1
|
Cheng Z, Xiong Y, Ma T, Wang Q, Song M, Zhao Q, Zhang N, Guo J, Wang Y, Hou Z, Lu Z. Dissipation and Risk Assessment of Propaquizafop in Ginseng under Field Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6613-6624. [PMID: 38501445 DOI: 10.1021/acs.jafc.3c07832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Propaquizafop is a highly efficient aryloxy phenoxy propionate chiral herbicide. However, the use of propaquizafop, including its safe use methods, residue patterns, dietary risk assessment, and maximum residue limits, for ginseng, a traditional Chinese medicinal plant, has not been studied. An analytical method was established for the simultaneous determination of propaquizafop and its four metabolites in ginseng soil, fresh ginseng, ginseng plant, and dried ginseng using HPLC-MS/MS. This approach showed good linearity (R2 ranging from 0.9827 to 0.9999) and limit of quantification ranging from 0.01 to 0.05 mg/kg. The intra- and interday recovery rates of this method ranged from 71.6 to 107.1% with relative standard deviation ranging from 1.3 to 23.2%. The method was applied to detect residual samples in the field, and it was found that the degradation of propaquizafop in ginseng plants and soil followed a first-order kinetic equation. R2 was between 0.8913 and 0.9666, and the half-life (t1/2) ranged from 5.04 to 8.05 days, indicating that it was an easily degradable pesticide (T1/2 < 30 days). The final propaquizafop residues in ginseng soil, plants, fresh ginseng, and dried ginseng ranged from 0.017 to 0.691 mg/kg. A dietary risk assessment was conducted on the final propaquizafop residue in fresh and dried ginseng. The results showed that the chronic exposure risk quotient values were less than 100% for fresh and dried ginseng (1.15% for fresh ginseng and 1.13% for dried ginseng). This illustrates that the dietary risk associated with the use of 10% propaquizafop emulsifiable concentrate in ginseng is very low. Thus, applying 750 mL/ha of propaquizafop on ginseng could not pose an unacceptable risk to public health. The results of the present study support the registration of propaquizafop in ginseng.
Collapse
Affiliation(s)
- Zhijia Cheng
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yang Xiong
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Tengda Ma
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Qingyi Wang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Mingxia Song
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Qinghui Zhao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Ning Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Jingbo Guo
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yahe Wang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Zhiguang Hou
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Zhongbin Lu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
2
|
Kim H, Joo Baek E, Kim YK, Park H, Hye Hur S, Kim JE, Jin Kim H. Development of a method for analysis and risk assessment of residual pesticides in ginseng using liquid and gas chromatography-tandem mass spectrometry. Food Chem 2023; 427:136675. [PMID: 37385061 DOI: 10.1016/j.foodchem.2023.136675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/01/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023]
Abstract
In this study, we developed a method for detecting 335 pesticides in ginseng using liquid chromatography quadrupole mass spectrometry (LC-MS/MS) and gas chromatography quadrupole mass spectrometry (GC-MS/MS). Additionally, the linearity, sensitivity, selectivity, accuracy, and precision of the method was validated. The limits of detection (LOD) and limits of quantification (LOQ) for the instrument used in these experiments was 0.1-5.8 μg/kg and 0.3-17.5 μg/kg, respectively. The average recovery was 71.6-113.4%. From 2016 to 2019, 467 ginseng samples were analyzed, of which 304 samples detected pesticide residues, but most of them were below the standard. It can be observed that the hazard quotient (HQ) of ginseng for detected pesticides was less than 1, thus implying that the risk was low. Hence, in this study, we developed a specific, reliable, and suitable method for a fast and simultaneous analysis of 335 pesticides in ginseng.
Collapse
Affiliation(s)
- Hyoyoung Kim
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Korea
| | - Eun Joo Baek
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Korea
| | - Yong-Kyoung Kim
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Korea
| | - Hyejin Park
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Korea
| | - Suel Hye Hur
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Korea
| | - Jang-Eok Kim
- Major in Environment and Life Chemistry, School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Ho Jin Kim
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Korea.
| |
Collapse
|
3
|
Ohoro CR, Wepener V. Review of scientific literature on available methods of assessing organochlorine pesticides in the environment. Heliyon 2023; 9:e22142. [PMID: 38045185 PMCID: PMC10692828 DOI: 10.1016/j.heliyon.2023.e22142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Organochlorine pesticides (OCPs) are persistent organic pollutants (POPs) widely used in agriculture and industry, causing serious health and ecological consequences upon exposure. This review offers a thorough overview of OCPs analysis emphasizing the necessity of ongoing work to enhance the identification and monitoring of these POPs in environmental and human samples. The benefits and drawbacks of the various OCPs analysis techniques including gas chromatography-mass spectrometry (GC-MS), gas chromatography-electron capture detector (GC-ECD), and liquid chromatography-mass spectrometry (LC-MS) are discussed. Challenges associated with validation and optimization criteria, including accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ), must be met for a method to be regarded as accurate and reliable. Suitable quality control measures, such as method blanks and procedural blanks, are emphasized. The LOD and LOQ are critical quality control measure for efficient quantification of these compounds, and researchers have explored various techniques for their calculation. Matrix interference, solubility, volatility, and partition coefficient influence OCPs occurrences and are discussed in this review. Validation experiments, as stated by European Commission in document SANTE/11813/2017, showed that the acceptance criteria for method validation of OCP analytes include ≤20 % for high precision, and 70-120 % for recovery. This may ultimately be vital for determining the human health risk effects of exposure to OCP and for formulating sensible environmental and public health regulations.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
4
|
Yang SH, Shin Y, Choi H. Simultaneous analytical method for 296 pesticide multiresidues in root and rhizome based herbal medicines with GC-MS/MS. PLoS One 2023; 18:e0288198. [PMID: 37410759 DOI: 10.1371/journal.pone.0288198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/21/2023] [Indexed: 07/08/2023] Open
Abstract
A method for the simultaneous analysis of pesticide multiresidues in three root/rhizome-based herbal medicines (Cnidium officinale, Rehmannia glutinosa, and Paeonia lactiflora) was developed with GC-MS/MS. To determine the concentrations of pesticide residues, 5 g of dried samples were saturated with distilled water, extracted with 10 mL of 0.1% formic acid in acetonitrile/ethyl acetate (7:3, v/v), and then partitioned using magnesium sulfate and sodium chloride. The organic layer was purified with Oasis PRiME HLB plus light, followed by a cleanup with dispersive solid-phase extraction containing alumina. The sample was then injected into GC-MS/MS (2 μL) using a pulsed injection mode at 15 psi and analyzed using multiple reaction monitoring (MRM) modes. The limit of quantitation for the 296 target pesticides was within 0.002-0.05 mg/kg. Among them, 77.7-88.5% showed recoveries between 70% and 120% with relative standard deviations (RSDs) ≤20% at fortified levels of 0.01, and 0.05 mg/kg. The analytical method was successfully applied to real herbal samples obtained from commercial markets, and 10 pesticides were quantitatively determined from these samples.
Collapse
Affiliation(s)
- Seung-Hyun Yang
- Department of Life & Environmental Sciences, College of Agriculture and Food Sciences, Wonkwang University, Iksan, Republic of Korea
- Department of Healthcare Advanced Chemical Research Institute, Environmental Toxicology & Chemistry Center, Hwasun-gun, Republic of Korea
| | - Yongho Shin
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan, Republic of Korea
| | - Hoon Choi
- Department of Life & Environmental Sciences, College of Agriculture and Food Sciences, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
5
|
Lee DY, Choi GH, Bae YS, Lee SW, Kim SK, Bae JY, Song AR, Moon BY, Megson D, Oh KY, Kim JH. Fate of endosulfan in ginseng farm and effect of granular biochar treatment on endosulfan accumulation in ginseng. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3953-3965. [PMID: 34766236 DOI: 10.1007/s10653-021-01152-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Endosulfan was widely used as an insecticide in the agricultural sector before its environmental persistence was fully understood. Although its fate and transport in the environment have been studied, the effects of historic endosulfan residues in soil and its bioaccumulation in crops are not well understood. This knowledge gap was addressed by investigating the dissipation and bioaccumulation of endosulfan in ginseng as a perennial crop in fresh and aged endosulfan-contaminated fields. In addition, the effect of granular biochar (GBC) treatment on the bioaccumulation factor (BAF) of endosulfan residue in ginseng was assessed. The 50% dissipation time (DT50) of the total endosulfan was over 770 days in both the fresh and aged soils under mulching conditions. This was at least twofold greater than the reported (6- > 200 days) in arable soil. Among the endosulfan congeners, the main contributor to the soil residue was endosulfan sulfate, as observed from 150 days after treatment. The BAF for the 2-year-old ginseng was similar in the fresh (1.682-2.055) and aged (1.372-2.570) soils, whereas the BAF for the 3-year-old ginseng in the aged soil (1.087-1.137) was lower than that in the fresh soil (1.771-2.387). The treatment with 0.3 wt% GBC extended the DT50 of endosulfan in soil; however, this could successfully suppress endosulfan uptake, and reduced the BAFs by 66.5-67.7% in the freshly contaminated soil and 32.3-41.4% in the aged soil. Thus, this adsorbent treatment could be an effective, financially viable, and sustainable option to protect human health by reducing plant uptake of endosulfan from contaminated soils.
Collapse
Affiliation(s)
- Deuk-Yeong Lee
- Department of Agricultural Chemistry, Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Geun-Hyoung Choi
- Chemical Safety Division, National Institute of Agricultural Sciences, RDA, Wanju, 55365, Republic of Korea
| | - Young-Suk Bae
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumsung, 27709, Republic of Korea
| | - Sung-Woo Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumsung, 27709, Republic of Korea
| | - Sang-Kuk Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumsung, 27709, Republic of Korea
| | - Ji-Yeon Bae
- Department of Agricultural Chemistry, Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - A-Reum Song
- Chemical Safety Division, National Institute of Agricultural Sciences, RDA, Wanju, 55365, Republic of Korea
| | - Bo-Yeon Moon
- Chemical Safety Division, National Institute of Agricultural Sciences, RDA, Wanju, 55365, Republic of Korea
| | - David Megson
- Ecology and Environment Research Centre, Manchester Metropolitan University, Manchester, M15GD, UK
| | - Kyeong-Yeol Oh
- Department of Agricultural Chemistry, Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jin-Hyo Kim
- Department of Agricultural Chemistry, Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
6
|
Chen X, Huang M, Xu Z, Gao Y, Yu G. Ethanol-ammonium sulfate system based modified quick, easy, cheap, effective, rugged and safe method for the determination of four neonicotinoid pesticide and metabolite residues in two canned fruits. J Sep Sci 2022; 45:2632-2641. [PMID: 35522796 DOI: 10.1002/jssc.202200016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/11/2022]
Abstract
As the pesticide and its metabolite residues in processed fruits could become a significant route of human exposure. The work presented herein focuses on developing a feasible quick, easy, cheap, effective, rugged and safe method with improved extraction and cleanup system for the determination of imidacloprid, acetamiprid, thiamethoxam and clothianidin (metabolite of thiamethoxam) in canned fruits. The low toxic solvent ethanol was used to extract the analytes, and ammonium sulfate was used to promote the phase separation. Moreover, the carboxylated multi walled carbon nanotube was acted as the clean-up sorbent for removal of high solubility impurities. The proposed method was validated with fortified real samples at different concentration levels (20∼200 μg kg-1 ). Recoveries obtained from three spiked levels (20, 50, 200 μg kg-1 ) were ranged from 74.9% to 86.4% with relative standard deviations of the intra-day and inter-day in the range of 0.8 to 5.5% and 2.0 to 7.1%, respectively. Limit of detections were ranged from 0.2 to 0.5 μg kg-1 and 0.2 to 0.6 μg kg-1 for orange and peach, respectively. The results demonstrated that the proposed method could be considered appropriate, comparatively lower toxic for the analysis of neonicotinoid pesticide residues in canned fruit. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaochu Chen
- Institute of Biological and Medical Engineering, Guangdong Academy of Science, Guangzhou, 510316, China.,Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou, 510316, China
| | - Minxing Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Science, Guangzhou, 510316, China.,Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou, 510316, China
| | - Zhuoyan Xu
- Institute of Biological and Medical Engineering, Guangdong Academy of Science, Guangzhou, 510316, China.,Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou, 510316, China
| | - Yufeng Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Science, Guangzhou, 510316, China.,Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou, 510316, China
| | - Goubin Yu
- Institute of Biological and Medical Engineering, Guangdong Academy of Science, Guangzhou, 510316, China.,Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou, 510316, China
| |
Collapse
|
7
|
Cappiello A, Termopoli V, Palma P, Famiglini G, Saeed M, Perry S, Navarro P. Liquid Chromatography-Electron Capture Negative Ionization-Tandem Mass Spectrometry Detection of Pesticides in a Commercial Formulation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:141-148. [PMID: 34898195 PMCID: PMC8739837 DOI: 10.1021/jasms.1c00307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Negative chemical ionization (NCI) and electron-capture negative ionization (ECNI) are gas chromatography-mass spectrometry (GC-MS) techniques that generate negative ions in the gas phase for compounds containing electronegative atoms or functional groups. In ECNI, gas-phase thermal electrons can be transferred to electrophilic substances to produce M-• ions and scarce fragmentation. As a result of the electrophilicity requirements, ECNI is characterized by high-specificity and low background noise, generally lower than EI, offering lower detection limits. The aim of this work is to explore the possibility of extending typical advantages of ECNI to liquid chromatography-mass spectrometry (LC-MS). The LC is combined with the novel liquid-EI (LEI) LC-EIMS interface, the eluent is vaporized and transferred inside a CI source, where it is mixed with methane as a buffer gas. As proof of concept, dicamba and tefluthrin, agrochemicals with herbicidal and insecticidal activity, respectively, were chosen as model compounds and detected together in a commercial formulation. The pesticides have different chemical properties, but both are suitable analytes for ECNI due to the presence of electronegative atoms in the molecules. The influence of the mobile phase and other LC- and MS-operative parameters were methodically evaluated. Part-per-trillion (ppt) detection limits were obtained. Ion abundances were found to be stable with quantitative linear detection, reliable, and reproducible, with no influence from coeluting interfering compounds from the sample matrix.
Collapse
Affiliation(s)
- Achille Cappiello
- University
of Urbino, Department of Pure
and Applied Sciences, LC−MS Laboratory, Piazza Rinascimento 6, 61029 Urbino, Italy
- Department
of Chemistry, Vancouver Island University, Nanaimo, BC, Canada V9R 5S5
| | - Veronica Termopoli
- University
of Urbino, Department of Pure
and Applied Sciences, LC−MS Laboratory, Piazza Rinascimento 6, 61029 Urbino, Italy
| | - Pierangela Palma
- University
of Urbino, Department of Pure
and Applied Sciences, LC−MS Laboratory, Piazza Rinascimento 6, 61029 Urbino, Italy
- Department
of Chemistry, Vancouver Island University, Nanaimo, BC, Canada V9R 5S5
| | - Giorgio Famiglini
- University
of Urbino, Department of Pure
and Applied Sciences, LC−MS Laboratory, Piazza Rinascimento 6, 61029 Urbino, Italy
| | - Mansoor Saeed
- Jealott’s
Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42 6EY, U.K.
| | - Simon Perry
- Jealott’s
Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42 6EY, U.K.
| | - Pablo Navarro
- Jealott’s
Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42 6EY, U.K.
| |
Collapse
|
8
|
Teng C, Gu Y, Wang Y, Wang Z, Zhao H, Qi P, Guo C, Xu H, Di S, Wang X. Enantioselective Dissipation, Residue, and Risk Assessment of Diniconazole Enantiomers in Four Kinds of Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15512-15520. [PMID: 34927422 DOI: 10.1021/acs.jafc.1c03852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chiral diniconazole is a widely used triazole fungicide, while its enantioselective behaviors in fruits have not been reported. In this article, the absolute configuration was confirmed. A fast supercritical fluid chromatography-tandem mass spectrometry (SFC-MS/MS) method was developed for the chiral separation and enantioselective study of diniconazole in four kinds of fruits. The residual concentrations gradually decreased with time in four kinds of fruits after applying diniconazole. The dissipation half-lives of R-diniconazole and S-diniconazole were in the range of 5.3-7.9 and 2.5-7.1 days respectively, and S-diniconazole was degraded preferentially. The residue concentrations were lower than the EU's MRL (0.01 mg/kg) on the 40th (harvest time), 30th, and 10th day in pear, jujube, and apple, respectively. But, in peach, residue concentrations were still higher than the MRL after 60 days and the ratio of R/S was 2.2. These results could be helpful for the reasonable use and risk assessment of chiral diniconazole.
Collapse
Affiliation(s)
- Chunhong Teng
- College of Agriculture, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, P. R. China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Yuanlin Gu
- College of Agriculture, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, P. R. China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Chao Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Institute of Fermentation Engineering, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Hao Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| |
Collapse
|