1
|
Khalifa HO, Mohammed T, Mohamed MYI, Hashem H, Habib I. In vitro assessment of the synergistic effects of cefotaxime, colistin, and fosfomycin combinations against foodborne resistant Escherichia coli and Salmonella isolates. J Antibiot (Tokyo) 2025; 78:265-273. [PMID: 39910346 DOI: 10.1038/s41429-025-00808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
The emergence of multidrug-resistant pathogens, particularly β-lactam, colistin, and fosfomycin-resistant Escherichia coli and Salmonella, is a significant public health concern. This study evaluated the in vitro synergistic effects of antimicrobial combinations against these resistant isolates. Ten isolates that originated from retail chicken meat, including five E. coli and five Salmonella isolates, were tested against cefotaxime (CTA), fosfomycin (FOS), and colistin (COL), both individually and in combinations. Antimicrobial susceptibility was assessed using the broth microdilution method, and synergistic interactions were evaluated using checkerboard and time-killing assays. All isolates were multidrug-resistant (MDR) and were resistant to CTA, COL, and FOS. The checkerboard assay showed varying levels of synergy: two out of five E. coli isolates exhibited synergy with FOS-COL, while one E. coli isolates out of four isolates showed synergy with CTA-COL. No E. coli isolates showed synergy with FOS-CTA. For Salmonella, two out of five isolates exhibited synergy with both FOS-CTA and FOS-COL, while three out of four isolates showed synergy with CTA-COL. The time-killing assay confirmed these results, with the FOS-COL combinations showing synergy against both E. coli and Salmonella strains. Notably, the FOS-COL combination demonstrated bactericidal effects against E. coli, and all three combinations were bactericidal against Salmonella. The study highlights the potential of antimicrobial combinations, particularly FOS-COL, in combating MDR E. coli and Salmonella. These findings support the use of combination therapy as a promising strategy to in effectively treating multi-drug-resistant foodborne infections, ensuring better medical outcomes and enhanced food safety, warranting further investigation into their mechanisms and clinical applications.
Collapse
Affiliation(s)
- Hazim O Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, Al Ain, UAE.
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 3351, Egypt.
| | - Temesgen Mohammed
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, Al Ain, UAE
| | - Mohamed-Yousif Ibrahim Mohamed
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, Al Ain, UAE
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain P.O. Box 15551, Al Ain, UAE
| | - Hamada Hashem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Ihab Habib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, Al Ain, UAE
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain P.O. Box 15551, Al Ain, UAE
| |
Collapse
|
2
|
Koul V, Sharma A, Kumari D, Jamwal V, Palmo T, Singh K. Breaking the resistance: integrative approaches with novel therapeutics against Klebsiella pneumoniae. Arch Microbiol 2024; 207:18. [PMID: 39724243 DOI: 10.1007/s00203-024-04205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
Klebsiella pneumoniae is a leading cause of anti-microbial resistance in healthcare-associated infections that have posed a severe threat to neonatal and wider community. The escalating crises of antibiotic resistance have compelled researchers to explore an innovative arsenal beginning from natural resources to chemical modifications in order to overcome the ever-increasing resistance issues. The present review highlights the drug discovery efforts with a special focus on cutting-edge strategies in the hunt for potential drug candidates against MDR/XDR Klebsiella pneumoniae. Nature's bounty constituting plant extracts, essential oils, fungal extracts, etc. holds promising anti-bacterial potential especially when combined with existing antibiotics. Further, enhancing these natural products with synthetic moieties has improved their effectiveness, creating a bridge between the natural and synthetic world. Conversely, the synthetically modified novel scaffolds have been also designed to meticulously target specific sites. Furthermore, we have also elaborated various emerging strategies for broad-spectrum infections caused by K. pneumoniae, which include anti-microbial peptides, nanotechnology, drug repurposing, bacteriophage, photodynamic, and multidrug therapies. This review further addresses the challenges confronted by the research community and the future way forward in the field of drug discovery against multi-resistant bacterial infections.
Collapse
Affiliation(s)
- Vimarishi Koul
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
- Department of Biological Sciences, Birla Institute of Technology and Sciences (BITS), Pilani campus, Pilani, Rajasthan, 333031, India
| | - Akshi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vishwani Jamwal
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tashi Palmo
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Attalla ET, Khalil AM, Zakaria AS, Evans R, Tolba NS, Mohamed NM. Efficacy of colistin-based combinations against pandrug-resistant whole-genome-sequenced Klebsiella pneumoniae isolated from hospitalized patients in Egypt: an in vitro/vivo comparative study. Gut Pathog 2024; 16:73. [PMID: 39627871 PMCID: PMC11616336 DOI: 10.1186/s13099-024-00667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/13/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Colistin resistance significantly constrains available treatment options and results in the emergence of pandrug-resistant (PDR) strains. Treating PDR infections is a major public health issue. A promising solution lies in using colistin-based combinations. Despite the availability of in vitro data evaluating these combinations, the in vivo studies remain limited. RESULTS Thirty colistin-resistant Klebsiella pneumoniae (ColRKp) isolates were collected from hospitalized patients. Colistin resistance was detected using broth microdilution, and antimicrobial susceptibility was tested using the Kirby-Bauer method against 18 antibiotics. Extremely high resistance levels were detected, with 17% of the isolates being PDR. Virulence profiling, assessed using Anthony capsule staining, the string test, and the crystal violet assay, indicated the predominance of non-biofilm formers and non-hypermucoid strains. The isolates were screened for mcr genes using polymerase chain reaction. Whole-genome sequencing (WGS) and bioinformatics analysis were performed to characterize the genomes of PDR isolates. No plasmid-borne mcr genes were detected, and WGS analysis revealed that PDR isolates belonged to the high-risk clones: ST14 (n = 1), ST147 (n = 2), and ST383 (n = 2). They carried genes encoding extended-spectrum β-lactamases and carbapenemases, blaCTX-M-15 and blaNDM-5, on conjugative IncHI1B/IncFIB plasmids, illustrating the convergence of virulence and resistance genes. The most common mechanism of colistin resistance involved alterations in mgrB. Furthermore, deleterious amino acid substitutions were also detected within PhoQ, PmrC, CrrB, ArnB, and ArnT. Seven colistin-containing combinations were compared using the checkerboard experiment. Synergy was observed when combining colistin with tigecycline, doxycycline, levofloxacin, ciprofloxacin, sulfamethoxazole/trimethoprim, imipenem, or meropenem. The efficacy of colistin combined with either doxycycline or levofloxacin was assessed in vitro using a resistance modulation assay, and in vivo, using a murine infection model. In vitro, doxycycline and levofloxacin reversed colistin resistance in 80% and 73.3% of the population, respectively. In vivo, the colistin + doxycycline combination demonstrated superiority over colistin + levofloxacin, rescuing 80% of infected animals, and reducing bacterial bioburden in the liver and kidneys while preserving nearly intact lung histology. CONCLUSIONS This study represents the first comparative in vitro and in vivo investigation of the efficacy of colistin + doxycycline and colistin + levofloxacin combinations in clinical PDR ColRKp isolates characterized at a genomic level.
Collapse
Affiliation(s)
- Eriny T Attalla
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amal M Khalil
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Azza S Zakaria
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | | - Nesrin S Tolba
- Pathology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Nelly M Mohamed
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
4
|
Singh A, Tanwar M, Singh TP, Sharma S, Sharma P. An escape from ESKAPE pathogens: A comprehensive review on current and emerging therapeutics against antibiotic resistance. Int J Biol Macromol 2024; 279:135253. [PMID: 39244118 DOI: 10.1016/j.ijbiomac.2024.135253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The rise of antimicrobial resistance has positioned ESKAPE pathogens as a serious global health threat, primarily due to the limitations and frequent failures of current treatment options. This growing risk has spurred the scientific community to seek innovative antibiotic therapies and improved oversight strategies. This review aims to provide a comprehensive overview of the origins and resistance mechanisms of ESKAPE pathogens, while also exploring next-generation treatment strategies for these infections. In addition, it will address both traditional and novel approaches to combating antibiotic resistance, offering insights into potential new therapeutic avenues. Emerging research underscores the urgency of developing new antimicrobial agents and strategies to overcome resistance, highlighting the need for novel drug classes and combination therapies. Advances in genomic technologies and a deeper understanding of microbial pathogenesis are crucial in identifying effective treatments. Integrating precision medicine and personalized approaches could enhance therapeutic efficacy. The review also emphasizes the importance of global collaboration in surveillance and stewardship, as well as policy reforms, enhanced diagnostic tools, and public awareness initiatives, to address resistance on a worldwide scale.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mansi Tanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - T P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
5
|
Hoseinzadeh M, Sedighi M, Yahyapour Y, Javanian M, Beiranvand M, Mohammadi M, Zarei S, Pournajaf A, Ebrahimzadeh Namvar A. Prevalence of plasmid-mediated quinolone resistance genes in extended-spectrum beta-lactamase producing Klebsiella pneumoniae isolates in northern Iran. Heliyon 2024; 10:e37534. [PMID: 39315185 PMCID: PMC11417531 DOI: 10.1016/j.heliyon.2024.e37534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Plasmid-mediated quinolone resistance (PMQR) in extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae (K. pneumoniae) contributes to treatment failures, extended hospital stays, and increased mortality percentages. We aimed to determine the prevalence of PMQR genes in ESBL-producing K. pneumoniae isolates from clinical samples in Babol, North of Iran region. This is the first study in this region to investigate this specific association. A total of 95 K. pneumoniae isolates were obtained from hospitalized patients with various clinical infections during March 2022 to February 2023. Disk diffusion and Combination disk method were performed to identification of antimicrobial resistance profiles and ESBL-producing strains. The presence of ESBL and PMQR genes among K. pneumoniae isolates was assessed using polymerase chain reaction (PCR) method. Of the isolates, 68 (71.57 %) were considered as ESBL-producers. The bla TEM, bla SHV and bla CTX-M genes were detected in 74.73 %, 57.89 %, and 41.05 % of K. pneumoniae isolates, respectively. Among the PMQR encoding genes, the highest and lowest frequency was associated to qepA (67.3 %) and qnrA (4.2 %), respectively. The frequency of qnrA, qnrB, qnrS, acc (6')-Ib-cr, qepA, oqxA, and oqxB genes in 26 MDR-Kp isolates was 11.53 % (n; 3), 69.23 % (n; 18), 65.38 % (n; 17), 73.07 % (n; 19), 80.76 % (n; 21), 84.61 % (n; 22), and 76.92 % (n; 20), respectively. Our result revealed of the 68 ESBL gene-positive isolates, 60 (88.23 %) were positive for the PMQR gene. The co-occurrence of these genes within resistant isolates suggests potential linkage on mobile genetic elements such as plasmids. These findings highlight the significant burden of PMQR determinants in ESBL-producing K. pneumoniae and underscore the urgent need for effective control measures. Implementing robust antimicrobial stewardship programs and strengthening drug-resistance surveillance and control protocols are crucial to prevent the spread of resistant isolates.
Collapse
Affiliation(s)
- Maedeh Hoseinzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mansour Sedighi
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Zoonoses Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Yousef Yahyapour
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mostafa Javanian
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Beiranvand
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Jacksonville, University of Florida, Jacksonville, FL, USA
| | - Mohsen Mohammadi
- Non-Communicable Pediatric Disease Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sepide Zarei
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Abazar Pournajaf
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Amirmorteza Ebrahimzadeh Namvar
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
6
|
Xuan P, Xu Z, Cui H, Gu J, Liu C, Zhang T, Wu P. Dynamic category-sensitive hypergraph inferring and homo-heterogeneous neighbor feature learning for drug-related microbe prediction. BIOINFORMATICS (OXFORD, ENGLAND) 2024; 40:btae562. [PMID: 39292557 PMCID: PMC11441325 DOI: 10.1093/bioinformatics/btae562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 09/17/2024] [Indexed: 09/20/2024]
Abstract
MOTIVATION The microbes in human body play a crucial role in influencing the functions of drugs, as they can regulate the activities and toxicities of drugs. Most recent methods for predicting drug-microbe associations are based on graph learning. However, the relationships among multiple drugs and microbes are complex, diverse, and heterogeneous. Existing methods often fail to fully model the relationships. In addition, the attributes of drug-microbe pairs exhibit long-distance spatial correlations, which previous methods have not integrated effectively. RESULTS We propose a new prediction method named DHDMP which is designed to encode the relationships among multiple drugs and microbes and integrate the attributes of various neighbor nodes along with the pairwise long-distance correlations. First, we construct a hypergraph with dynamic topology, where each hyperedge represents a specific relationship among multiple drug nodes and microbe nodes. Considering the heterogeneity of node attributes across different categories, we developed a node category-sensitive hypergraph convolution network to encode these diverse relationships. Second, we construct homogeneous graphs for drugs and microbes respectively, as well as drug-microbe heterogeneous graph, facilitating the integration of features from both homogeneous and heterogeneous neighbors of each target node. Third, we introduce a graph convolutional network with cross-graph feature propagation ability to transfer node features from homogeneous to heterogeneous graphs for enhanced neighbor feature representation learning. The propagation strategy aids in the deep fusion of features from both types of neighbors. Finally, we design spatial cross-attention to encode the attributes of drug-microbe pairs, revealing long-distance correlations among multiple pairwise attribute patches. The comprehensive comparison experiments showed our method outperformed state-of-the-art methods for drug-microbe association prediction. The ablation studies demonstrated the effectiveness of node category-sensitive hypergraph convolution network, graph convolutional network with cross-graph feature propagation, and spatial cross-attention. Case studies on three drugs further showed DHDMP's potential application in discovering the reliable candidate microbes for the interested drugs. AVAILABILITY AND IMPLEMENTATION Source codes and supplementary materials are available at https://github.com/pingxuan-hlju/DHDMP.
Collapse
Affiliation(s)
- Ping Xuan
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
- Department of Computer Science and Technology, Shantou University, Shantou 515063, China
| | - Zelong Xu
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Hui Cui
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, VIC 3083, Australia
- Australian Centre for AI in Medical Innovation, La Trobe University, Melbourne 3083, Australia
| | - Jing Gu
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Cheng Liu
- Department of Computer Science and Technology, Shantou University, Shantou 515063, China
| | - Tiangang Zhang
- School of Mathematical Science, Heilongjiang University, Harbin 150080, China
| | - Peiliang Wu
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
7
|
Tran NBV, Huynh TQ, Ngo HL, Nguyen NHB, Nguyen TH, Tong TH, Trinh TTL, Nguyen VD, Pham LNM, Das PP, Lim TK, Lin Q, Nguyen TTH. Comparative phenotypic and proteomic analysis of colistin-exposed Pseudomonas aeruginosa. Germs 2024; 14:246-266. [PMID: 39776958 PMCID: PMC11703588 DOI: 10.18683/germs.2024.1436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/26/2024] [Accepted: 09/11/2024] [Indexed: 01/11/2025]
Abstract
Introduction The emergence of colistin resistance threatens the treatment of Pseudomonas aeruginosa infections. Methods In this study, in vitro development of colistin resistance was investigated using comparative phenotypic and proteomic analysis of P. aeruginosa ATCC 9027, its 14-day colistin sub-MIC exposed strain (Col-E1), and 10-day antibiotic-free cultured Col-E1 strain (Col-E2). Antibiotic susceptibility, morphology, virulence factors, and proteomic changes were assessed using disc-diffusion, agar-based, spectrophotometry, SEM, and iTRAQ-LC-MS/MS methods. Results Colistin-exposed strains decreased susceptibility to colistin while remaining susceptible to other antibiotics. Col-E1 reduced the cell lengths by 17.67% and the colony size by 36.16% compared to the initial strain. The reduction remained in Col-E2. The pyocyanin production was reduced in Col-E1 (p=0.025, Tukey HSD) and increased again in Col-E2 (p=0.005, Tukey HSD). In contrast, no significant changes in elastase, protease, rhamnolipid, pyoverdine, and biofilm production were observed (p>0.05, Tukey HSD). In Col-E1, the proteome analysis showed 135 differentially expressed proteins (DEPs) of which 94 DEPs (69.23%) maintained their expression change in Col-E2. Among DEPs, 82 were involved in metabolism and protein synthesis. Some DEPs (6/135) played a role in stress response such as GrpE (fold change: 14.93) and Hmp (fold change: 12.08). In particular, membrane proteins like OprD, DdlB, and OprI showed significant colistin response with fold change of -8.47, 6.43 and 6.19, respectively. Conclusions In summary, colistin response in P. aeruginosa seemed to affect morphology, production of pyocyanin, and proteins of metabolism, protein synthesis, stress response and membrane.
Collapse
Affiliation(s)
- Nguyen Bao Vy Tran
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thuc Quyen Huynh
- MSc, School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam, and Research Center for Infectious Diseases, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Hong Loan Ngo
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Ngoc Hoa Binh Nguyen
- MSc, School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thi Hiep Nguyen
- PhD, School of Biomedical Engineering, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thi Hang Tong
- MSc, School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thi Truc Ly Trinh
- PhD, School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Van Dung Nguyen
- MSc, School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Le Nhat Minh Pham
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam, and Cho Ray Hospital, Ho Chi Minh City 700000, Vietnam
| | - Prem Prakash Das
- PhD, Protein and Proteomics Centre, Department of Biological Sciences, National University of Singapore, 119260, Singapore
| | - Teck Kwang Lim
- PhD, Protein and Proteomics Centre, Department of Biological Sciences, National University of Singapore, 119260, Singapore
| | - Qingsong Lin
- PhD, Protein and Proteomics Centre, Department of Biological Sciences, National University of Singapore, 119260, Singapore
| | - Thi Thu Hoai Nguyen
- PhD, School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam, and Research Center for Infectious Diseases, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
8
|
P C, A T, Murthy NS, Raghavendra Rao M. In Vitro Synergistic Effect of Colistin with Fosfomycin Against Carbapenem-Resistant Klebsiella pneumoniae. Cureus 2024; 16:e66295. [PMID: 39238681 PMCID: PMC11376468 DOI: 10.7759/cureus.66295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND The dwindling antibiotic reserve owing to augmented drug-resistant bacteria is a major handicap for treating physicians. Klebsiella pneumoniae, a gram-negative encapsulated member of the Enterobacteriaceae family, is one such pathogenic bacteria. Carbapenemase-producing Klebsiella pneumoniae is globally recognized as one of the most critical bacterial threats to public health due to its extremely limited treatment options. Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections pose therapeutic challenges due to simultaneous resistance to various other groups of antibiotics. In this study, we have evaluated the synergistic effect of fosfomycinagainst CRKP isolates when used in combination with colistin by applying the Checkerboard method. METHODS A laboratory-based prospective study was conducted in the Department of Microbiology, JSS Hospital, Mysuru, for a period of one year after obtaining ethical clearance. Klebsiella pneumoniae isolates obtained from clinical samples were screened for carbapenem resistance by the VITEK-2 compact system (bioMérieux, Marcy-l'Étoile, France). The minimum inhibitory concentration (MIC) of colistin and fosfomycin was individually ascertained by broth microdilution (BMD). Finally, the synergistic activity of the fosfomycin-colistin combination was determined by the BMD-based Checkerboard method. RESULTS Among the 50 CRKP isolates, 36 (72%) isolates showed synergism, eight (16%) isolates showed indifference and six (12%) isolates showed partial synergism, while none of them showed additivity and antagonism by the Checkerboard method. These results are found to be statistically significant (chi-square value of 116.204 and p-value of < 0.00001). CONCLUSION This study showed a promising in-vitro synergy between the drugs fosfomycin and colistin by Checkerboard BMD testing protocol. Colistin being a reserve antibiotic, monotherapy comes with the limitations of higher chances of resistance as well as toxicity, which can be overcome by combination therapy, thereby decreasing CRKP-associated mortality rates and delivering holistic patient benefit.
Collapse
Affiliation(s)
- Chethankumar P
- Microbiology, JSS Medical College and Hospital, JSS Academy of Higher Education and Research (JSSAHER), Mysore, IND
| | - Tejashree A
- Microbiology, JSS Medical College and Hospital, JSS Academy of Higher Education and Research (JSSAHER), Mysore, IND
| | - Neetha S Murthy
- Microbiology, JSS Medical College and Hospital, JSS Academy of Higher Education and Research (JSSAHER), Mysore, IND
| | - Morubagal Raghavendra Rao
- Microbiology, JSS Medical College and Hospital, JSS Academy of Higher Education and Research (JSSAHER), Mysore, IND
| |
Collapse
|
9
|
AlJarf R, Rodrigues CHM, Myung Y, Pires DEV, Ascher DB. piscesCSM: prediction of anticancer synergistic drug combinations. J Cheminform 2024; 16:81. [PMID: 39030592 PMCID: PMC11264925 DOI: 10.1186/s13321-024-00859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 05/12/2024] [Indexed: 07/21/2024] Open
Abstract
While drug combination therapies are of great importance, particularly in cancer treatment, identifying novel synergistic drug combinations has been a challenging venture. Computational methods have emerged in this context as a promising tool for prioritizing drug combinations for further evaluation, though they have presented limited performance, utility, and interpretability. Here, we propose a novel predictive tool, piscesCSM, that leverages graph-based representations to model small molecule chemical structures to accurately predict drug combinations with favourable anticancer synergistic effects against one or multiple cancer cell lines. Leveraging these insights, we developed a general supervised machine learning model to guide the prediction of anticancer synergistic drug combinations in over 30 cell lines. It achieved an area under the receiver operating characteristic curve (AUROC) of up to 0.89 on independent non-redundant blind tests, outperforming state-of-the-art approaches on both large-scale oncology screening data and an independent test set generated by AstraZeneca (with more than a 16% improvement in predictive accuracy). Moreover, by exploring the interpretability of our approach, we found that simple physicochemical properties and graph-based signatures are predictive of chemotherapy synergism. To provide a simple and integrated platform to rapidly screen potential candidate pairs with favourable synergistic anticancer effects, we made piscesCSM freely available online at https://biosig.lab.uq.edu.au/piscescsm/ as a web server and API. We believe that our predictive tool will provide a valuable resource for optimizing and augmenting combinatorial screening libraries to identify effective and safe synergistic anticancer drug combinations. SCIENTIFIC CONTRIBUTION: This work proposes piscesCSM, a machine-learning-based framework that relies on well-established graph-based representations of small molecules to identify and provide better predictive accuracy of syngenetic drug combinations. Our model, piscesCSM, shows that combining physiochemical properties with graph-based signatures can outperform current architectures on classification prediction tasks. Furthermore, implementing our tool as a web server offers a user-friendly platform for researchers to screen for potential synergistic drug combinations with favorable anticancer effects against one or multiple cancer cell lines.
Collapse
Affiliation(s)
- Raghad AlJarf
- Structural Biology and Bioinformatics, Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Carlos H M Rodrigues
- Structural Biology and Bioinformatics, Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Yoochan Myung
- Structural Biology and Bioinformatics, Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Douglas E V Pires
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- School of Computing and Information Systems, University of Melbourne, Melbourne, VIC, Australia
| | - David B Ascher
- Structural Biology and Bioinformatics, Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, Australia.
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia.
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
10
|
Sadeghi Dousari A, Shakibaie M, Hosseini-Nave H, Forootanfar H. Effect of biogenic bismuth nanoparticle on the expression of New Delhi metallo-β-lactamase (NDM) gene in Multidrug-Resistant Klebsiella pneumoniae. Heliyon 2024; 10:e32549. [PMID: 39183861 PMCID: PMC11341316 DOI: 10.1016/j.heliyon.2024.e32549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 08/27/2024] Open
Abstract
Aim and background The emergence of Multidrug-Resistant Klebsiella pneumoniae is a global concern due to high mortality and treatment challenges. One of the most important genes for resistance is NDM, which makes the organism resistant to most antibiotics. Today, the use of nanoparticles as therapeutic options has stimulated researchers around the world to investigate its effects. The aim of this study was to investigate the effects of biosynthesized bismuth nanoparticles (Bi NPs) on the expression of NDM genes in multidrug-resistant K. pneumoniae. Materials and methods In this study, 5 multidrug-resistant K. pneumoniae clinical isolates from patients referred to Afzalipour Hospital in Kerman, Iran, were used. Antibiotic sensitivity test was performed by disc diffusion method. The presence of the NDM gene was checked in isolates using a PCR reaction. The isolates containing the NDM gene were exposed to the biosynthesized and characterized bismuth nanoparticles, and the effects on the expression of the NDM gene was investigated using real-time PCR. Results The results showed that 3 isolates of K. pneumoniae had NDM genes. In TEM and SEM analysis showed that the nanoparticles had a spherical structure and an average size of 22.36 nm. The investigation of biogenic Bi NPs on the expression of the NDM gene demonstrated that the samples treated with bismuth nanoparticles decreased the expression of the NDM gene by 1.6 times compared to the control group (p < 0.011). Conclusion Our findings showed that biosynthesized Bi NPs have a high potential to deal with antibiotic resistance genes and can be a promising for treatment.
Collapse
Affiliation(s)
- Amin Sadeghi Dousari
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Shakibaie
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Hosseini-Nave
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Oyardi O, Yilmaz FN, Dosler S. Efficacy of Zoliflodacin, a Spiropyrimidinetrione Antibiotic, Against Gram-Negative Pathogens. Curr Microbiol 2024; 81:241. [PMID: 38910195 DOI: 10.1007/s00284-024-03761-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/01/2024] [Indexed: 06/25/2024]
Abstract
Zoliflodacin is a spiropyrimidinetrione antibiotic that acts by binding to the GyrB part of the DNA gyrase enzyme in bacteria. Its effectiveness for the treatment of Neisseria gonorrhoeae infections has been investigated extensively. Since antibiotic resistance has been reached an alarming rate worldwide, researches on new antimicrobials are considered a priority, especially in the treatment of multidrug-resistant Gram-negative bacteria, such as Klebsiella pneumonia. The aim of this study is to test and compare the effectiveness of zoliflodacin with some traditional antibiotics which are frequently preferred in the treatment of Gram-negative pathogens, primarily K. pneumonia. Additionally, its ability to prevent biofilm formation has also been determined. The minimum inhibitory concentration (MIC) values of zoliflodacin along with levofloxacin, meropenem, gentamicin, ampicillin/sulbactam and ceftazidime/avibactam were evaluated by broth microdilution method against 15 Gram-negative clinical isolates and three standard strains. Also, the synergism potential of zoliflodacin with other antibiotics was evaluated by the checkerboard method against standard strains of K. pneumonia, Pseudomonas aeruginosa, and Acinetobacter baumannii. In addition, the inhibitory effects of zoliflodacin on biofilm formation of standard strains were determined. Zoliflodacin MICs were found to be in the range of 2-64 µg/mL, and its combination with meropenem and ampicillin/sulbactam was found to be synergistic, especially against A. baumannii. Zoliflodacin significantly inhibited A. baumannii biofilm at sub-MIC values. These results indicated that zoliflodacin can be considered as an alternative against infections of Gram-negative pathogens, alone or in combination.
Collapse
Affiliation(s)
- Ozlem Oyardi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Gazi University, 06330, Ankara, Türkiye.
| | - Fatima Nur Yilmaz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Türkiye
| | - Sibel Dosler
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Türkiye
| |
Collapse
|
12
|
Ahmed F, Abraham B, Kamal Saeed N, Mohamed Naser H, Sridharan K. Retrospective Tertiary Care-Based Cohort Study on Clinical Characteristics and Outcomes of Ceftazidime-Avibactam-Resistant Carbapenem-Resistant Klebsiella pneumoniae Infections. Crit Care Res Pract 2024; 2024:3427972. [PMID: 38868174 PMCID: PMC11168800 DOI: 10.1155/2024/3427972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/26/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
Introduction The advent of ceftazidime-avibactam (CAZ-AVI)-resistant carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates has been steadily documented in recent years. We aimed to identify risk factors of CAZ-AVI-resistant CRKP infection and assess clinical outcomes of patients. Methods The study retrospectively examined the clinical and microbiological data of patients with ceftazidime avibactam susceptible and ceftazidime avibactam-resistant Klebsiella pneumonia carbapenem-resistant enterobacteriaceae infection to identify risk factors, clinical features, and outcomes using multivariate logistic regression analysis. Results A total of 152 patients with CRKP infection were enrolled in this study. Patients with CAZ-AVI-resistant CRKP isolates (20/34 = 58.8%) had prior exposure to carbapenems (p=0.003) and had more tracheostomies (16/34 = 47.1%) (p=0.001). Only 8/28 (28.6%) patients with CAZ-AVI susceptible CRKP isolates died amongst those administered ceftazidime-avibactam compared to 49/90 (54.4%) who did not receive the same (p=0.016). 1/9 (11.1%) patients with CAZ-AVI-resistant CRKP isolates who received colistin died compared to 13/25 (52%) who did not receive colistin (p=0.03). There was no association between presence of CAZ-AVI-resistant CRKP isolates and overall mortality (odds ratio: 0.7; 95% CI: 0.3, 1.6), and no independent predictors of risk factors to overall mortality in the group with CAZ-AVI-resistant CRKP isolates were noted. Conclusion Early advent of CAZ-AVI resistance in CRE isolates highlights the dynamic necessity of routine CAZ-AVI resistance laboratory testing and antimicrobial stewardship programmes focusing on the utilization of all antibiotics. Consolidating the hospital infection control of tracheostomies may help to prevent CAZ resistance in CRKP. Colistin may aid in decreasing of mortality rates among patients with CAZ-AVI CRKP isolates.
Collapse
Affiliation(s)
- Fatema Ahmed
- Department of Intensive Care, Salmaniya Medical Complex, Manama, Bahrain
| | - Betsy Abraham
- Department of Intensive Care, Salmaniya Medical Complex, Manama, Bahrain
| | | | | | - Kannan Sridharan
- Department of Pharmacology and Therapeutics, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
13
|
Tyagi JL, Gupta P, Ghate MM, Kumar D, Poluri KM. Assessing the synergistic potential of bacteriophage endolysins and antimicrobial peptides for eradicating bacterial biofilms. Arch Microbiol 2024; 206:272. [PMID: 38772980 DOI: 10.1007/s00203-024-04003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Phage-encoded endolysins have emerged as a potential substitute to conventional antibiotics due to their exceptional benefits including host specificity, rapid host killing, least risk of resistance. In addition to their antibacterial potency and biofilm eradication properties, endolysins are reported to exhibit synergism with other antimicrobial agents. In this study, the synergistic potency of endolysins was dissected with antimicrobial peptides to enhance their therapeutic effectiveness. Recombinantly expressed and purified bacteriophage endolysin [T7 endolysin (T7L); and T4 endolysin (T4L)] proteins have been used to evaluate the broad-spectrum antibacterial efficacy using different bacterial strains. Antibacterial/biofilm eradication studies were performed in combination with different antimicrobial peptides (AMPs) such as colistin, nisin, and polymyxin B (PMB) to assess the endolysin's antimicrobial efficacy and their synergy with AMPs. In combination with T7L, polymyxin B and colistin effectively eradicated the biofilm of Pseudomonas aeruginosa and exhibited a synergistic effect. Further, a combination of T4L and nisin displayed a synergistic effect against Staphylococcus aureus biofilms. In summary, the obtained results endorse the theme of combinational therapy consisting of endolysins and AMPs as an effective remedy against the drug-resistant bacterial biofilms that are a serious concern in healthcare settings.
Collapse
Affiliation(s)
- Jaya Lakshmi Tyagi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248001, India
| | - Mayur Mohan Ghate
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Dinesh Kumar
- Centre of Bio-Medical Research, SGPGIMS, Lucknow, Uttar Pradesh, 226014, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
14
|
Zhao C, Kristoffersson AN, Khan DD, Lagerbäck P, Lustig U, Cao S, Annerstedt C, Cars O, Andersson DI, Hughes D, Nielsen EI, Friberg LE. Quantifying combined effects of colistin and ciprofloxacin against Escherichia coli in an in silico pharmacokinetic-pharmacodynamic model. Sci Rep 2024; 14:11706. [PMID: 38778123 PMCID: PMC11111785 DOI: 10.1038/s41598-024-61518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Co-administering a low dose of colistin (CST) with ciprofloxacin (CIP) may improve the antibacterial effect against resistant Escherichia coli, offering an acceptable benefit-risk balance. This study aimed to quantify the interaction between ciprofloxacin and colistin in an in silico pharmacokinetic-pharmacodynamic model from in vitro static time-kill experiments (using strains with minimum inhibitory concentrations, MICCIP 0.023-1 mg/L and MICCST 0.5-0.75 mg/L). It was also sought to demonstrate an approach of simulating concentrations at the site of infection with population pharmacokinetic and whole-body physiologically based pharmacokinetic models to explore the clinical value of the combination when facing more resistant strains (using extrapolated strains with lower susceptibility). The combined effect in the final model was described as the sum of individual drug effects with a change in drug potency: for ciprofloxacin, concentration at half maximum killing rate (EC50) in combination was 160% of the EC50 in monodrug experiments, while for colistin, the change in EC50 was strain-dependent from 54.1% to 119%. The benefit of co-administrating a lower-than-commonly-administrated colistin dose with ciprofloxacin in terms of drug effect in comparison to either monotherapy was predicted in simulated bloodstream infections and pyelonephritis. The study illustrates the value of pharmacokinetic-pharmacodynamic modelling and simulation in streamlining rational development of antibiotic combinations.
Collapse
Affiliation(s)
- Chenyan Zhao
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - David D Khan
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - Ulrika Lustig
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sha Cao
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Otto Cars
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Lena E Friberg
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
Li H, Nemeth AM, Melander RJ, Melander C. Synthesis, Stereochemical Resolution, and Analogue Synthesis of Variabiline, an Aporphine Alkaloid That Sensitizes Acinetobacter baumannii and Klebsiella pneumoniae to Colistin. ACS Infect Dis 2024; 10:1339-1350. [PMID: 38491938 PMCID: PMC11780689 DOI: 10.1021/acsinfecdis.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Increasing antimicrobial resistance, coupled with the absence of new antibiotics, has led physicians to rely on colistin, a polymyxin with known nephrotoxicity, as the antibiotic of last resort for the treatment of infections caused by Gram-negative bacteria. One approach to increasing antibiotic efficacy and thereby reducing dosage is the use of small-molecule potentiators that augment antibiotic activity. We recently identified the aporphine alkaloid (±)-variabiline, which lowers the minimum inhibitory concentration of colistin in Acinetobacter baumannii and Klebsiella pneumoniae. Herein, we report the first total synthesis of (±)-variabiline to confirm structure and activity, the resolution, and evaluation of both enantiomers as colistin potentiators, and a structure-activity relationship study that identifies more potent variabiline derivatives. Preliminary mechanistic studies indicate that (±)-variabiline and its derivatives potentiate colistin by targeting the Gram-negative outer membrane.
Collapse
Affiliation(s)
- Haoting Li
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ansley M. Nemeth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Roberta J. Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
16
|
Słabisz N, Leśnik P, Janc J, Fidut M, Bartoszewicz M, Dudek-Wicher R, Nawrot U. Evaluation of the in vitro susceptibility of clinical isolates of NDM-producing Klebsiella pneumoniae to new antibiotics included in a treatment regimen for infections. Front Microbiol 2024; 15:1331628. [PMID: 38646622 PMCID: PMC11027895 DOI: 10.3389/fmicb.2024.1331628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Background Due to the growing resistance to routinely used antibiotics, the search for new antibiotics or their combinations with effective inhibitors against multidrug-resistant microorganisms is ongoing. In our study, we assessed the in vitro drug susceptibility of Klebsiella pneumoniae strains producing New Delhi metallo-β-lactamases (NDM) to antibiotics included in the Infectious Diseases Society of America (IDSA) and European Society of Clinical Microbiology and Infectious Diseases (ESCMID) recommendations. Methods A total of 60 strains of NDM-producing K. pneumoniae were obtained from different patients hospitalized at the 4th Military Hospital in Wroclaw between 2019 and 2022 and subjected to drug susceptibility to selected antibiotics, including the effects of drug combinations. Results Among the tested antibiotics, the highest sensitivity (100%) was observed for cefiderocol, eravacycline (interpreted according to the European Committee on Antimicrobial Susceptibility Testing [EUCAST]), and tigecycline. Sensitivity to intravenous fosfomycin varied depending on the method used. Using the "strip stacking" method, determining cumulative sensitivity to ceftazidime/avibactam and aztreonam demonstrated 100% in vitro sensitivity to this combination among the tested strains. Conclusion The in vitro susceptibility assessment demonstrated that, the best therapeutic option for treating infections caused by carbapenemase-producing strains seems to be a combination of ceftazidime/avibactam with aztreonam. Due to the safety of using both drugs, cost effectiveness, and the broadest indications for use among the tested antibiotics, this therapy should be the first-line treatment for carbapenemase-producing Enterobacterales infections. Nevertheless, a comprehensive evaluation of the efficacy of treating infections caused by NDM-producing K. pneumoniae strains should include not only in vitro susceptibility assessment but also an analysis of clinical cases.
Collapse
Affiliation(s)
- Natalia Słabisz
- Department of Laboratory Diagnostic, 4th Military Clinical Hospital, Wroclaw, Poland
| | - Patrycja Leśnik
- Department of Microbiology, Wroclaw Medical University, Wroclaw, Poland
| | - Jarosław Janc
- Department of Anaesthesiology and Intensive Therapy, Hospital of Ministry of the Interior and Administration, Wroclaw, Poland
| | - Miłosz Fidut
- Department of Cardiology, 4th Military Clinical Hospital, Wroclaw, Poland
| | - Marzenna Bartoszewicz
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Wroclaw, Poland
| | - Ruth Dudek-Wicher
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Wroclaw, Poland
| | - Urszula Nawrot
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
17
|
Nwabor OF, Chukamnerd A, Terbtothakun P, Nwabor LC, Surachat K, Roytrakul S, Voravuthikunchai SP, Chusri S. Synergistic effects of polymyxin and vancomycin combinations on carbapenem- and polymyxin-resistant Klebsiella pneumoniae and their molecular characteristics. Microbiol Spectr 2023; 11:e0119923. [PMID: 37905823 PMCID: PMC10715205 DOI: 10.1128/spectrum.01199-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE This study provides insights into the mechanisms of polymyxin resistance in K. pneumoniae clinical isolates and demonstrates potential strategies of polymyxin and vancomycin combinations for combating this resistance. We also identified possible mechanisms that might be associated with the treatment of these combinations against carbapenem- and polymyxin-resistant K. pneumoniae clinical isolates. The findings have significant implications for the development of alternative therapies and the effective management of infections caused by these pathogens.
Collapse
Affiliation(s)
- Ozioma Forstinus Nwabor
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Arnon Chukamnerd
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Pawarisa Terbtothakun
- Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Lois Chinwe Nwabor
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Faculty of Medicine, Translational Medicine Research Center, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Faculty of Science, Center of Antimicrobial Biomaterial Innovation-Southeast Asia and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
18
|
Karasiński M, Wnorowska U, Durnaś B, Król G, Daniluk T, Skłodowski K, Głuszek K, Piktel E, Okła S, Bucki R. Ceragenins and Ceragenin-Based Core-Shell Nanosystems as New Antibacterial Agents against Gram-Negative Rods Causing Nosocomial Infections. Pathogens 2023; 12:1346. [PMID: 38003809 PMCID: PMC10674730 DOI: 10.3390/pathogens12111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The growing number of infections caused by multidrug-resistant bacterial strains, limited treatment options, multi-species infections, high toxicity of the antibiotics used, and an increase in treatment costs are major challenges for modern medicine. To remedy this, scientists are looking for new antibiotics and treatment methods that will effectively eradicate bacteria while continually developing different resistance mechanisms. Ceragenins are a new group of antimicrobial agents synthesized based on molecular patterns that define the mechanism of antibacterial action of natural antibacterial peptides and steroid-polyamine conjugates such as squalamine. Since ceragenins have a broad spectrum of antimicrobial activity, with little recorded ability of bacteria to develop a resistance mechanism that can bridge their mechanism of action, there are high hopes that this group of molecules can give rise to a new family of drugs effective against bacteria resistant to currently used antibiotics. Experimental data suggests that core-shell nanosystems, in which ceragenins are presented to bacterial cells on metallic nanoparticles, may increase their antimicrobial potential and reduce their toxicity. However, studies should be conducted, among others, to assess potential long-term cytotoxicity and in vivo studies to confirm their activity and stability in animal models. Here, we summarized the current knowledge on ceragenins and ceragenin-containing nanoantibiotics as potential new tools against emerging Gram-negative rods associated with nosocomial infections.
Collapse
Affiliation(s)
- Maciej Karasiński
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| | - Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| | - Bonita Durnaś
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (B.D.); (G.K.); (K.G.)
| | - Grzegorz Król
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (B.D.); (G.K.); (K.G.)
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| | - Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| | - Katarzyna Głuszek
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (B.D.); (G.K.); (K.G.)
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, Mickiewicza 2B, 15-222 Białystok, Poland;
| | - Sławomir Okła
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland;
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| |
Collapse
|
19
|
Nguyen HT, Venter H, Woolford L, Young KA, McCluskey A, Garg S, Sapula SS, Page SW, Ogunniyi AD, Trott DJ. Oral administration of a 2-aminopyrimidine robenidine analogue (NCL195) significantly reduces Staphylococcus aureus infection and reduces Escherichia coli infection in combination with sub-inhibitory colistin concentrations in a bioluminescent mouse model. Antimicrob Agents Chemother 2023; 67:e0042423. [PMID: 37695304 PMCID: PMC10583667 DOI: 10.1128/aac.00424-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/06/2023] [Indexed: 09/12/2023] Open
Abstract
We have previously reported promising in vivo activity of the first-generation 2-aminopyramidine robenidine analogue NCL195 against Gram-positive bacteria (GPB) when administered via the systemic route. In this study, we examined the efficacy of oral treatment with NCL195 (± low-dose colistin) in comparison to oral moxifloxacin in bioluminescent Staphylococcus aureus and Escherichia coli peritonitis-sepsis models. Four oral doses of 50 mg/kg NCL195, commencing immediately post-infection, were administered at 4 h intervals in the S. aureus peritonitis-sepsis model. We used a combination of four oral doses of 50 mg/kg NCL195 and four intraperitoneal doses of colistin at 0.125 mg/kg, 0.25 mg/kg, or 0.5 mg/kg in the E. coli peritonitis-sepsis model. Subsequently, the dose rates of four intraperitoneal doses of colistin were increased to 0.5 mg/kg, 1 mg/kg, or 2 mg/kg at 4 h intervals to treat a colistin-resistant E. coli infection. In the S. aureus infection model, oral treatment of mice with NCL195 resulted in significantly reduced S. aureus infection loads (P < 0.01) and longer survival times (P < 0.001) than vehicle-only treated mice. In the E. coli infection model, co-administration of NCL195 and graded doses of colistin resulted in a dose-dependent significant reduction in colistin-susceptible (P < 0.01) or colistin-resistant (P < 0.05) E. coli loads compared to treatment with colistin alone at similar concentrations. Our results confirm that NCL195 is a potential candidate for further preclinical development as a specific treatment for multidrug-resistant infections, either as a stand-alone antibiotic for GPB or in combination with sub-inhibitory concentrations of colistin for Gram-negative bacteria.
Collapse
Affiliation(s)
- Hang Thi Nguyen
- Australian Center for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Pharmacology, Toxicology, Internal Medicine and Diagnostics, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kelly A. Young
- Chemistry, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sanjay Garg
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sylvia S. Sapula
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | | | - Abiodun David Ogunniyi
- Australian Center for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Darren J. Trott
- Australian Center for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
20
|
Gómara-Lomero M, López-Calleja AI, Rezusta A, Aínsa JA, Ramón-García S. In vitro synergy screens of FDA-approved drugs reveal novel zidovudine- and azithromycin-based combinations with last-line antibiotics against Klebsiella pneumoniae. Sci Rep 2023; 13:14429. [PMID: 37660210 PMCID: PMC10475115 DOI: 10.1038/s41598-023-39647-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/28/2023] [Indexed: 09/04/2023] Open
Abstract
Treatment of infections caused by multi-drug resistant (MDR) enterobacteria remains challenging due to the limited therapeutic options available. Drug repurposing could accelerate the development of new urgently needed successful interventions. This work aimed to identify and characterise novel drug combinations against Klebsiella pneumoniae based on the concepts of synergy and drug repurposing. We first performed a semi-qualitative high-throughput synergy screen (sHTSS) with tigecycline, colistin and fosfomycin (last-line antibiotics against MDR Enterobacteriaceae) against a FDA-library containing 1430 clinically approved drugs; a total of 109 compounds potentiated any of the last-line antibiotics. Selected hits were further validated by secondary checkerboard (CBA) and time-kill (TKA) assays, obtaining 15.09% and 65.85% confirmation rates, respectively. Accordingly, TKA were used for synergy classification based on determination of bactericidal activities at 8, 24 and 48 h, selecting 27 combinations against K. pneumoniae. Among them, zidovudine or azithromycin combinations with last-line antibiotics were further evaluated by TKA against a panel of 12 MDR/XDR K. pneumoniae strains, and their activities confronted with those clinical combinations currently used for MDR enterobacteria treatment; these combinations showed better bactericidal activities than usual treatments without added cytotoxicity. Our studies show that sHTSS paired to TKA are powerful tools for the identification and characterisation of novel synergistic drug combinations against K. pneumoniae. Further pre-clinical studies might support the translational potential of zidovudine- and azithromycin-based combinations for the treatment of these infections.
Collapse
Affiliation(s)
- Marta Gómara-Lomero
- Department of Microbiology. Faculty of Medicine, University of Zaragoza, C/ Domingo Miral S/N, 50009, Zaragoza, Spain.
| | | | - Antonio Rezusta
- Servicio de Microbiología, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - José Antonio Aínsa
- Department of Microbiology. Faculty of Medicine, University of Zaragoza, C/ Domingo Miral S/N, 50009, Zaragoza, Spain
- CIBER Respiratory Diseases, Carlos III Health Institute, Madrid, Spain
| | - Santiago Ramón-García
- Department of Microbiology. Faculty of Medicine, University of Zaragoza, C/ Domingo Miral S/N, 50009, Zaragoza, Spain.
- CIBER Respiratory Diseases, Carlos III Health Institute, Madrid, Spain.
- Research and Development Agency of Aragon (ARAID) Foundation, Zaragoza, Spain.
| |
Collapse
|
21
|
Lalezadeh A, Ghotaslou P, Ghotaslou R. The Detection of Fosfomycin-Modifying Enzymes (fos) in Uropathogenic Enterobacterale, Azerbaijan, Iran. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:3766269. [PMID: 37250435 PMCID: PMC10219773 DOI: 10.1155/2023/3766269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 04/04/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023]
Abstract
Enterobacteriaceae is the most common agent of urinary tract infections (UTIs). Multidrug resistant (MDR) and XDR (extensively drug-resistant) Enterobacteriaceae in UTIs have increased in the world. The present study aimed to study the fosfomycin resistance frequency and the fosfomycin resistance genes among Enterobacteriaceae isolated from UTIs. The urine was collected and cultured in the standard protocol. To determine the susceptibility testing to fosfomycin in 211 isolates, agar dilution and disk agar diffusion methods were used. MDR was nonsusceptibility to at least one agent in three or more antimicrobial categories. The fosfomycin resistance genes were also evaluated by PCR. The frequency of resistance to fosfomycin was in 14 (6.6%) and 15 (7.1%) isolates by the disk agar diffusion and MIC assays, respectively. However, the MIC50 and MIC90 existed at 8 μg/mL and 16 μg/mL, respectively. The MDR was found in 80%. The frequencies of fosfomycin resistance genes were 5 (33.3%), 3 (20%), 2 (13.3%), 1 (6.6%), and 1 (6.6%) for fosC, fosX, fosA3, fosA, and fosB2, respectively. The fosB and fosC2 were not found. A low resistance rate to fosfomycin is observed. Fosfomycin is still one of the most effective and valuable alternative antibiotics against MDR Enterobacteriaceae isolated from UTIs in our region.
Collapse
Affiliation(s)
- Aidin Lalezadeh
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pardis Ghotaslou
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Cao H, Liang S, Zhang C, Liu B, Fei Y. Molecular Profiling of a Multi-Strain Hypervirulent Klebsiella pneumoniae Infection Within a Single Patient. Infect Drug Resist 2023; 16:1367-1380. [PMID: 36937147 PMCID: PMC10017834 DOI: 10.2147/idr.s404202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Background The rising prevalence of infections caused by carbapenem-resistant and hypervirulent Klebsiella pneumoniae (CR-hvKP) has outpaced our understanding of their evolutionary diversity. By straining the antimicrobial options and constant horizontal gene transfer of various pathogenic elements, CR-hvKP poses a global health threat. Methods Six KP isolates (KP1~KP6) from urine, sputum and groin infection secretion of a single patient were characterized phenotypically and genotypically. The antimicrobial susceptibility, carbapenemase production, hypermucoviscosity, serum resistance, virulence factors, MLST and serotypes were profiled. Genomic variations were identified by whole-genome sequencing and the phylogenetic differentiation was analyzed by Enterobacterial repetitive intergenic consensus (ERIC)-PCR. Results All KP strains were multi-drug resistant. Four of them (KP1, KP3, KP5 and KP6) belonged to ST11-K64, with high genetic closeness (relatedness coefficient above 0.96), sharing most resistance and virulence genes. Compared with KP1, the later isolates KP3, KP5 and KP6 acquired bla KPC-1 and lost bla SHV-182 genes. KP2 and KP4 had the same clonal origin of ST35-K16 (relatedness coefficient 0.98), containing almost identical genes for resistance and virulence. They were non-mucoid and carried bla NDM-5 gene. Conclusion A co-infection with two types of CR-hvKP affiliated with different clades within a single patient amplified the treatment difficulties. In addition to source control and epidemiological surveillance, investigation of the in-host interactions between CR-hvKP variants may provide valuable treatment solutions.
Collapse
Affiliation(s)
- Huijun Cao
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Shiwei Liang
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Chenchen Zhang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Bao Liu
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Ying Fei
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
- Correspondence: Ying Fei, Email
| |
Collapse
|
23
|
Shariati A, Arshadi M, Khosrojerdi MA, Abedinzadeh M, Ganjalishahi M, Maleki A, Heidary M, Khoshnood S. The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. Front Public Health 2022; 10:1025633. [PMID: 36620240 PMCID: PMC9815622 DOI: 10.3389/fpubh.2022.1025633] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
For around three decades, the fluoroquinolone (FQ) antibiotic ciprofloxacin has been used to treat a range of diseases, including chronic otorrhea, endocarditis, lower respiratory tract, gastrointestinal, skin and soft tissue, and urinary tract infections. Ciprofloxacin's main mode of action is to stop DNA replication by blocking the A subunit of DNA gyrase and having an extra impact on the substances in cell walls. Available in intravenous and oral formulations, ciprofloxacin reaches therapeutic concentrations in the majority of tissues and bodily fluids with a low possibility for side effects. Despite the outstanding qualities of this antibiotic, Salmonella typhi, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa have all shown an increase in ciprofloxacin resistance over time. The rise of infections that are resistant to ciprofloxacin shows that new pharmacological synergisms and derivatives are required. To this end, ciprofloxacin may be more effective against the biofilm community of microorganisms and multi-drug resistant isolates when combined with a variety of antibacterial agents, such as antibiotics from various classes, nanoparticles, natural products, bacteriophages, and photodynamic therapy. This review focuses on the resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing its efficacy.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Maniya Arshadi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mostafa Abedinzadeh
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mahsa Ganjalishahi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran,Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran,*Correspondence: Mohsen Heidary
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran,Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran,Saeed Khoshnood
| |
Collapse
|
24
|
Paranos P, Vourli S, Pournaras S, Meletiadis J. Assessing Clinical Potential of Old Antibiotics against Severe Infections by Multi-Drug-Resistant Gram-Negative Bacteria Using In Silico Modelling. Pharmaceuticals (Basel) 2022; 15:1501. [PMID: 36558952 PMCID: PMC9781251 DOI: 10.3390/ph15121501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
In the light of increasing antimicrobial resistance among gram-negative bacteria and the lack of new more potent antimicrobial agents, new strategies have been explored. Old antibiotics, such as colistin, temocillin, fosfomycin, mecillinam, nitrofurantoin, minocycline, and chloramphenicol, have attracted the attention since they often exhibit in vitro activity against multi-drug-resistant (MDR) gram-negative bacteria, such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. The current review provides a summary of the in vitro activity, pharmacokinetics and PK/PD characteristics of old antibiotics. In silico modelling was then performed using Monte Carlo simulation in order to combine all preclinical data with human pharmacokinetics and determine the probability of target (1-log kill in thigh/lung infection animal models) attainment (PTA) of different dosing regimens. The potential of clinical efficacy of a drug against severe infections by MDR gram-negative bacteria was considered when PTA was >95% at the epidemiological cutoff values of corresponding species. In vitro potent activity against MDR gram-negative pathogens has been shown for colistin, polymyxin B, temocillin (against E. coli and K. pneumoniae), fosfomycin (against E. coli), mecillinam (against E. coli), minocycline (against E. coli, K. pneumoniae, A. baumannii), and chloramphenicol (against E. coli) with ECOFF or MIC90 ≤ 16 mg/L. When preclinical PK/PD targets were combined with human pharmacokinetics, Monte Carlo analysis showed that among the old antibiotics analyzed, there is clinical potential for polymyxin B against E. coli, K. pneumoniae, and A. baumannii; for temocillin against K. pneumoniae and E. coli; for fosfomycin against E. coli and K. pneumoniae; and for mecillinam against E. coli. Clinical studies are needed to verify the potential of those antibiotics to effectively treat infections by multi-drug resistant gram-negative bacteria.
Collapse
Affiliation(s)
- Paschalis Paranos
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Sophia Vourli
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
25
|
Sameni F, Ghazi M, Dadashi M, Bostanshirin N, Al-Dahmoshi HO, Khosravi-Dehaghi N, Nasiri MJ, Goudarzi M, Hajikhani B. Global distribution, genotypes and prevalent sequence types of colistin-resistant Klebsiella pneumoniae isolated from clinical samples; A systematic review. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Pudpong K, Pattharachayakul S, Santimaleeworagun W, Nwabor OF, Laohaprertthisan V, Hortiwakul T, Charernmak B, Chusri S. Association Between Types of Carbapenemase and Clinical Outcomes of Infection Due to Carbapenem Resistance Enterobacterales. Infect Drug Resist 2022; 15:3025-3037. [PMID: 35720254 PMCID: PMC9205317 DOI: 10.2147/idr.s363588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Compared with non-carbapenemase producing carbapenem-resistant Enterobacterales (non-CP-CRE), carbapenemase-producing carbapenem-resistant Enterobacterales (CP-CRE) are associated with considerable mortality. However, given that the patients are treated with various therapeutic options, it remains unclear whether differences in types of carbapenemase genes yield different mortality rates. Therefore, this study aims to identify carbapenemase genes and identify whether clinical outcomes differ according to the prevalence of genotype and phenotype of carbapenemase among Enterobacterales clinical isolated. Patients and Methods A retrospective cohort study was performed to determine whether types of carbapenemase genes have an impact on clinical outcomes. Carbapenem-resistant clinical isolates were collected at a tertiary care university hospital in Songkhla, Thailand, between June 2018 and February 2020. Demographic and microbiological data such as antimicrobial susceptibility, carbapenemase genes, and overall mortality were evaluated. Results A total of 121 Enterobacterales clinical isolated were evaluated. The blaNDM-1 gene was detected in 44% of the isolates, followed by blaOXA-48 (28%) and blaNDM-1/OXA-48 (28%). NDM-1- or NDM-1/OXA-48- producing isolates were more likely to require meropenem MICs of ≥16 mg/L, while OXA-48-producing isolates were more likely to require meropenem MICs of <16 mg/L. The patients with NDM-1 or NDM-1/OXA-48 had a higher 14 days mortality rate than those with OXA-48 after treating with carbapenem-containing regimens (P-value 0.001) or colistin-containing regimens (P-value < 0.001). Conclusion Our findings suggest that the mortality for CP-CRE infection in patients with NDM-1 or NDM-1/OXA-48 was higher than the mortality in those with OXA-48, which It seems that the type of carbapenemase gene may affect meropenem MIC levels. Hence, in treatment decisions involving the use of either carbapenem-containing regiment or colistin-containing regiment in patients with CP-CRE infection, especially those in the NDM-1 and NDM-1/OXA-48 groups, the patient symptoms should be closely monitored.
Collapse
Affiliation(s)
- Korawan Pudpong
- Department of Pharmacy, College of Pharmacotherapy Thailand, Nontaburi, 11000, Thailand.,Pharmaceutical Care Unit, Department of Pharmacy, Sunpasitthiprasong Hospital, Ubon Ratchathani, 34000, Thailand
| | - Sutthiporn Pattharachayakul
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Wichai Santimaleeworagun
- Department of Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakorn Pathom, 73000, Thailand.,Department of Pharmacy, Pharmaceutical Initiative for Resistant Bacteria and Infectious Disease Working Group (PIRBIG), Nakorn Pathom, 73000, Thailand
| | - Ozioma F Nwabor
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Varaporn Laohaprertthisan
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkla, 90110, Thailand
| | - Thanaporn Hortiwakul
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Boonsri Charernmak
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| |
Collapse
|
27
|
Clinical Characteristics, Outcomes, and Risk Factors for Mortality in Patients with Stenotrophomonas maltophilia Bacteremia. J Clin Med 2022; 11:jcm11113085. [PMID: 35683471 PMCID: PMC9181236 DOI: 10.3390/jcm11113085] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
This study aimed to establish the clinical features, outcomes, and factors associated with mortality in patients with Stenotrophomonas maltophilia (S. maltophilia) septicemia. The characteristics and outcome data used in this retrospective study were collected from medical records at Songklanagarind Hospital. Risk factors for survival were analyzed using χ2-tests, Kaplan−Meier curves, and Cox regression. A total of 117 patients with S. maltophilia bacteremia were analyzed. The patients’ median age was 45 years, 77 (70%) were male, 105 (90%) had comorbidities, 112 (96%) had previously undergone carbapenem therapy, and over half of the patients were on invasive medical devices. Trimethoprim-sulfamethoxazole (TMP-SMX) and fluoroquinolone showed high susceptibility rates to S. maltophilia, with 93% and 88% susceptibility, respectively. Patients who received appropriate empirical antibiotic treatment had significantly reduced 14-day, 30-day, and in-hospital mortality rates than those who did not (p < 0.001). The days of hospital stay and costs for those who received appropriate and inappropriate empirical antimicrobial treatment were 21 and 34 days (p < 0.001) and 142,463 and 185,663 baht, respectively (p < 0.002). Our results suggest that an appropriate empirical antibiotic(s) is significantly associated with lower 30-day mortality in hospitalized patients with S. maltophilia septicemia.
Collapse
|
28
|
Miyagawa A, Ohno S, Hattori T, Yamamura H. Antimicrobial activities of amphiphilic cationic polymers and their efficacy of combination with novobiocin. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:299-312. [PMID: 34559588 DOI: 10.1080/09205063.2021.1985243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Today, drug-resistant bacteria represent a significant problem worldwide. In fact, bacteria are becoming resistant even to newly developed antibiotics. Therefore, there is an urgent need to develop antibiotics to which bacteria cannot become resistant. In this study, antimicrobial polymers to which bacteria cannot develop resistance were prepared from 6-aminohexyl methacrylamide and N-isopropyl acrylamide. The polymers with molecular weights of the order of 105 showed little antimicrobial activity against Staphylococcus aureus and Escherichia coli as well as low toxicity. On the other hand, polymers with lower molecular weights (of the order of 104) did show antimicrobial activity against S. aureus and E. coli. These polymers were combined with novobiocin to investigate the combined usage effects against E. coli. The combined usage of novobiocin and the low-molecular-weight polymers reduced the minimum inhibitory concentration, which was less than 0.0625 μg/mL against E. coli. This result indicates that the combination is useful for increasing the efficacy of antibiotics and broadening their antimicrobial spectrum. Furthermore, the results showed the possibility that the antimicrobial polymers serve not only as antibiotics to which bacteria have not developed resistance but also as adjuvants for other antibiotics.
Collapse
Affiliation(s)
- Atsushi Miyagawa
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan
| | - Shinya Ohno
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan
| | - Tomohiko Hattori
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan
| | - Hatsuo Yamamura
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan
| |
Collapse
|
29
|
Shein AMS, Hongsing P, Abe S, Luk-In S, Ragupathi NKD, Wannigama DL, Chatsuwan T. Will There Ever Be Cure for Chronic, Life-Changing Colistin-Resistant Klebsiella pneumoniae in Urinary Tract Infection? Front Med (Lausanne) 2022; 8:806849. [PMID: 35004783 PMCID: PMC8740227 DOI: 10.3389/fmed.2021.806849] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
- Aye Mya Sithu Shein
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.,Antimicrobial Resistance and Stewardship Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Interdisciplinary Program of Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand.,School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Sirirat Luk-In
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Naveen Kumar Devanga Ragupathi
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, United Kingdom.,Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom.,Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.,Antimicrobial Resistance and Stewardship Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, United Kingdom.,School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.,Antimicrobial Resistance and Stewardship Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
30
|
Nguyen HT, Venter H, Woolford L, Young K, McCluskey A, Garg S, Page SW, Trott DJ, Ogunniyi AD. Impact of a Novel Anticoccidial Analogue on Systemic Staphylococcus aureus Infection in a Bioluminescent Mouse Model. Antibiotics (Basel) 2022; 11:antibiotics11010065. [PMID: 35052942 PMCID: PMC8773087 DOI: 10.3390/antibiotics11010065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 02/05/2023] Open
Abstract
In this study, we investigated the potential of an analogue of robenidine (NCL179) to expand its chemical diversity for the treatment of multidrug-resistant (MDR) bacterial infections. We show that NCL179 exhibits potent bactericidal activity, returning minimum inhibitory concentration/minimum bactericidal concentrations (MICs/MBCs) of 1–2 µg/mL against methicillin-resistant Staphylococcus aureus, MICs/MBCs of 1–2 µg/mL against methicillin-resistant S. pseudintermedius and MICs/MBCs of 2–4 µg/mL against vancomycin-resistant enterococci. NCL179 showed synergistic activity against clinical isolates and reference strains of Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa in the presence of sub-inhibitory concentrations of colistin, whereas NCL179 alone had no activity. Mice given oral NCL179 at 10 mg/kg and 50 mg/kg (4 × doses, 4 h apart) showed no adverse clinical effects and no observable histological effects in any of the organs examined. In a bioluminescent S. aureus sepsis challenge model, mice that received four oral doses of NCL179 at 50 mg/kg at 4 h intervals exhibited significantly reduced bacterial loads, longer survival times and higher overall survival rates than the vehicle-only treated mice. These results support NCL179 as a valid candidate for further development to treat MDR bacterial infections as a stand-alone antibiotic or in combination with existing antibiotic classes.
Collapse
Affiliation(s)
- Hang Thi Nguyen
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia;
- Department of Pharmacology, Toxicology, Internal Medicine and Diagnostics, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia;
| | - Kelly Young
- Chemistry, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (K.Y.); (A.M.)
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (K.Y.); (A.M.)
| | - Sanjay Garg
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | | | - Darren J. Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia;
- Correspondence: (D.J.T.); (A.D.O.); Tel.: +61-8-8313-7989 (D.J.T.); +61-432331914 (A.D.O.); Fax: +61-8-8313-7956 (D.J.T.)
| | - Abiodun David Ogunniyi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia;
- Correspondence: (D.J.T.); (A.D.O.); Tel.: +61-8-8313-7989 (D.J.T.); +61-432331914 (A.D.O.); Fax: +61-8-8313-7956 (D.J.T.)
| |
Collapse
|
31
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:2199-2208. [DOI: 10.1093/jac/dkac142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/25/2022] [Indexed: 11/14/2022] Open
|
32
|
Alanezi G, Almulhem A, Aldriwesh M, Bawazeer M. A triple antimicrobial regimen for multidrug-resistant Klebsiella pneumonia in a neonatal intensive care unit outbreak: A case series. J Infect Public Health 2021; 15:138-141. [PMID: 34742638 DOI: 10.1016/j.jiph.2021.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022] Open
Abstract
Gram-negative bacteria are the major pathogens detected in neonatal intensive care units. In the last few years, outbreaks of multidrug-resistant (MDR) Klebsiella pneumonia have become a major health concern, especially given this population's limited antimicrobial choices. In the present case series, we report the effectiveness of using a combination of three antimicrobials (amikacin, colistin and meropenem) for the rapid eradication of MDR K. pneumonia in five septic neonates. One neonate (20%) died due to recurrent episodes of sepsis. The remaining four (80%) neonates recovered completely from sepsis. In conclusion, the triple regimen of amikacin, colistin and meropenem was effective in treating neonatal sepsis caused by MDR K. pneumonia. The findings of the present report propose that a combination of antimicrobial chemotherapies could be further explored in the fight against MDR bacterial isolates.
Collapse
Affiliation(s)
| | - Alaa Almulhem
- Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Marwh Aldriwesh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Manal Bawazeer
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Department of Paediatrics, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia; College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| |
Collapse
|
33
|
Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021; 10. [PMID: 34684258 DOI: 10.3390/pathogens10101310/s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 05/20/2023] Open
Abstract
Antibiotics have made it possible to treat bacterial infections such as meningitis and bacteraemia that, prior to their introduction, were untreatable and consequently fatal. Unfortunately, in recent decades overuse and misuse of antibiotics as well as social and economic factors have accelerated the spread of antibiotic-resistant bacteria, making drug treatment ineffective. Currently, at least 700,000 people worldwide die each year due to antimicrobial resistance (AMR). Without new and better treatments, the World Health Organization (WHO) predicts that this number could rise to 10 million by 2050, highlighting a health concern not of secondary importance. In February 2017, in light of increasing antibiotic resistance, the WHO published a list of pathogens that includes the pathogens designated by the acronym ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) to which were given the highest "priority status" since they represent the great threat to humans. Understanding the resistance mechanisms of these bacteria is a key step in the development of new antimicrobial drugs to tackle drug-resistant bacteria. In this review, both the mode of action and the mechanisms of resistance of commonly used antimicrobials will be examined. It also discusses the current state of AMR in the most critical resistant bacteria as determined by the WHO's global priority pathogens list.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | | | - Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
34
|
Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021; 10:pathogens10101310. [PMID: 34684258 PMCID: PMC8541462 DOI: 10.3390/pathogens10101310] [Citation(s) in RCA: 497] [Impact Index Per Article: 124.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023] Open
Abstract
Antibiotics have made it possible to treat bacterial infections such as meningitis and bacteraemia that, prior to their introduction, were untreatable and consequently fatal. Unfortunately, in recent decades overuse and misuse of antibiotics as well as social and economic factors have accelerated the spread of antibiotic-resistant bacteria, making drug treatment ineffective. Currently, at least 700,000 people worldwide die each year due to antimicrobial resistance (AMR). Without new and better treatments, the World Health Organization (WHO) predicts that this number could rise to 10 million by 2050, highlighting a health concern not of secondary importance. In February 2017, in light of increasing antibiotic resistance, the WHO published a list of pathogens that includes the pathogens designated by the acronym ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) to which were given the highest "priority status" since they represent the great threat to humans. Understanding the resistance mechanisms of these bacteria is a key step in the development of new antimicrobial drugs to tackle drug-resistant bacteria. In this review, both the mode of action and the mechanisms of resistance of commonly used antimicrobials will be examined. It also discusses the current state of AMR in the most critical resistant bacteria as determined by the WHO's global priority pathogens list.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.)
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.)
| | | | - Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.)
- Correspondence: ; Tel.: +39-090-221-33-22
| |
Collapse
|
35
|
Wang J, Liu X, Shen S, Deng L, Liu H. DeepDDS: deep graph neural network with attention mechanism to predict synergistic drug combinations. Brief Bioinform 2021; 23:6375262. [PMID: 34571537 DOI: 10.1093/bib/bbab390] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/14/2021] [Accepted: 08/28/2021] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Drug combination therapy has become an increasingly promising method in the treatment of cancer. However, the number of possible drug combinations is so huge that it is hard to screen synergistic drug combinations through wet-lab experiments. Therefore, computational screening has become an important way to prioritize drug combinations. Graph neural network has recently shown remarkable performance in the prediction of compound-protein interactions, but it has not been applied to the screening of drug combinations. RESULTS In this paper, we proposed a deep learning model based on graph neural network and attention mechanism to identify drug combinations that can effectively inhibit the viability of specific cancer cells. The feature embeddings of drug molecule structure and gene expression profiles were taken as input to multilayer feedforward neural network to identify the synergistic drug combinations. We compared DeepDDS (Deep Learning for Drug-Drug Synergy prediction) with classical machine learning methods and other deep learning-based methods on benchmark data set, and the leave-one-out experimental results showed that DeepDDS achieved better performance than competitive methods. Also, on an independent test set released by well-known pharmaceutical enterprise AstraZeneca, DeepDDS was superior to competitive methods by more than 16% predictive precision. Furthermore, we explored the interpretability of the graph attention network and found the correlation matrix of atomic features revealed important chemical substructures of drugs. We believed that DeepDDS is an effective tool that prioritized synergistic drug combinations for further wet-lab experiment validation. AVAILABILITY AND IMPLEMENTATION Source code and data are available at https://github.com/Sinwang404/DeepDDS/tree/master.
Collapse
Affiliation(s)
- Jinxian Wang
- Hunan Agricultural University in 2019, and at present is studying for a Master's degree at Central South University, China
| | - Xuejun Liu
- School of Computer Science and Technology, Nanjing Tech University, Nanjing, China
| | - Siyuan Shen
- School of Software, Xinjiang University, Urumqi, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Hui Liu
- School of Computer Science and Technology, Nanjing Tech University, Nanjing, China
| |
Collapse
|
36
|
Synergistic Antibacterial Effects of Meropenem in Combination with Aminoglycosides against Carbapenem-Resistant Escherichia coli Harboring blaNDM-1 and blaNDM-5. Antibiotics (Basel) 2021; 10:antibiotics10081023. [PMID: 34439073 PMCID: PMC8388987 DOI: 10.3390/antibiotics10081023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022] Open
Abstract
Infections due to carbapenem-resistant Escherichia coli (CREC) are problematic due to limitation in treatment options. Combination therapies of existing antimicrobial agents have become a reliable strategy to control these infections. In this study, the synergistic effects of meropenem in combination with aminoglycosides were assessed by checkerboard and time-kill assays. Of the 35 isolates, 19 isolates (54.3%) were resistant to carbapenems (imipenem and meropenem) with the MIC ranges from 16 to 128 µg/mL. These isolates were resistant to almost all antibiotic classes. Molecular characteristics revealed co-harboring of carbapenemase (blaNDM-1, blaNDM-5 and blaOXA-48) and extended-spectrum β-lactamases (ESBL) genes (blaCTX-M, blaSHV and blaTEM). The checkerboard assay displayed synergistic effects of meropenem and several aminoglycosides against most CREC isolates. Time-kill assays further demonstrated strong synergistic effects of meropenem in combination with either amikacin, gentamicin, kanamycin, streptomycin, and tobramycin. The results suggested that meropenem in combination with aminoglycoside therapy might be an efficient optional treatment for infections cause by CREC.
Collapse
|
37
|
Johnson RA, Chan AN, Ward RD, McGlade CA, Hatfield BM, Peters JM, Li B. Inhibition of Isoleucyl-tRNA Synthetase by the Hybrid Antibiotic Thiomarinol. J Am Chem Soc 2021; 143:12003-12013. [PMID: 34342433 DOI: 10.1021/jacs.1c02622] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hybrid antibiotics are an emerging antimicrobial strategy to overcome antibiotic resistance. The natural product thiomarinol A is a hybrid of two antibiotics: holothin, a dithiolopyrrolone (DTP), and marinolic acid, a close analogue of the drug mupirocin that is used to treat methicillin-resistant Staphylococcus aureus (MRSA). DTPs disrupt metal homeostasis by chelating metal ions in cells, whereas mupirocin targets the essential enzyme isoleucyl-tRNA synthetase (IleRS). Thiomarinol A is over 100-fold more potent than mupirocin against mupirocin-sensitive MRSA; however, its mode of action has been unknown. We show that thiomarinol A targets IleRS. A knockdown of the IleRS-encoding gene, ileS, exhibited sensitivity to a synthetic analogue of thiomarinol A in a chemical genomics screen. Thiomarinol A inhibits MRSA IleRS with a picomolar Ki and binds to IleRS with low femtomolar affinity, 1600 times more tightly than mupirocin. We find that thiomarinol A remains effective against high-level mupirocin-resistant MRSA and provide evidence to support a dual mode of action for thiomarinol A that may include both IleRS inhibition and metal chelation. We demonstrate that MRSA develops resistance to thiomarinol A to a substantially lesser degree than mupirocin and the potent activity of thiomarinol A requires hybridity between DTP and mupirocin. Our findings identify a mode of action of a natural hybrid antibiotic and demonstrate the potential of hybrid antibiotics to combat antibiotic resistance.
Collapse
Affiliation(s)
- Rachel A Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew N Chan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ryan D Ward
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Caylie A McGlade
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Breanne M Hatfield
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jason M Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, United States
| | - Bo Li
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
38
|
Nwabor OF, Terbtothakun P, Voravuthikunchai SP, Chusri S. A Bibliometric Meta-Analysis of Colistin Resistance in Klebsiella pneumoniae. Diseases 2021; 9:44. [PMID: 34202931 PMCID: PMC8293170 DOI: 10.3390/diseases9020044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Colistin is a last resort antibiotic medication for the treatment of infections caused by carbapenem-resistant Klebsiella pneumoniae. In recent years, various mechanisms have been reported to mediate colistin resistance in K. pneumoniae. This study reports a bibliometric analysis of published articles retrieved from the Scopus database relating to colistin resistance in K. pneumoniae. The research trends in colistin resistance and mechanisms of resistance were considered. A total of 1819 research articles published between 1995 and 2019 were retrieved, and the results indicated that 50.19% of the documents were published within 2017-2019. The USA had the highest participation with 340 (14.31%) articles and 14087 (17.61%) citations. Classification based on the WHO global epidemiological regions showed that the European Region contributed 42% of the articles while the American Region contributed 21%. The result further indicated that 45 countries had published at least 10 documents with strong international collaborations amounting to 272 links and a total linkage strength of 735. A total of 2282 keywords were retrieved; however, 57 keywords had ≥15 occurrences with 764 links and a total linkage strength of 2388. Furthermore, mcr-1, colistin resistance, NDM, mgrB, ceftazidime-avibactam, MDR, combination therapy, and carbapenem-resistant Enterobacteriaceae were the trending keywords. Concerning funders, the USA National Institute of Health funded 9.1% of the total research articles, topping the list. The analysis indicated poor research output, collaboration, and funding from Africa and South-East Asia and demands for improvement in international research collaboration.
Collapse
Affiliation(s)
- Ozioma Forstinus Nwabor
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (O.F.N.); (P.T.)
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Pawarisa Terbtothakun
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (O.F.N.); (P.T.)
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Supayang P. Voravuthikunchai
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (O.F.N.); (P.T.)
| |
Collapse
|
39
|
Correction: Synergistic antibacterial effects of colistin in combination with aminoglycoside, carbapenems, cephalosporins, fluoroquinolones, tetracyclines, fosfomycin, and piperacillin on multidrug resistant Klebsiella pneumoniae isolates. PLoS One 2021; 16:e0251994. [PMID: 33989360 PMCID: PMC8121310 DOI: 10.1371/journal.pone.0251994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Rhodomyrtone Accumulates in Bacterial Cell Wall and Cell Membrane and Inhibits the Synthesis of Multiple Cellular Macromolecules in Epidemic Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2021; 10:antibiotics10050543. [PMID: 34067029 PMCID: PMC8150934 DOI: 10.3390/antibiotics10050543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
As the burden of antibacterial resistance worsens and treatment options become narrower, rhodomyrtone—a novel natural antibiotic agent with a new antibacterial mechanism—could replace existing antibiotics for the treatment of infections caused by multi-drug resistant Gram-positive bacteria. In this study, rhodomyrtone was detected within the cell by means of an easy an inexpensive method. The antibacterial effects of rhodomyrtone were investigated on epidemic methicillin-resistant Staphylococcus aureus. Thin-layer chromatography demonstrated the entrapment and accumulation of rhodomyrtone within the bacterial cell wall and cell membrane. The incorporation of radiolabelled precursors revealed that rhodomyrtone inhibited the synthesis of macromolecules including DNA, RNA, proteins, the cell wall, and lipids. Following the treatment with rhodomyrtone at MIC (0.5–1 µg/mL), the synthesis of all macromolecules was significantly inhibited (p ≤ 0.05) after 4 h. Inhibition of macromolecule synthesis was demonstrated after 30 min at a higher concentration of rhodomyrtone (4× MIC), comparable to standard inhibitor compounds. In contrast, rhodomyrtone did not affect lipase activity in staphylococci—both epidemic methicillin-resistant S. aureus and S. aureus ATCC 29213. Interfering with the synthesis of multiple macromolecules is thought to be one of the antibacterial mechanisms of rhodomyrtone.
Collapse
|
41
|
Nguyen HT, Venter H, Veltman T, Williams R, O'Donovan LA, Russell CC, McCluskey A, Page SW, Ogunniyi AD, Trott DJ. In vitro synergistic activity of NCL195 in combination with colistin against Gram-negative bacterial pathogens. Int J Antimicrob Agents 2021; 57:106323. [PMID: 33746046 DOI: 10.1016/j.ijantimicag.2021.106323] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/01/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022]
Abstract
In this study, the potential of using the novel antibiotic NCL195 combined with subinhibitory concentrations of colistin against infections caused by Gram-negative bacteria (GNB) was investigated. We showed synergistic activity of the combination NCL195 + colistin against clinical multidrug-resistant GNB pathogens with minimum inhibitory concentrations (MICs) for NCL195 ranging from 0.5-4 μg/mL for Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa, whereas NCL195 alone had no activity. Transmission electron microscopy of the membrane morphology of E. coli and P. aeruginosa after single colistin or combination drug treatment showed marked ultrastructural changes most frequently in the cell envelope. Exposure to NCL195 alone did not show any change compared with untreated control cells, whereas treatment with the NCL195 + colistin combination caused more damage than colistin alone. Direct evidence for this interaction was demonstrated by fluorescence-based membrane potential measurements. We conclude that the synergistic antimicrobial activity of the combination NCL195 + colistin against GNB pathogens warrants further exploration for specific treatment of acute GNB infections.
Collapse
Affiliation(s)
- Hang Thi Nguyen
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia; Department of Pharmacology, Toxicology, Internal Medicine and Diagnostics, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Tania Veltman
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Ruth Williams
- Adelaide Microscopy, University of Adelaide, Adelaide, SA, Australia
| | - Lisa Anne O'Donovan
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food & Wine, University of Adelaide, SA, Australia
| | - Cecilia C Russell
- Chemistry, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | | | - Abiodun David Ogunniyi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia.
| | - Darren J Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia.
| |
Collapse
|
42
|
Nguyen HT, O’Donovan LA, Venter H, Russell CC, McCluskey A, Page SW, Trott DJ, Ogunniyi AD. Comparison of Two Transmission Electron Microscopy Methods to Visualize Drug-Induced Alterations of Gram-Negative Bacterial Morphology. Antibiotics (Basel) 2021; 10:307. [PMID: 33802844 PMCID: PMC8002630 DOI: 10.3390/antibiotics10030307] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 01/16/2023] Open
Abstract
In this study, we optimized and compared different transmission electron microscopy (TEM) methods to visualize changes to Gram-negative bacterial morphology induced by treatment with a robenidine analogue (NCL195) and colistin combination. Aldehyde-fixed bacterial cells (untreated, treated with colistin or NCL195 + colistin) were prepared using conventional TEM methods and compared with ultrathin Tokuyasu cryo-sections. The results of this study indicate superiority of ultrathin cryo-sections in visualizing the membrane ultrastructure of Escherichia coli and Pseudomonas aeruginosa, with a clear delineation of the outer and inner membrane as well as the peptidoglycan layer. We suggest that the use of ultrathin cryo-sectioning can be used to better visualize and understand drug interaction mechanisms on the bacterial cell membrane.
Collapse
Affiliation(s)
- Hang Thi Nguyen
- Australia Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy, SA 5371, Australia;
- Department of Pharmacology, Toxicology, Internal Medicine and Diagnostics, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam
| | - Lisa A. O’Donovan
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture Food & Wine, Waite Campus, The University of Adelaide, Urrbrae, SA 5064, Australia;
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Cecilia C. Russell
- Chemistry School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (C.C.R.); (A.M.)
| | - Adam McCluskey
- Chemistry School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (C.C.R.); (A.M.)
| | | | - Darren J. Trott
- Australia Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy, SA 5371, Australia;
| | - Abiodun D. Ogunniyi
- Australia Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy, SA 5371, Australia;
| |
Collapse
|
43
|
Nwabor OF, Terbtothakun P, Voravuthikunchai SP, Chusri S. Evaluation of the Synergistic Antibacterial Effects of Fosfomycin in Combination with Selected Antibiotics against Carbapenem-Resistant Acinetobacter baumannii. Pharmaceuticals (Basel) 2021; 14:185. [PMID: 33668905 PMCID: PMC7996625 DOI: 10.3390/ph14030185] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/22/2022] Open
Abstract
The spread of multi-drug resistant (MDR) pathogens and the lagging pace in the development of novel chemotherapeutic agents warrant the use of combination therapy as a reliable, cost-effective interim option. In this study, the synergistic effects of fosfomycin in combination with other antibiotics were assessed. Of the 193 isolates, 90.6% were non-susceptible to fosfomycin, with minimum inhibitory concentrations (MICs) of ≥128 µg/mL. Antibacterial evaluation of fosfomycin-resistant isolates indicated multi-drug resistance to various antibiotic classes. Combinations of fosfomycin with 12 commonly used antibiotics synergistically inhibited most fosfomycin-resistant isolates. The fractional inhibitory concentration index indicated that combining fosfomycin with either aminoglycosides, glycylcyclines, fluoroquinolones, or colistin resulted in 2- to 16-fold reduction in the MIC of fosfomycin. Time-kill kinetics further confirmed the synergistic bactericidal effects of fosfomycin in combination with either amikacin, gentamicin, tobramycin, minocycline, tigecycline, or colistin, with more than 99.9% reduction in bacterial cells. Fosfomycin-based combination therapy might serve as an alternative option for the treatment of MDR A. baumannii. Further steps including in vivo efficacy and toxicity in experimental models of infection are required prior to clinical applications.
Collapse
Affiliation(s)
- Ozioma F. Nwabor
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (O.F.N.); (P.T.)
- Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Pawarisa Terbtothakun
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (O.F.N.); (P.T.)
- Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Supayang P. Voravuthikunchai
- Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (O.F.N.); (P.T.)
| |
Collapse
|