulation and its impact on the interplay between immune cell dynamics and liver metabolism, this research underscores TIPE2's central role in linking immune dysfunction to metabolic disturbances in MASH.
Collapse
Affiliation(s)
- Lawan Rabiu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Pengchao Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhongming Liu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Yexiao Tang
- Cancer Center, Shenzhen Guangming District People's Hospital, Shenzhen, 518106, PR China
| | - Khalid I Gidado
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Abdulrahman Ibrahim
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Muhammad A Saliu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hafiza Kashaf Tariq
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shu Xu
- Cancer Center, Shenzhen Guangming District People's Hospital, Shenzhen, 518106, PR China.
| | - Zhiming Xu
- Cancer Center, Shenzhen Guangming District People's Hospital, Shenzhen, 518106, PR China.
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China.
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
3
|
Lin B, Bai G, Zhang Y, Wang Y, Chen S. Betulinic acid from Inonotus obliquus ameliorates T2DM by modulating short-chain fatty acids producing bacteria and amino acids metabolism in db/db mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119417. [PMID: 39884483 DOI: 10.1016/j.jep.2025.119417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/04/2025] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inonotus obliquus has also been used as a traditional folk medicine in Europe and Northeastern China to treat metabolic diseases. Betulinic acid (BA) is a major ingredient with anti-diabetic property derived from I. obliquus, however, its bioavailability is limited. Whether the beneficial effects of BA on type 2 diabetic mellitus (T2DM) referring to modulation of gut microbiota and associated metabolites remain unclear. AIM OF THE STUDY This work aims to investigate the alleviating effect of BA on T2DM in db/db mice and elucidate the mechanism from perspective of network pharmacology, gut microbiome and fecal metabolome. MATERIALS AND METHODS BA was orally administered to db/db mice for 45 days, and the related biochemical parameters were evaluated. The associated mechanism was explored using network pharmacology analysis, 16S rRNA sequencing and UHPLC-MS metabolomics comprehensively. Additionally, Spearman analysis was performed to assess the correlation between gut microbes, metabolites, and T2DM-related biochemical parameters. RESULTS BA ameliorated T2DM symptoms by reducing body weight gain, regulating serum glucose and lipid levels, and mitigating T2DM-associated liver injury in db/db mice. Network pharmacology analysis indicated the ameliorative effect was via targeting at PPAR activity. BA intervention increased the relative abundance of short-chain fatty acids (SCFAs) producing bacteria including Lactobacillus and Eubacterium_xylanophilum group, and enhanced the production of SCFAs. Moreover, BA primarily regulates arginine and proline metabolism, D-glutamine and D-glutamate metabolism, and alanine, aspartate and glutamate metabolism. Spearman analysis indicated a negative correlation between SCFAs-producing bacteria and amino acids, as well as serum glucose and lipid levels. CONCLUSION Apart from PPAR signaling pathway, BA modulated gut microbiota composition and associated metabolites in db/db mice. This study provided novel insights into the therapeutic potential of BA for alleviating T2DM symptoms.
Collapse
Affiliation(s)
- Bing Lin
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Guangjian Bai
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China; Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Yifan Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yaqi Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Shaodan Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China; Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
4
|
Cui WT, Xue HR, Wei DF, Feng XY, Wang K. Prospects of elafibranor in treating alcohol-associated liver diseases. World J Gastroenterol 2025; 31:99549. [PMID: 39811505 PMCID: PMC11684193 DOI: 10.3748/wjg.v31.i2.99549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/08/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Alcohol-related liver disease (ALD), which is induced by excessive alcohol consumption, is a leading cause of liver-related morbidity and mortality. ALD patients exhibit a spectrum of liver injuries, including hepatic steatosis, inflammation, and fibrosis, similar to symptoms of nonalcohol-associated liver diseases such as primary biliary cholangitis, metabolic dysfunction-associated steatotic liver disease, and nonalcoholic steatohepatitis. Elafibranor has been approved for the treatment of primary biliary cholangitis and has been shown to improve symptoms in both animal models and in vitro cell models of metabolic dysfunction-associated steatotic liver disease and nonalcoholic steatohepatitis. However, the efficacy of elafibranor in treating ALD remains unclear. In this article, we comment on the recent publication by Koizumi et al that evaluated the effects of elafibranor on liver fibrosis and gut barrier function in an ALD mouse model. Their findings indicate the potential of elafibranor for ALD treatment, but further experimental investigations and clinical trials are warranted.
Collapse
Affiliation(s)
- Wei-Tong Cui
- School of Basic Medicine, Qilu Medical University, Zibo 255300, Shandong Province, China
| | - Hua-Ru Xue
- School of Medical Imaging, Qilu Medical University, Zibo 255300, Shandong Province, China
| | - Dian-Fang Wei
- School of Basic Medicine, Qilu Medical University, Zibo 255300, Shandong Province, China
| | - Xiao-Yu Feng
- School of Basic Medicine, Qilu Medical University, Zibo 255300, Shandong Province, China
| | - Kai Wang
- School of Basic Medicine, Qilu Medical University, Zibo 255300, Shandong Province, China
| |
Collapse
|
5
|
Mahmoudi A, Butler AE, De Vincentis A, Jamialahmadi T, Sahebkar A. Microarray-based Detection of Critical Overexpressed Genes in the Progression of Hepatic Fibrosis in Non-alcoholic Fatty Liver Disease: A Protein-protein Interaction Network Analysis. Curr Med Chem 2024; 31:3631-3652. [PMID: 37194229 DOI: 10.2174/0929867330666230516123028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a prevalent cause of chronic liver disease and encompasses a broad spectrum of disorders, including simple steatosis, steatohepatitis, fibrosis, cirrhosis, and liver cancer. However, due to the global epidemic of NAFLD, where invasive liver biopsy is the gold standard for diagnosis, it is necessary to identify a more practical method for early NAFLD diagnosis with useful therapeutic targets; as such, molecular biomarkers could most readily serve these aims. To this end, we explored the hub genes and biological pathways in fibrosis progression in NAFLD patients. METHODS Raw data from microarray chips with GEO accession GSE49541 were downloaded from the Gene Expression Omnibus database, and the R package (Affy and Limma) was applied to investigate differentially expressed genes (DEGs) involved in the progress of low- (mild 0-1 fibrosis score) to high- (severe 3-4 fibrosis score) fibrosis stage NAFLD patients. Subsequently, significant DEGs with pathway enrichment were analyzed, including gene ontology (GO), KEGG and Wikipathway. In order to then explore critical genes, the protein-protein interaction network (PPI) was established and visualized using the STRING database, with further analysis undertaken using Cytoscape and Gephi software. Survival analysis was undertaken to determine the overall survival of the hub genes in the progression of NAFLD to hepatocellular carcinoma. RESULTS A total of 311 significant genes were identified, with an expression of 278 being upregulated and 33 downregulated in the high vs. low group. Gene functional enrichment analysis of these significant genes demonstrated major involvement in extracellular matrix (ECM)-receptor interaction, protein digestion and absorption, and the AGE-RAGE signaling pathway. The PPI network was constructed with 196 nodes and 572 edges with PPI enrichment using a p-value < 1.0 e-16. Based on this cut-off, we identified 12 genes with the highest score in four centralities: Degree, Betweenness, Closeness, and Eigenvector. Those twelve hub genes were CD34, THY1, CFTR, COL3A1, COL1A1, COL1A2, SPP1, THBS1, THBS2, LUM, VCAN, and VWF. Four of these hub genes, namely CD34, VWF, SPP1, and VCAN, showed significant association with the development of hepatocellular carcinoma. CONCLUSION This PPI network analysis of DEGs identified critical hub genes involved in the progression of fibrosis and the biological pathways through which they exert their effects in NAFLD patients. Those 12 genes offer an excellent opportunity for further focused research to determine potential targets for therapeutic applications.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Antonio De Vincentis
- Unit of Internal Medicine and Geriatrics, Università Campus Bio-Medico di Roma, Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, Rome 00128, Italy
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Wang Z, Qin H, Yang Q, Jia J, Yang L, Zhong S, Yuan G. Identification of Basement Membrane Genes and Related Molecular Subtypes in Nonalcoholic Fatty Liver Disease. Horm Metab Res 2023; 55:546-554. [PMID: 37268001 DOI: 10.1055/a-2081-1098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Basement membranes (BMs) are widely distributed and highly specialized extracellular matrix (ECM). The goal of this study was to explore novel genes associated with nonalcoholic fatty liver disease (NAFLD) from the perspective of BMs. Sequencing results of 304 liver biopsy samples about NAFLD were systematically obtained from the Gene Expression Omnibus (GEO) database. Biological changes during NAFLD progression and hub BM-associated genes were investigated by differential gene analysis and weighted gene co-expression network analysis (WGCNA), respectively. The nonalcoholic steatohepatitis (NASH) subgroups were identified based on hub BM-associated genes expression, as well as the differences in Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways and immune microenvironment between different subgroups were compared. Extracellular matrix (ECM) seems to play an important role in the development of NAFLD. Three representative BM-associated genes (ADAMTS2, COL5A1, and LAMC3) were finally identified. Subgroup analysis results suggested that there were significant changes in KEGG signaling pathways related to metabolism, extracellular matrix, cell proliferation, differentiation, and death. There were also changes in macrophage polarization, neutrophils, and dendritic cells abundance, and so on. In conclusion, the present study identified novel potential BM-associated biomarkers and further explored the heterogeneity of NASH that might provide new insights into the diagnosis, assessment, management, and personalized treatment of NAFLD.
Collapse
Affiliation(s)
- Zhaoxiang Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Huijuan Qin
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qichao Yang
- Department of Endocrinology, Jiangsu University Affiliated Wujin Hospital, Changzhou, China
| | - Jue Jia
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ling Yang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shao Zhong
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Wang H, Wang Q, Tan X, Wang J, Zhang J, Zheng M, Zhao G, Wen J. Estimation of genetic variability and identification of regions under selection based on runs of homozygosity in Beijing-You Chickens. Poult Sci 2022; 102:102342. [PMID: 36470032 PMCID: PMC9719870 DOI: 10.1016/j.psj.2022.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The genetic composition of populations is the result of a long-term process of selection and adaptation to specific environments and ecosystems. Runs of homozygosity (ROHs) are homozygous segments of the genome where the 2 haplotypes inherited from the parents are identical. The detection of ROH can be used to describe the genetic variability and quantify the level of inbreeding in an individual. Here, we investigated the occurrence and distribution of ROHs in 40 Beijing-You Chickens from the random breeding population (BJY_C) and 40 Beijing-You Chickens from the intramuscular fat (IMF) selection population (BJY_S). Principal component analysis (PCA) and maximum likelihood (ML) analyses showed that BJY_C was completely separated from the BJY_S. The nucleotide diversity of BJY_C was higher than that of BJY_S, and the decay rate of LD of BJY_C was faster. The ROHs were identified for a total of 7,101 in BJY_C and 9,273 in BJY_S, respectively. The ROH-based inbreeding estimate (FROH) of BJY_C was 0.079, which was significantly lower than that of BJY_S (FROH = 0.114). The results were the same as the estimates of the inbreeding coefficients calculated based on homozygosity (FHOM), the correlation between uniting gametes (FUNI), and the genomic relationship matrix (FGRM). Additionally, the distribution and number of ROH islands in chromosomes of BJY_C and BJY_S were significantly different. The ROH islands of BJY_S that included genes associated with lipid metabolism and fat deposition, such as CIDEA and S1PR1, were absent in BJY_C. However, GPR161 was detected in both populations, which is a candidate gene for the formation of the unique five-finger trait in Beijing-You chickens. Our findings contributed to the understanding of the genetic diversity of random or artificially selected populations, and allowed the accurate monitoring of population inbreeding using genomic information, as well as the detection of genomic regions that affect traits under selection.
Collapse
Affiliation(s)
- Hailong Wang
- Chinese Academy of Agricultural Science, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Qiao Wang
- Chinese Academy of Agricultural Science, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Xiaodong Tan
- Chinese Academy of Agricultural Science, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Jie Wang
- Chinese Academy of Agricultural Science, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Jin Zhang
- Chinese Academy of Agricultural Science, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Maiqing Zheng
- Chinese Academy of Agricultural Science, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Guiping Zhao
- Chinese Academy of Agricultural Science, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Jie Wen
- Chinese Academy of Agricultural Science, State Key Laboratory of Animal Nutrition, Beijing 100193, China.
| |
Collapse
|
8
|
Fang T, Wang H, Pan X, Little PJ, Xu S, Weng J. Mouse models of nonalcoholic fatty liver disease (NAFLD): pathomechanisms and pharmacotherapies. Int J Biol Sci 2022; 18:5681-5697. [PMID: 36263163 PMCID: PMC9576517 DOI: 10.7150/ijbs.65044] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 06/29/2022] [Indexed: 01/12/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) increases year by year, and as a consequence, NAFLD has become one of the most prevalent liver diseases worldwide. Unfortunately, no pharmacotherapies for NAFLD have been approved by the United States Food and Drug Administration despite promising pre-clinical benefits; this situation highlights the urgent need to explore new therapeutic targets for NAFLD and for the discovery of effective therapeutic drugs. The mouse is one of the most commonly used models to study human disease and develop novel pharmacotherapies due to its small size, low-cost and ease in genetic engineering. Different mouse models are used to simulate various stages of NAFLD induced by dietary and/or genetic intervention. In this review, we summarize the newly described patho-mechanisms of NAFLD and review the preclinical mouse models of NAFLD (based on the method of induction) and appraises the use of these models in anti-NAFLD drug discovery. This article will provide a useful resource for researchers to select the appropriate model for research based on the research question being addressed.
Collapse
Affiliation(s)
- Tingyu Fang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei 230001, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, NY 11501, USA
| | - Peter J. Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, 4102 Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
9
|
Qiu H, Song E, Hu Y, Li T, Ku KC, Wang C, Cheung BMY, Cheong LY, Wang Q, Wu X, Hoo RLC, Wang Y, Xu A. Hepatocyte-Secreted Autotaxin Exacerbates Nonalcoholic Fatty Liver Disease Through Autocrine Inhibition of the PPARα/FGF21 Axis. Cell Mol Gastroenterol Hepatol 2022; 14:1003-1023. [PMID: 35931383 PMCID: PMC9490100 DOI: 10.1016/j.jcmgh.2022.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS The prevalence of nonalcoholic fatty liver disease (NAFLD) has reached epidemic proportions globally as a result of the rapid increase in obesity. However, there is no Food and Drug Administration-approved pharmacotherapy available for NAFLD. This study investigated the role of autotaxin, a secreted enzyme that hydrolyzes lysophosphatidylcholine to produce lysophosphatidic acid (LPA), in the pathogenesis of NAFLD and to explore whether genetic or pharmacologic interventions targeting autotaxin ameliorate NAFLD. METHODS The clinical association of autotaxin with the severity of NAFLD was analyzed in 125 liver biopsy-proven NAFLD patients. C57BL/6N mice or fibroblast growth factor 21 (FGF21)-null mice were fed a high-fat diet or a choline-deficient diet to investigate the role of the autotaxin-FGF21 axis in NAFLD development by hepatic knockdown and antibody neutralization. Huh7 cells were used to investigate the autocrine effects of autotaxin. RESULTS Serum autotaxin levels were associated positively with histologic scores and NAFLD severity. Hepatocytes, but not adipocytes, were the major contributor to increased circulating autotaxin in both patients and mouse models with NAFLD. In mice, knocking-down hepatic autotaxin or treatment with a neutralizing antibody against autotaxin significantly reduced high-fat diet-induced NAFLD and high fat- and choline-deficient diet-induced nonalcoholic steatohepatitis and fibrosis, accompanied by a marked increase of serum FGF21. Mechanistically, autotaxin inhibited the transcriptional activity of peroxisome proliferator-activated receptor α through LPA-induced activation of extracellular signal-regulated kinas, thereby leading to suppression of hepatic FGF21 production. The therapeutic benefit of anti-autotaxin neutralizing antibody against NAFLD was abrogated in FGF21-null mice. CONCLUSIONS Liver-secreted autotaxin acts in an autocrine manner to exacerbate NAFLD through LPA-induced suppression of the peroxisome proliferator-activated receptor α-FGF21 axis and is a promising therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Han Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Erfei Song
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China; Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yue Hu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tengfei Li
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kam Ching Ku
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bernard M Y Cheung
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lai Yee Cheong
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaoping Wu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Ruby L C Hoo
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Yong Wang
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, China.
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Targeting fibrosis, mechanisms and cilinical trials. Signal Transduct Target Ther 2022; 7:206. [PMID: 35773269 PMCID: PMC9247101 DOI: 10.1038/s41392-022-01070-3] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
Fibrosis is characterized by the excessive extracellular matrix deposition due to dysregulated wound and connective tissue repair response. Multiple organs can develop fibrosis, including the liver, kidney, heart, and lung. Fibrosis such as liver cirrhosis, idiopathic pulmonary fibrosis, and cystic fibrosis caused substantial disease burden. Persistent abnormal activation of myofibroblasts mediated by various signals, such as transforming growth factor, platelet-derived growth factor, and fibroblast growh factor, has been recongized as a major event in the occurrence and progression of fibrosis. Although the mechanisms driving organ-specific fibrosis have not been fully elucidated, drugs targeting these identified aberrant signals have achieved potent anti-fibrotic efficacy in clinical trials. In this review, we briefly introduce the aetiology and epidemiology of several fibrosis diseases, including liver fibrosis, kidney fibrosis, cardiac fibrosis, and pulmonary fibrosis. Then, we summarise the abnormal cells (epithelial cells, endothelial cells, immune cells, and fibroblasts) and their interactions in fibrosis. In addition, we also focus on the aberrant signaling pathways and therapeutic targets that regulate myofibroblast activation, extracellular matrix cross-linking, metabolism, and inflammation in fibrosis. Finally, we discuss the anti-fibrotic drugs based on their targets and clinical trials. This review provides reference for further research on fibrosis mechanism, drug development, and clinical trials.
Collapse
|
11
|
Unveiling the Role of the Fatty Acid Binding Protein 4 in the Metabolic-Associated Fatty Liver Disease. Biomedicines 2022; 10:biomedicines10010197. [PMID: 35052876 PMCID: PMC8773613 DOI: 10.3390/biomedicines10010197] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), the main cause of chronic liver disease worldwide, is a progressive disease ranging from fatty liver to steatohepatitis (metabolic-associated steatohepatitis; MASH). Nevertheless, it remains underdiagnosed due to the lack of effective non-invasive methods for its diagnosis and staging. Although MAFLD has been found in lean individuals, it is closely associated with obesity-related conditions. Adipose tissue is the main source of liver triglycerides and adipocytes act as endocrine organs releasing a large number of adipokines and pro-inflammatory mediators involved in MAFLD progression into bloodstream. Among the adipocyte-derived molecules, fatty acid binding protein 4 (FABP4) has been recently associated with fatty liver and additional features of advanced stages of MAFLD. Additionally, emerging data from preclinical studies propose FABP4 as a causal actor involved in the disease progression, rather than a mere biomarker for the disease. Therefore, the FABP4 regulation could be considered as a potential therapeutic strategy to MAFLD. Here, we review the current knowledge of FABP4 in MAFLD, as well as its potential role as a therapeutic target for this disease.
Collapse
|
12
|
Xu X, Ni H, Guo Y, Lin Y, Ji J, Jin C, Yuan F, Feng M, Ji N, Zheng Y, Jiang Q. Hexafluoropropylene oxide dimer acid (HFPO-DA) induced developmental cardiotoxicity and hepatotoxicity in hatchling chickens: Roles of peroxisome proliferator activated receptor alpha. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118112. [PMID: 34500398 DOI: 10.1016/j.envpol.2021.118112] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 05/28/2023]
Abstract
Hexafluoropropylene oxide dimer acid (HFPO-DA) is a perfluorooctanoic acid (PFOA) substitute. In the current study, potential developmental cardiotoxicity and hepatotoxicity following HFPO-DA exposure in chicken embryo has been investigated, focusing on the roles of peroxisome proliferator activated receptor alpha (PPARα), the major molecular target in PFOA-induced toxicities. HFPO-DA was exposed to fertile chicken eggs via air cell injection, morphology and function of the target organs (heart and liver) in hatchlings were investigated with histopathology and electrocardiography, and the serum levels of HFPO-DA had been measured with quadrupole-time of flight liquid chromatograph-mass spectrometer (Q-TOF LC/MS). Additionally, lentivirus-mediated in ovo PPARα silencing was used to assess the roles of PPARα in HFPO-DA induced developmental toxicities. The results indicated that developmental exposure to HFPO-DA induced developmental cardiotoxicity, including thinned right ventricular wall and elevated heart rates, similar to those observed with PFOA exposure, as well as developmental hepatotoxicity in the form of steatosis. Silencing of PPARα alleviated such effects, suggesting participation of PPARα in HFPO-DA induced developmental toxicities in chicken embryo. Moreover, enhanced expression of PPARα downstream genes, cluster of differentiation 36 (CD36) and enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase (EHHADH), were observed in HFPO-DA exposed animal heart tissues, which can be abolished by PPARα silencing. On the other hand, liver-type fatty acid binding protein (L-FABP) and CD36 expression were effectively enhanced in exposed liver tissues, but not EHHADH, suggesting differential mechanism of toxicity in heart and liver tissues. In summary, developmental exposure to HFPO-DA induced developmental cardiotoxicity and hepatotoxicity in hatchling chickens similar to PFOA, and PPARα still participates in such toxicities, with some differential downstream gene regulations in different organs. Further investigation on HFPO-DA-induced developmental toxicities is guaranteed.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Hao Ni
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Yajie Guo
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Yongfeng Lin
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, China
| | - Jing Ji
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Congying Jin
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Fuchong Yuan
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Mengxiao Feng
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Na Ji
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, China
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, China.
| |
Collapse
|
13
|
Zhang C, Yang M. Current Options and Future Directions for NAFLD and NASH Treatment. Int J Mol Sci 2021; 22:7571. [PMID: 34299189 PMCID: PMC8306701 DOI: 10.3390/ijms22147571] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, with a broad spectrum ranging from simple steatosis to advanced stage of nonalcoholic steatohepatitis (NASH). Although there are many undergoing clinical trials for NAFLD treatment, there is no currently approved treatment. NAFLD accounts as a major causing factor for the development of hepatocellular carcinoma (HCC), and its incidence rises accompanying the prevalence of obesity and diabetes. Reprogramming of antidiabetic and anti-obesity medicine is a major treatment option for NAFLD and NASH. Liver inflammation and cellular death, with or without fibrosis account for the progression of NAFLD to NASH. Therefore, molecules and signaling pathways involved in hepatic inflammation, fibrosis, and cell death are critically important targets for the therapy of NAFLD and NASH. In addition, the avoidance of aberrant infiltration of inflammatory cytokines by treating with CCR antagonists also provides a therapeutic option. Currently, there is an increasing number of pre-clinical and clinical trials undergoing to evaluate the effects of antidiabetic and anti-obesity drugs, antibiotics, pan-caspase inhibitors, CCR2/5 antagonists, and others on NAFLD, NASH, and liver fibrosis. Non-invasive serum diagnostic markers are developed for fulfilling the need of diagnostic testing in a large amount of NAFLD cases. Overall, a better understanding of the underlying mechanism of the pathogenesis of NAFLD is helpful to choose an optimized treatment.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA;
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
14
|
Orabi D, Berger NA, Brown JM. Abnormal Metabolism in the Progression of Nonalcoholic Fatty Liver Disease to Hepatocellular Carcinoma: Mechanistic Insights to Chemoprevention. Cancers (Basel) 2021; 13:3473. [PMID: 34298687 PMCID: PMC8307710 DOI: 10.3390/cancers13143473] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is on the rise and becoming a major contributor to the development of hepatocellular carcinoma (HCC). Reasons for this include the rise in obesity and metabolic syndrome in contrast to the marked advances in prevention and treatment strategies of viral HCC. These shifts are expected to rapidly propel this trend even further in the coming decades, with NAFLD on course to become the leading etiology of end-stage liver disease and HCC. No Food and Drug Administration (FDA)-approved medications are currently available for the treatment of NAFLD, and advances are desperately needed. Numerous medications with varying mechanisms of action targeting liver steatosis and fibrosis are being investigated including peroxisome proliferator-activated receptor (PPAR) agonists and farnesoid X receptor (FXR) agonists. Additionally, drugs targeting components of metabolic syndrome, such as antihyperglycemics, have been found to affect NAFLD progression and are now being considered in the treatment of these patients. As NAFLD drug discovery continues, special attention should be given to their relationship to HCC. Several mechanisms in the pathogenesis of NAFLD have been implicated in hepatocarcinogenesis, and therapies aimed at NAFLD may additionally harbor independent antitumorigenic potential. This approach may provide novel prevention and treatment strategies.
Collapse
Affiliation(s)
- Danny Orabi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44106, USA;
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA;
- Department of General Surgery, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nathan A. Berger
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA;
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - J. Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44106, USA;
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA;
| |
Collapse
|
15
|
Zhang J, Feng F, Zhao M. Glycerol Monocaprylate Modulates Gut Microbiota and Increases Short-Chain Fatty Acids Production without Adverse Effects on Metabolism and Inflammation. Nutrients 2021; 13:1427. [PMID: 33922631 PMCID: PMC8147114 DOI: 10.3390/nu13051427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 01/02/2023] Open
Abstract
Glycerol monocaprylate (GMC) is a glycerol derivative of medium-chain fatty acids (MCFAs) and is widely used as a preservative in food processing. However, GMC and its hydrolytic acid (octylic acid) have antibacterial properties that may affect the physiology and intestinal microecology of the human body. Therefore, in this study, the effects of two different dosages of GMC (150 and 1600 mg kg-1) on glucose, lipid metabolism, inflammation, and intestinal microecology of normal diet-fed C57BL/6 mice were comprehensively investigated. The obtained results showed that the level of triglycerides (TGs) in the low-dose group down-regulated significantly, and the anti-inflammatory cytokine interleukin 10 (IL-10) significantly increased, while the pro-inflammatory cytokines monocyte chemotactic protein 1 (MCP-1) and interleukin 1beta (IL-1β) in the high-dose group were significantly decreased. Importantly, GMC promoted the α-diversity of gut microbiota in normal-diet-fed mice, regardless of dosages. Additionally, it was found that the low-dose treatment of GMC significantly increased the abundance of Lactobacillus, while the high-dose treatment of GMC significantly increased the abundance of SCFA-producers such as Clostridiales, Lachnospiraceae, and Ruminococcus. Moreover, the content of short-chain fatty acids (SCFAs) was significantly increased by GMC supplementation. Thus, our research provides a novel insight into the effects of GMC on gut microbiota and physiological characteristics.
Collapse
Affiliation(s)
- Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.Z.); (F.F.)
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.Z.); (F.F.)
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.Z.); (F.F.)
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
16
|
Liu K, Zhao X, Qi X, Hou DL, Li HB, Gu YH, Xu QL. Design, synthesis, and biological evaluation of a novel dual peroxisome proliferator-activated receptor alpha/delta agonist for the treatment of diabetic kidney disease through anti-inflammatory mechanisms. Eur J Med Chem 2021; 218:113388. [PMID: 33784603 DOI: 10.1016/j.ejmech.2021.113388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 01/15/2023]
Abstract
Diabetic kidney disease (DKD) is a major feature of the final stage of nearly all cause types of diabetes mellitus (DM). To date, few safe and effective drugs are available to treat. Peroxisome proliferator-activated receptors (PPARs), comprised of three members: PPAR-α, PPAR-δ and PPAR-γ, play a protective role in the DKD through glycemic control and lipid metabolism, whereas systemic activation of PPAR-γ causes serious side-effects in clinical trials. GFT505 is a dual PPAR-α/δ agonist, and the selectivity against PPAR-γ is still to be improved. Sulfuretin has been shown to suppress the expression of PPAR-γ and improve the pathogenesis of diabetic complications. In this study, by hybridizing the carboxylic acid of GFT505 and the parent nucleus of sulfuretin, we pioneeringly designed and synthetized a series of novel dual PPAR-α/δ agonists, expecting to provide a better benefit/risk ratio for PPARs. Of all the synthesized compounds, compound 12 was identified with highly activity on PPAR-α/δ and higher selectivity against PPAR-γ than that of GFT505 (EC50: hPPAR-α: 0.26 μM vs.0.76 μM; hPPAR-δ: 0.50 μM vs.0.73 μM; hPPAR-γ: 4.22 μM vs.2.79 μM). The molecular docking studies also depicted good binding affinity of compound 12 for PPAR-α and PPAR-δ compared to GFT505. Furthermore, compound 12 exhibited an evidently renoprotective effect on the DKD through inhibiting inflammatory process, which might at least partly via JNK/NF-κB pathways in vivo and in vitro. Overall, compound 12 hold therapeutic promise for DKD.
Collapse
Affiliation(s)
- Kai Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Xing Zhao
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Xue Qi
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Dong-Liang Hou
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Hao-Bin Li
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Yu-Hao Gu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Qing-Long Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China.
| |
Collapse
|