1
|
Sai Yengu N, Raheem A, Pons AG, Ho WL, Ali SMS, Haseeb A, Fadlalla Ahmad TK, Mustafa MS. The impact of ivermectin on COVID-19 outcomes: a systematic review and meta-analysis. Ann Med Surg (Lond) 2025; 87:809-829. [PMID: 40110299 PMCID: PMC11918548 DOI: 10.1097/ms9.0000000000002762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/13/2024] [Accepted: 11/11/2024] [Indexed: 03/22/2025] Open
Abstract
Background The COVID-19 pandemic, resulting in approximately seven million deaths globally, underscores the urgency for effective treatments. Ivermectin, among several repurposed drugs, garnered interest due to its antiviral properties. However, conflicting evidence from observational studies and randomized controlled trials raised questions about its efficacy and safety. Method This systematic review and meta-analysis followed MOOSE and PRISMA guidelines. Comprehensive searches were conducted in databases including Scopus, Embase, PubMed, and Web of Science up to April 2024. Data were extracted independently by two reviewers and analyzed using Comprehensive Meta-Analysis V3 software. Results Across 33 studies encompassing 15,376 participants, ivermectin showed no significant impact on critical outcomes such as mortality [risk ratio (RR) 0.911, 95% confidence intervals (CI) 0.732-1.135], mechanical ventilation (RR 0.727, 95% CI 0.521-1.016), polymerase chain reaction conversion (RR 1.024, 95% CI 0.936-1.120), ICU admissions (RR 0.712, 95% CI 0.274-1.850), or hospitalization rates (RR 0.735, 95% CI 0.464-1.165) compared to controls. However, it significantly reduced time to symptom alleviation (standardized mean difference -0.302, 95% CI -0.587 to -0.018) and sustained symptom relief (RR 0.897, 95% CI 0.873-0.921). Adverse event (AE) rates were similar between the ivermectin and control groups (RR 0.896, 95% CI 0.797-1.007). Meta-regression indicated older age and diabetes as predictors of AEs. Conclusion Despite its observed benefits in symptom management, ivermectin did not significantly influence critical clinical outcomes in COVID-19 patients. These findings highlight the importance of continued research to identify effective treatments for COVID-19, emphasizing the need for high-quality studies with robust methodology to inform clinical practice and public health policy effectively.
Collapse
Affiliation(s)
- Nithin Sai Yengu
- Dr Pinnamaneni Siddhartha Institute of Medical Sciences, Vijayawada, India
| | | | | | - Wing Lam Ho
- Saint George's University School of Medicine University Center, Grenada
| | | | - Abdul Haseeb
- Jinnah Sindh Medical University, Karachi, Pakistan
| | | | | |
Collapse
|
2
|
M. Tolah A, M. Ahmed L. Chamomile in combating SARS-Cov-2. Bioinformation 2024; 20:2045-2049. [PMID: 40230940 PMCID: PMC11993402 DOI: 10.6026/9732063002002045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 04/16/2025] Open
Abstract
Traditional herbal medicine is of known history for the complementary treatment of viral infections and was recently suggested for COVID-19. Therefore, it is of interest to investigate chamomile decoction for its neutralizing activity against SARS-CoV-2 In vitro. Our experiments highlight the potential antiviral effect of chamomile. In vitro results show a significant inhibition of SARS-CoV-2. Our results recommend the use of chamomile as a potential natural remedy for COVID-19.
Collapse
Affiliation(s)
- Ahmed M. Tolah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdul-Aziz University, Rabigh, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lamya M. Ahmed
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Zhou G, Verweij S, Bijlsma MJ, de Vos S, Oude Rengerink K, Pasmooij AMG, van Baarle D, Niesters HGM, Mol P, Vonk JM, Hak E. Repurposed drug studies on the primary prevention of SARS-CoV-2 infection during the pandemic: systematic review and meta-analysis. BMJ Open Respir Res 2023; 10:e001674. [PMID: 37640510 PMCID: PMC10462970 DOI: 10.1136/bmjresp-2023-001674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE Current evidence on the effectiveness of SARS-CoV-2 prophylaxis is inconclusive. We aimed to systematically evaluate published studies on repurposed drugs for the prevention of laboratory-confirmed SARS-CoV-2 infection and/or COVID-19 among healthy adults. DESIGN Systematic review. ELIGIBILITY Quantitative experimental and observational intervention studies that evaluated the effectiveness of repurposed drugs for the primary prevention of SARS-CoV-2 infection and/or COVID-19 disease. DATA SOURCE PubMed and Embase (1 January 2020-28 September 2022). RISK OF BIAS Cochrane Risk of Bias 2.0 and Risk of Bias in Non-Randomised Studies of Interventions tools were applied to assess the quality of studies. DATA ANALYSIS Meta-analyses for each eligible drug were performed if ≥2 similar study designs were available. RESULTS In all, 65 (25 trials, 40 observational) and 29 publications were eligible for review and meta-analyses, respectively. Most studies pertained to hydroxychloroquine (32), ACE inhibitor (ACEi) or angiotensin receptor blocker (ARB) (11), statin (8), and ivermectin (8). In trials, hydroxychloroquine prophylaxis reduced laboratory-confirmed SARS-CoV-2 infection (risk ratio: 0.82 (95% CI 0.74 to 0.90), I2=48%), a result largely driven by one clinical trial (weight: 60.5%). Such beneficial effects were not observed in observational studies, nor for prognostic clinical outcomes. Ivermectin did not significantly reduce the risk of SARS-CoV-2 infection (RR: 0.35 (95% CI 0.10 to 1.26), I2=96%) and findings for clinical outcomes were inconsistent. Neither ACEi or ARB were beneficial in reducing SARS-CoV-2 infection. Most of the evidence from clinical trials was of moderate quality and of lower quality in observational studies. CONCLUSIONS Results from our analysis are insufficient to support an evidence-based repurposed drug policy for SARS-CoV-2 prophylaxis because of inconsistency. In the view of scarce supportive evidence on repurposing drugs for COVID-19, alternative strategies such as immunisation of vulnerable people are warranted to prevent the future waves of infection. PROSPERO REGISTRATION NUMBER CRD42021292797.
Collapse
Affiliation(s)
- Guiling Zhou
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Stefan Verweij
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- Dutch Medicines Evaluation Board, Utrecht, The Netherlands
| | - Maarten J Bijlsma
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Stijn de Vos
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | | | | | - Debbie van Baarle
- Virology and Immunology Research Group, Department of Medical Microbiology and Infection Prevention, University Medical Centre, Groningen, The Netherlands
| | - Hubert G M Niesters
- Department of Medical Microbiology and Infection Prevention, University Medical Centre Groningen, Groningen, The Netherlands
| | - Peter Mol
- Dutch Medicines Evaluation Board, Utrecht, The Netherlands
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre, Groningen, The Netherlands
| | - Judith M Vonk
- Groningen Research Institute for Asthma and COPD, University Medical Centre, Groningen, The Netherlands
- Department of Epidemiology, University Medical Centre, Groningen, The Netherlands
| | - Eelko Hak
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
George LS, Tomy C, Retnakumar C, Narlawar U, Bhardwaj P, Krishnan J, Rao RLL, Patel P, Bilimale AS, Baby P, Mathew MM, Cassini A, Simniceanu A, Yin M, Allegranzi B, Ahmad M, Rahman A, Mohiuddin SA, Thakre S, Bhansali SS, Vohra R, Krishnan H, Logaraj M, Maheriya V, Gharat V, Dipu TS, Solomon H, Sharma S, Shwethashree M, Hegde R, Ansari MWF, Misra S. Risk factors for SARS-CoV-2 infection among health workers in India: a case control study. Front Public Health 2023; 11:1156782. [PMID: 37325312 PMCID: PMC10264666 DOI: 10.3389/fpubh.2023.1156782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Background COVID-19 was declared as a Public Health Emergency of International Concern on 30th January 2020. Compared to the general population, healthcare workers and their families have been identified to be at a higher risk of getting infected with COVID-19. Therefore, it is crucial to understand the risk factors responsible for the transmission of SARS-CoV-2 infection among health workers in different hospital settings and to describe the range of clinical presentations of SARS-CoV-2 infection among them. Methodology A nested case-control study was conducted among healthcare workers who were involved in the care of COVID-19 cases for assessing the risk factors associated with it. To get a holistic perspective, the study was conducted in 19 different hospitals from across 7 states (Kerala, Tamil Nadu, Andhra Pradesh, Karnataka, Maharashtra, Gujarat, and Rajasthan) of India covering the major government and private hospitals that were actively involved in COVID-19 patient care. The study participants who were not vaccinated were enrolled using the incidence density sampling technique from December 2020 to December 2021. Results A total of 973 health workers consisting of 345 cases and 628 controls were recruited for the study. The mean age of the participants was observed to be 31.17 ± 8.5 years, with 56.3% of them being females. On multivariate analysis, the factors that were found to be significantly associated with SARS-CoV-2 were age of more than 31 years (adjusted odds ratio [aOR] 1.407 [95% CI 1.53-1.880]; p = 0.021), male gender (aOR 1.342 [95% CI 1.019-1.768]; p = 0.036), practical mode of IPC training on personal protective equipment (aOR 1. 1.935 [95% CI 1.148-3.260]; p = 0.013), direct exposure to COVID-19 patient (aOR 1.413 [95% CI 1.006-1.985]; p = 0.046), presence of diabetes mellitus (aOR 2.895 [95% CI 1.079-7.770]; p = 0.035) and those received prophylactic treatment for COVID-19 in the last 14 days (aOR 1.866 [95% CI 0.201-2.901]; p = 0.006). Conclusion The study was able to highlight the need for having a separate hospital infection control department that implements IPC programs regularly. The study also emphasizes the need for developing policies that address the occupational hazards faced by health workers.
Collapse
Affiliation(s)
- Leyanna Susan George
- Department of Community Medicine, Amrita School of Medicine, Amrita Vishwa Vidyapeetham University, Kochi, India
- Scientist E, Indian Council of Medical Research, New Delhi, India
| | - Chitra Tomy
- Department of Community Medicine, Amrita School of Medicine, Amrita Vishwa Vidyapeetham University, Kochi, India
| | - Charutha Retnakumar
- Department of Community Medicine, Amrita School of Medicine, Amrita Vishwa Vidyapeetham University, Kochi, India
| | - Uday Narlawar
- Department of Community Medicine, Government Medical College, Nagpur, India
| | - Pankaj Bhardwaj
- Department of Community Medicine and Family Medicine, All India Institute of Medical Sciences Jodhpur, Jodhpur, India
| | | | | | - Prakash Patel
- Community Medicine Department, Surat Municipal Institute of Medical Education and Research, Surat, India
| | - Anil S. Bilimale
- School of Public Health and Department of Community Medicine, JSS Medical College, Mysuru, Karnataka, India
| | - Poornima Baby
- Department of Microbiology, Amrita School of Medicine, Amrita Vishwa Vidyapeetham University, Kochi, India
| | - Minu Maria Mathew
- Department of Community Medicine, Amrita School of Medicine, Amrita Vishwa Vidyapeetham University, Kochi, India
| | | | | | - Mo Yin
- World Health Organization (Switzerland), Geneva, Switzerland
| | | | | | - Anisur Rahman
- Indira Gandhi Government Medical College and Hospital, Nagpur, India
| | | | | | | | - Rajaat Vohra
- SRM Institutes for Medical Science, SRM University, Chennai, India
| | | | - M. Logaraj
- GMERS Medical College, Sola, Ahmedabad, India
| | | | - Vaibhav Gharat
- Infectious Diseases, Amrita School of Medicine, Amrita Vishwa Vidyapeetham University, Kochi, India
| | - T. S. Dipu
- Infectious Diseases, Amrita School of Medicine, Amrita Vishwa Vidyapeetham University, Kochi, India
| | | | - Sarita Sharma
- Department of Community Medicine, Government Medical College, Nagpur, India
| | - M. Shwethashree
- School of Public Health and Department of Community Medicine, JSS Medical College, Mysuru, Karnataka, India
| | - Rahul Hegde
- Department of Community Medicine, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, India
| | | | - Sanjeev Misra
- All India Institute of Medical Sciences Jodhpur, Jodhpur, India
| |
Collapse
|
5
|
Wada T, Hibino M, Aono H, Kyoda S, Iwadate Y, Shishido E, Ikeda K, Kinoshita N, Matsuda Y, Otani S, Kameda R, Matoba K, Nonaka M, Maeda M, Kumagai Y, Ako J, Shichiri M, Naoki K, Katagiri M, Takaso M, Iwamura M, Katayama K, Miyatsuka T, Orihashi Y, Yamaoka K, for the CORVETTE-01 Study Group. Efficacy and safety of single-dose ivermectin in mild-to-moderate COVID-19: the double-blind, randomized, placebo-controlled CORVETTE-01 trial. Front Med (Lausanne) 2023; 10:1139046. [PMID: 37283627 PMCID: PMC10240959 DOI: 10.3389/fmed.2023.1139046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/21/2023] [Indexed: 06/08/2023] Open
Abstract
Background To investigate whether ivermectin inhibits SARS-CoV-2 proliferation in patients with mild-to-moderate COVID-19 using time to a negative COVID-19 reverse transcription-polymerase chain reaction (RT-PCR) test. Methods CORVETTE-01 was a double-blind, randomized, placebo-controlled study (August 2020-October 2021) conducted in Japan. Overall, 248 patients diagnosed with COVID-19 using RT-PCR were assessed for eligibility. A single oral dose of ivermectin (200 μg/kg) or placebo was administered under fasting. The primary outcome was time to a negative COVID-19 RT-PCR test result for SARS-CoV-2 nucleic acid, assessed using stratified log-rank test and Cox regression models. Results Overall, 112 and 109 patients were randomized to ivermectin and placebo, respectively; 106 patients from each group were included in the full analysis set (male [%], mean age: 68.9%, 47.9 years [ivermectin]; 62.3%, 47.5 years [placebo]). No significant difference was observed in the occurrence of negative RT-PCR tests between the groups (hazard ratio, 0.96; 95% confidence interval [CI] 0.70-1.32; p = 0.785). Median (95% CI) time to a negative RT-PCR test was 14.0 (13.0-16.0) and 14.0 (12.0-16.0) days for ivermectin and placebo, respectively; 82.1% and 84% of patients achieved negative RT-PCR tests, respectively. Conclusion In patients with COVID-19, single-dose ivermectin was ineffective in decreasing the time to a negative RT-PCR test. Clinical Trial Registration ClinicalTrials.gov, NCT04703205.
Collapse
Affiliation(s)
- Tatsuhiko Wada
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Kanagawa, Japan
| | - Makoto Hibino
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Kanagawa, Japan
| | - Hiromi Aono
- Department of Respiratory Medicine, Tokyo Metropolitan Police Hospital, Tokyo, Japan
| | - Shunsuke Kyoda
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yosuke Iwadate
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Kanagawa, Japan
| | - Eri Shishido
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Kanagawa, Japan
| | - Keisuke Ikeda
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Kanagawa, Japan
| | - Nana Kinoshita
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yasuki Matsuda
- Department of Cardiovascular Medicine, Kitasato University Hospital, Kanagawa, Japan
| | - Sakiko Otani
- Department of Respiratory Medicine, Kitasato University Hospital, Kanagawa, Japan
- Department of Respiratory Medicine, Tama-Nambu Chiiki Hospital, Tokyo, Japan
| | - Ryo Kameda
- Department of Cardiovascular Medicine, Kitasato University Hospital, Kanagawa, Japan
| | - Kenta Matoba
- Department of Endocrinology and Metabolism, Kitasato University Hospital, Kanagawa, Japan
| | - Miwa Nonaka
- Global Clinical Research Coordinating Center, Kitasato University Hospital, Kanagawa, Japan
| | - Mika Maeda
- Laboratory of Clinical Pharmacoepidemiology and Research and Education Center for Clinical Pharmacy, School of Pharmacy, Kitasato University, Kanagawa, Japan
| | - Yuji Kumagai
- Clinical Trial Center, Kitasato University Hospital, Kanagawa, Japan
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University Hospital, Kanagawa, Japan
| | - Masayoshi Shichiri
- Department of Diabetes, Endocrinology and Metabolism, Tokyo Kyosai Hospital, Tokyo, Japan
| | - Katsuhiko Naoki
- Department of Respiratory Medicine, Kitasato University Hospital, Kanagawa, Japan
| | - Masato Katagiri
- Department of Medical Laboratory Sciences, Kitasato University School of Allied Health Sciences, Tokyo, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University Hospital, Kanagawa, Japan
| | - Masatsugu Iwamura
- Department of Urology, Kitasato University Hospital, Kanagawa, Japan
| | - Kazuhiko Katayama
- Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute, Tokyo, Japan
| | - Takeshi Miyatsuka
- Department of Endocrinology and Metabolism, Kitasato University Hospital, Kanagawa, Japan
| | - Yasushi Orihashi
- Division of Clinical Research, Kitasato University Hospital, Kanagawa, Japan
| | - Kunihiro Yamaoka
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Kanagawa, Japan
| | | |
Collapse
|
6
|
Farfán-Castillo ADLM, Moreno-Núñez RS, Zárate-Yuyes FM, Fernández-Rodríguez LJ, Bardales-Zuta VH. Use of Ivermectin and Chlorine Dioxide for COVID-19 Treatment and Prophylaxis in Peru: A Narrative Review. Cureus 2022; 14:e31836. [PMID: 36579243 PMCID: PMC9788901 DOI: 10.7759/cureus.31836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, created a rapidly unfolding health crisis, especially in the initial phases of the pandemic. In the early stages of the pandemic, various strategies were proposed for COVID-19 prophylaxis and treatment with very little scientific evidence available. Among these proposed treatments were ivermectin and chlorine dioxide, which were both used widely in Peru for both disease prevention and treatment without considering their problematic side effects. For instance, ivermectin was part of an approved therapeutic scheme based on in vitro data, although its efficacy in humans was not demonstrated. In addition, chlorine dioxide was never shown to be effective but causes threatening side effects. In this article, we discuss current information regarding chlorine dioxide and ivermectin in the context of the COVID-19 pandemic, with a focus on experiences in Peru.
Collapse
|
7
|
Kerr L, Baldi F, Lobo R, Assagra WL, Proença FC, Chamie JJ, Hibberd JA, Kory P, Cadegiani FA. Regular Use of Ivermectin as Prophylaxis for COVID-19 Led Up to a 92% Reduction in COVID-19 Mortality Rate in a Dose-Response Manner: Results of a Prospective Observational Study of a Strictly Controlled Population of 88,012 Subjects. Cureus 2022; 14:e28624. [PMID: 36196304 PMCID: PMC9525042 DOI: 10.7759/cureus.28624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
Background We have previously demonstrated that ivermectin used as prophylaxis for coronavirus disease 2019 (COVID-19), irrespective of the regularity, in a strictly controlled citywide program in Southern Brazil (Itajaí, Brazil), was associated with reductions in COVID-19 infection, hospitalization, and mortality rates. In this study, our objective was to determine if the regular use of ivermectin impacted the level of protection from COVID-19 and related outcomes, reinforcing the efficacy of ivermectin through the demonstration of a dose-response effect. Methods This exploratory analysis of a prospective observational study involved a program that used ivermectin at a dose of 0.2 mg/kg/day for two consecutive days, every 15 days, for 150 days. Regularity definitions were as follows: regular users had 180 mg or more of ivermectin and irregular users had up to 60 mg, in total, throughout the program. Comparisons were made between non-users (subjects who did not use ivermectin), and regular and irregular users after multivariate adjustments. The full city database was used to calculate and compare COVID-19 infection and the risk of dying from COVID-19. The COVID-19 database was used and propensity score matching (PSM) was employed for hospitalization and mortality rates. Results Among 223,128 subjects from the city of Itajaí, 159,560 were 18 years old or up and were not infected by COVID-19 until July 7, 2020, from which 45,716 (28.7%) did not use and 113,844 (71.3%) used ivermectin. Among ivermectin users, 33,971 (29.8%) used irregularly (up to 60 mg) and 8,325 (7.3%) used regularly (more than 180 mg). The remaining 71,548 participants were not included in the analysis. COVID-19 infection rate was 49% lower for regular users (3.40%) than non-users (6.64%) (risk rate (RR): 0.51; 95% CI: 0.45-0.58; p < 0.0001), and 25% lower than irregular users (4.54%) (RR: 0.75; 95% CI: 0.66-0.85; p < 0.0001). The infection rate was 32% lower for irregular users than non-users (RR: 0.68; 95% CI: 0.64-0.73; p < 0.0001). Among COVID-19 participants, regularusers were older and had a higher prevalence of type 2 diabetes and hypertension than irregular and non-users. After PSM, the matched analysis contained 283 subjects in each group of non-users and regular users, between regular users and irregular users, and 1,542 subjects between non-users and irregular users. The hospitalization rate was reduced by 100% in regular users compared to both irregular users and non-users (p < 0.0001), and by 29% among irregular users compared to non-users (RR: 0.781; 95% CI: 0.49-1.05; p = 0.099). Mortality rate was 92% lower in regular users than non-users (RR: 0.08; 95% CI: 0.02-0.35; p = 0.0008) and 84% lower than irregular users (RR: 0.16; 95% CI: 0.04-0.71; p = 0.016), while irregular users had a 37% lower mortality rate reduction than non-users (RR: 0.67; 95% CI: 0.40-0.99; p = 0.049). Risk of dying from COVID-19 was 86% lower among regular users than non-users (RR: 0.14; 95% CI: 0.03-0.57; p = 0.006), and 72% lower than irregular users (RR: 0.28; 95% CI: 0.07-1.18; p = 0.083), while irregular users had a 51% reduction compared to non-users (RR: 0.49; 95% CI: 0.32-0.76; p = 0.001). Conclusion Non-use of ivermectin was associated with a 12.5-fold increase in mortality rate and a seven-fold increased risk of dying from COVID-19 compared to the regular use of ivermectin. This dose-response efficacy reinforces the prophylactic effects of ivermectin against COVID-19.
Collapse
|
8
|
Awad H, Hassan B, Dweek S, Aboelata Y, Rawas-Qalaji M, Ahmed IS. Repurposing Potential of the Antiparasitic Agent Ivermectin for the Treatment and/or Prophylaxis of COVID-19. Pharmaceuticals (Basel) 2022; 15:1068. [PMID: 36145289 PMCID: PMC9506580 DOI: 10.3390/ph15091068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the rapid, vast, and emerging global spread of the Coronavirus Disease 2019 (COVID-19) pandemic, many drugs were quickly repurposed in a desperate attempt to unveil a miracle drug. Ivermectin (IVM), an antiparasitic macrocyclic lactone, was tested and confirmed for its in vitro antiviral activity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in early 2020. Along with its potential antiviral activity, the affordability and availability of IVM resulted in a wide public interest. Across the world, trials have put IVM to test for both the treatment and prophylaxis of COVID-19, as well as its potential role in combination therapy. Additionally, the targeted delivery of IVM was studied in animals and COVID-19 patients. Through this conducted literature review, the potential value and effectiveness of the repurposed antiparasitic agent in the ongoing global emergency were summarized. The reviewed trials suggested a value of IVM as a treatment in mild COVID-19 cases, though the benefit was not extensive. On the other hand, IVM efficacy as a prophylactic agent was more evident and widely reported. In the most recent trials, novel nasal formulations of IVM were explored with the hope of an improved optimized effect.
Collapse
Affiliation(s)
- Hoda Awad
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Basmala Hassan
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Sara Dweek
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yasmeen Aboelata
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mutasem Rawas-Qalaji
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Iman Saad Ahmed
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
9
|
Hazan S. Microbiome-Based Hypothesis on Ivermectin's Mechanism in COVID-19: Ivermectin Feeds Bifidobacteria to Boost Immunity. Front Microbiol 2022; 13:952321. [PMID: 35898916 PMCID: PMC9309549 DOI: 10.3389/fmicb.2022.952321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/10/2022] [Indexed: 01/24/2023] Open
Abstract
Ivermectin is an anti-parasitic agent that has gained attention as a potential COVID-19 therapeutic. It is a compound of the type Avermectin, which is a fermented by-product of Streptomyces avermitilis. Bifidobacterium is a member of the same phylum as Streptomyces spp., suggesting it may have a symbiotic relation with Streptomyces. Decreased Bifidobacterium levels are observed in COVID-19 susceptibility states, including old age, autoimmune disorder, and obesity. We hypothesize that Ivermectin, as a by-product of Streptomyces fermentation, is capable of feeding Bifidobacterium, thereby possibly preventing against COVID-19 susceptibilities. Moreover, Bifidobacterium may be capable of boosting natural immunity, offering more direct COVID-19 protection. These data concord with our study, as well as others, that show Ivermectin protects against COVID-19.
Collapse
|
10
|
Sonkar C, Hase V, Banerjee D, Kumar A, Kumar R, Jha HC. Post COVID-19 complications, adjunct therapy explored, and steroidal after effects. CAN J CHEM 2022; 100:459-474. [DOI: 10.1139/cjc-2021-0247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
For COVID-19 survivors, defeating the virus is just the beginning of a long road to recovery. The inducibility and catastrophic effects of the virus are distributed across multiple organs. The induction of cytokine storms in COVID-19 patients is due to the interaction of the SARS-CoV-2 virus and the host receptor, leading to various immunopathological consequences that may eventually lead to death. So far, COVID-19 has affected tons of people across the world, but there is still no effective treatment. Patients facing complications of COVID-19 after recovery have shown extensive clinical symptoms similar to that of patients recovering from previously circulating coronaviruses. Previous knowledge and literature have opened up ways to treat this disease and manage post-COVID-19 complications, which pose a severe challenge to the health system globally and may exacerbate the fragmentation of diseases. The use of steroids as a treatment has resulted in various health problems and side-effects in COVID-19 patients. This review discusses various post-COVID-19 complications observed and adjunctive therapies used along with common COVID-19 treatment and spotlights their side effects and consequences. This review provides the latest literature on COVID-19, which emphasizes the subsequent complications in various organs, side effects of drugs, and alternative regimens used to treat COVID-19.
Collapse
Affiliation(s)
- Charu Sonkar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Vaishnavi Hase
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai 400614, India
| | - Durba Banerjee
- School of Biotechnology (SOB), Gautam Buddha University (Delhi NCR), Yamuna Expressway, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201312, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, India
| | - Rajesh Kumar
- Department of Physics, Indian Institute of Technology, Indore 453552, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
11
|
Onyeaka H, Tamasiga P, Agbara JO, Mokgwathi OA, Uwishema O. The use of Ivermectin for the treatment of COVID-19: Panacea or enigma? CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2022; 16:101074. [PMID: 35694631 PMCID: PMC9174099 DOI: 10.1016/j.cegh.2022.101074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/22/2022] Open
Abstract
The outbreak of SARS-CoV-2 pandemic has triggered unprecedented social, economic and health challenges. To control and reduce the infection rate, countries employed non-pharmaceutical measures such as social distancing, isolation, quarantine, and the use of masks, hand and surface sanitisation. Since 2021 a global race for COVID-19 vaccination ensued, mainly due to a lack of equitable vaccine production and distribution. To date, no treatments have been demonstrated to cure COVID-19. The scientific World is now considering the potential use of Ivermectin as a prophylactic and treatment for COVID-19. Against this background, the objective of this study is to review the literature to demystify the enigma or panacea in the use of Ivermectin. This paper intends to investigate literature which supports the existence or shows the nonexistence of a causal link between Ivermectin, COVID-19 mortality and recovery. There are inconsistent results on the effectiveness of Ivermectin in the treatment of COVID-19 patients. Some studies have asserted that in a bid to slow down the transmission of COVID-19, ivermectin can be used to inhibit the in vitro replication of SARS-CoV-2. The pre-existing health system burdens can be alleviated as patients treated prophylactically would reduce hospital admissions and stem the spread of COVID-19. On a global scale, Ivermectin is currently used by about 28% of the world's population, and its adoption is presently about 44% of countries. However, the full administration of this drug would require further tests to establish its clinical effectiveness and efficacy.
Collapse
Affiliation(s)
- Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Joy O Agbara
- Department of Obstetrics and Gynaecology, College of Medicine, Lagos State University, Lagos, Nigeria
| | | | - Olivier Uwishema
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda.,Clinton Global Initiative University, New York, NY, USA.,Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
12
|
Calvo-Alvarez E, Dolci M, Perego F, Signorini L, Parapini S, D’Alessandro S, Denti L, Basilico N, Taramelli D, Ferrante P, Delbue S. Antiparasitic Drugs against SARS-CoV-2: A Comprehensive Literature Survey. Microorganisms 2022; 10:1284. [PMID: 35889004 PMCID: PMC9320270 DOI: 10.3390/microorganisms10071284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/09/2023] Open
Abstract
More than two years have passed since the viral outbreak that led to the novel infectious respiratory disease COVID-19, caused by the SARS-CoV-2 coronavirus. Since then, the urgency for effective treatments resulted in unprecedented efforts to develop new vaccines and to accelerate the drug discovery pipeline, mainly through the repurposing of well-known compounds with broad antiviral effects. In particular, antiparasitic drugs historically used against human infections due to protozoa or helminth parasites have entered the main stage as a miracle cure in the fight against SARS-CoV-2. Despite having demonstrated promising anti-SARS-CoV-2 activities in vitro, conflicting results have made their translation into clinical practice more difficult than expected. Since many studies involving antiparasitic drugs are currently under investigation, the window of opportunity might be not closed yet. Here, we will review the (controversial) journey of these old antiparasitic drugs to combat the human infection caused by the novel coronavirus SARS-CoV-2.
Collapse
Affiliation(s)
- Estefanía Calvo-Alvarez
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Maria Dolci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Federica Perego
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Silvia Parapini
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Sarah D’Alessandro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (S.D.); (D.T.)
| | - Luca Denti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Donatella Taramelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (S.D.); (D.T.)
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| |
Collapse
|
13
|
Jitobaom K, Boonarkart C, Manopwisedjaroen S, Punyadee N, Borwornpinyo S, Thitithanyanont A, Avirutnan P, Auewarakul P. Synergistic anti-SARS-CoV-2 activity of repurposed anti-parasitic drug combinations. BMC Pharmacol Toxicol 2022; 23:41. [PMID: 35717393 PMCID: PMC9206137 DOI: 10.1186/s40360-022-00580-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND COVID-19 pandemic has claimed millions of lives and devastated the health service system, livelihood, and economy in many countries worldwide. Despite the vaccination programs in many countries, the spread of the pandemic continues, and effective treatment is still urgently needed. Although some antiviral drugs have been shown to be effective, they are not widely available. Repurposing of anti-parasitic drugs with in vitro anti-SARS-CoV-2 activity is a promising approach being tested in many clinical trials. Combination of these drugs is a plausible way to enhance their effectiveness. METHODS The in vitro anti-SARS-CoV-2 activity of combinations of niclosamide, ivermectin and chloroquine were evaluated in Vero E6 and lung epithelial cells, Calu-3. RESULTS All the two-drug combinations showed higher potency resulting in up to 4-fold reduction in the half maximal inhibitory concentration (IC50) values compared to individual drugs. Among these combinations, niclosamide-ivermectin achieved the highest inhibitory level of over 99%. Combination synergy analysis showed niclosamide-ivermectin combination to have the best synergy score with a mean Loewe synergy score of 4.28 and a peak synergy score of 24.6 in Vero E6 cells and a mean Loewe synergy score of 3.82 and a peak synergy score of 10.86 in Calu-3 cells. CONCLUSIONS The present study demonstrated the benefit of drug combinations on anti-SARS-CoV-2 activity. Niclosamide and ivermectin showed the best synergistic profile and should be further tested in clinical trials.
Collapse
Affiliation(s)
- Kunlakanya Jitobaom
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | | | - Nuntaya Punyadee
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Suparerk Borwornpinyo
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Panisadee Avirutnan
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
14
|
Angkasekwinai N, Rattanaumpawan P, Chayakulkeeree M, Phoompoung P, Koomanachai P, Chantarasut S, Wangchinda W, Srinonprasert V, Thamlikitkul V. Safety and Efficacy of Ivermectin for the Prevention and Treatment of COVID-19: A Double-Blinded Randomized Placebo-Controlled Study. Antibiotics (Basel) 2022; 11:796. [PMID: 35740202 PMCID: PMC9219629 DOI: 10.3390/antibiotics11060796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/20/2022] Open
Abstract
The safety and efficacy of ivermectin for the prevention and treatment of COVID-19 are still controversial topics. From August to November 2021, we conducted a double-blinded, randomized controlled trial at Siriraj Hospital, Thailand. Eligible participants were adults ≥ 18 years with suspected COVID-19 who underwent a SARS-CoV-2 RT-PCR test. After enrollment, the participants were randomized to receive either ivermectin (400−600 µg/kg/d) or placebo once daily for 3 days. Among 983 participants, 536 (54.5%) with a negative RT-PCR result were enrolled in the prevention study, and 447 (45.5%) with a positive RT-PCR result were enrolled in the treatment study. In the prevention study, the incidence of COVID-19 on Day 14 was similar between the ivermectin and the placebo group (4.7% vs. 5.2%; p = 0.844; Δ = −0.4%; 95% CI; −4.3−3.5%). In the treatment study, there was no significant difference between the ivermectin and placebo group for any Day 14 treatment outcome: proportion with oxygen desaturation (2.7% vs. 1.9%; p = 0.75), change in WHO score from baseline (1 [−5, 1] vs. 1 [−5, 1]; p = 0.50), and symptom resolution (76% vs. 82.2%; p = 0.13). The ivermectin group had a significantly higher proportion of transient blurred vision (5.6% vs. 0.6%; p < 0.001). Our study failed to demonstrate the efficacy of a 3-day once daily of ivermectin for the prevention and treatment of COVID-19. The given regimen of ivermectin should not be used for either prevention or treatment of COVID-19 in populations with a high rate of COVID-19 vaccination.
Collapse
Affiliation(s)
- Nasikarn Angkasekwinai
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand; (P.R.); (M.C.); (P.P.); (P.K.); (W.W.); (V.T.)
| | - Pinyo Rattanaumpawan
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand; (P.R.); (M.C.); (P.P.); (P.K.); (W.W.); (V.T.)
| | - Methee Chayakulkeeree
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand; (P.R.); (M.C.); (P.P.); (P.K.); (W.W.); (V.T.)
| | - Pakpoom Phoompoung
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand; (P.R.); (M.C.); (P.P.); (P.K.); (W.W.); (V.T.)
| | - Pornpan Koomanachai
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand; (P.R.); (M.C.); (P.P.); (P.K.); (W.W.); (V.T.)
| | - Sorawit Chantarasut
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand;
| | - Walaiporn Wangchinda
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand; (P.R.); (M.C.); (P.P.); (P.K.); (W.W.); (V.T.)
| | - Varalak Srinonprasert
- Division of Geriatric Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand;
- Siriraj Research Data Management Unit (Si-RDMU), Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
| | - Visanu Thamlikitkul
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand; (P.R.); (M.C.); (P.P.); (P.K.); (W.W.); (V.T.)
| |
Collapse
|
15
|
Silva BRO, Rodrigues WF, Abadia DGP, Alves da Silva DA, Andrade e Silva LE, Desidério CS, Farnesi-de-Assunção TS, Costa-Madeira JC, Barbosa RM, Bernardes e Borges AV, Hortolani Cunha ACC, Pereira LQ, Helmo FR, Lemes MR, Barbosa LM, Trevisan RO, Obata MMS, Bueno GF, Mundim FV, Oliveira-Scussel ACM, Monteiro IB, Ferreira YM, Machado GH, Ferreira-Paim K, Moraes-Souza H, da Silva MV, Rodrigues Júnior V, Oliveira CJF. Clinical-Epidemiology Aspect of Inpatients With Moderate or Severe COVID-19 in a Brazilian Macroregion: Disease and Countermeasures. Front Cell Infect Microbiol 2022; 12:899702. [PMID: 35669120 PMCID: PMC9164138 DOI: 10.3389/fcimb.2022.899702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
COVID-19, also known as coronavirus disease 2019, is an infectious viral disease caused by SARS-CoV-2, a novel coronavirus. Since its emergence, its epidemiology has been explored; however, for some regions of the world, COVID-19's behavior, incidence, and impact remain unclear. In continental nations like Brazil, this lack of knowledge results in nonuniform control, prevention, and treatment measures, which can be controversial in some locations. This study aimed to describe the epidemiological profile of patients with COVID-19 in the macroregion of Triângulo Sul in the state of Minas Gerais (MG), Brazil. Between March 25 and October 21, 2020, data were collected and statistically analyzed from 395 hospitalized patients in the city of Uberaba, MG, suspected to have moderate or severe forms of the disease. Of the 395 suspected cases, 82% were confirmed to be positive for COVID-19. The mean age of positive patients was 58.4 years, and 60.76% were male. Following these patients throughout their hospitalization, a mortality rate of 31.3% was observed. In the population positive for COVID-19, the risk of death increased by 4% for each year of the patient's age. Likewise, the older the patient, the longer their hospitalization and the higher the risk of developing acute respiratory failure. Among the treatments tested in patients, heparin was associated with protection against mortality, and the absence of anticoagulant use was linked to a more than six times greater risk of death. Finally, comorbidities in patients with COVID-19 were positively correlated with increased hospitalization time. In summary, this study revealed that age, presence of comorbidities, length of hospitalization, and drug treatment considerably altered COVID-19's lethality. To understand infection rates and the factors involved in COVID-19's lethality, knowledge of the local epidemiology is necessary.
Collapse
Affiliation(s)
| | | | - Daniela Gomes Pires Abadia
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Djalma A. Alves da Silva
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Leonardo E. Andrade e Silva
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Chamberttan S. Desidério
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | | | - Juliana C. Costa-Madeira
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Rafaela M. Barbosa
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Anna V. Bernardes e Borges
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | | | - Loren Q. Pereira
- Laboratory of Hematological Research of the Federal University of Triângulo Mineiro and Regional Blood Center of Uberaba - Hemominas Foundation, Uberaba, Brazil
| | - Fernanda R. Helmo
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Marcela Rezende Lemes
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Laís M. Barbosa
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Rafael O. Trevisan
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Malu Mateus Santos Obata
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Giovanna F. Bueno
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Fabiano V. Mundim
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | | | - Ivan B. Monteiro
- UNIMED São Domingos Hospital, Uberaba, MG, Brazil. José Alencar Gomes da Silva Regional Hospital, Uberaba, Brazil
- José Alencar Gomes da Silva Regional Hospital, Uberaba, Brazil
| | | | | | - Kennio Ferreira-Paim
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Hélio Moraes-Souza
- Laboratory of Hematological Research of the Federal University of Triângulo Mineiro and Regional Blood Center of Uberaba - Hemominas Foundation, Uberaba, Brazil
| | - Marcos Vinicius da Silva
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Virmondes Rodrigues Júnior
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Carlo José Freire Oliveira
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| |
Collapse
|
16
|
Nabeshima A, Sakamoto A, Iwata K, Kitamura Y, Masui S, Inomata S, Iida M, Iida T, Nabeshima S. Maoto, a traditional herbal medicine, for post-exposure prophylaxis for Japanese healthcare workers exposed to COVID-19: A single center study. J Infect Chemother 2022; 28:907-911. [PMID: 35361537 PMCID: PMC8934734 DOI: 10.1016/j.jiac.2022.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/22/2022] [Accepted: 03/16/2022] [Indexed: 01/06/2023]
Abstract
Background Little research has been done on post-exposure prophylaxis (PEP) for COVID-19. This study was done to determine if maoto, a traditional herbal medicine commonly used for diseases with symptoms similar to those of COVID-19, can be repurposed for post-exposure prophylaxis to prevent the spread of nosocomial infection with SARS-CoV-2. Methods A cohort analysis was done of the data of 55 health care workers (HCWs) whether to get infected with SARS-CoV-2 in a Japanese hospital experiencing a COVID-19 cluster in April of 2021. Of these subjects, maoto granules for medical use were prescribed for PEP to 42 HCWs and taken for three days in mid-April. Controls were 13 HCWs who rejected the use of maoto. Polymerase chain reaction was performed routinely once or twice a week or when a participant presented with symptoms of COVID-19. Result There were no background differences between the maoto and control groups by profession, sex, or mean age. No severe adverse reactions were observed. During the observation period of 1 week, significantly fewer subjects were diagnosed with COVID-19 in the maoto group (N = 3, 7.1%) than in the control group (N = 6, 46.2%). The prophylactic effectiveness of maoto was 84.5%. Conclusion Oral administration of maoto is suggested to be effective as PEP against nosocomial COVID-19 infection.
Collapse
|
17
|
Dicks LMT, Deane SM, Grobbelaar MJ. Could the COVID-19-Driven Increased Use of Ivermectin Lead to Incidents of Imbalanced Gut Microbiota and Dysbiosis? Probiotics Antimicrob Proteins 2022; 14:217-223. [PMID: 35218001 PMCID: PMC8881049 DOI: 10.1007/s12602-022-09925-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/20/2022]
Abstract
The microfilaricidal anthelmintic drug ivermectin (IVM) has been used since 1988 for treatment of parasitic infections in animals and humans. The discovery of IVM’s ability to inactivate the eukaryotic importin α/β1 heterodimer (IMPα/β1), used by some viruses to enter the nucleus of susceptible hosts, led to the suggestion of using the drug to combat SARS-CoV-2 infection. Since IVM has antibacterial properties, prolonged use may affect commensal gut microbiota. In this review, we investigate the antimicrobial properties of IVM, possible mode of activity, and the concern that treatment of individuals diagnosed with COVID-19 may lead to dysbiosis.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Shelly M Deane
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Matthew J Grobbelaar
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
18
|
Carr AC, Gombart AF. Multi-Level Immune Support by Vitamins C and D during the SARS-CoV-2 Pandemic. Nutrients 2022; 14:689. [PMID: 35277048 PMCID: PMC8840673 DOI: 10.3390/nu14030689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Vitamins C and D have well-known immune supportive roles, with deficiencies in both vitamins predisposing to increased risk and severity of respiratory infections. Numerous studies have indicated that administration of these vitamins, particularly to people who are deficient, can decrease the risk and severity of respiratory infections. This has stimulated an interest in the potential efficacy of these vitamins in people with novel coronavirus (SARS-CoV-2) infection and its more severe disease (COVID-19). In this overview, we highlight the current research evidence around the multiple levels of immune support provided by vitamins C and D in the context of general respiratory infections and with a focus on the current SARS-CoV-2 pandemic. These include: prevention of infection; attenuating infection symptoms and severity; adjunctive therapy for severe disease; attenuating ongoing sequelae (long COVID); and immunisation support. Although some of these topics have not yet been investigated in great depth concerning SARS-CoV-2 and COVID-19, extensive research into the role of these vitamins in general respiratory infections has highlighted directions for future research in the current pandemic.
Collapse
Affiliation(s)
- Anitra C. Carr
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand
| | - Adrian F. Gombart
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA;
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
19
|
Eerike M, Raj GM, Priyadarshini R, Ravi G, Bisoi D, Konda VGR. Ivermectin in COVID-19 Management: What is the current evidence? Infect Disord Drug Targets 2022; 22:e190122200367. [PMID: 35043770 DOI: 10.2174/1871526522666220119114035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022]
Abstract
Ivermectin (IVM), an approved anthelminthic drug, has been reported to have antiviral, antibacterial, and anticancer activities. Antiviral activity is due to the inhibition of nuclear cargo importin (IMP) protein. The anti-SARS CoV-2 activity through in vitro study was first reported by an Australian team. Later, many studies were conducted, and most of the study results were available as non-peer reviewed preprints. In this narrative review, literature on the clinical studies conducted with ivermectin from published articles, preprints, and unpublished evidence are collected till 13th June 2021 and they are discussed based on the severity of COVID-19 disease. Out of the 23 peer-reviewed published articles, 13 studies were randomized controlled trials and the remaining were either prospective interventional, prospective observational, retrospective cohort, cross-sectional, or case series type of studies; additionally, there were 10 randomized controlled trials available as preprints. In most of the studies, ivermectin was used in combination with doxycycline, azithromycin or other drugs. Some of the studies suggested either higher dose and/ or increased duration of ivermectin use to achieve favorable effects. In this review, articles on the prophylactic role of ivermectin in COVID-19 are also discussed - wherein the results are more promising. Despite accumulating evidence suggest the possible use of ivermectin, the final call to incorporate ivermectin in the management of COVID-19 is still inconclusive.
Collapse
Affiliation(s)
- Madhavi Eerike
- Department of Pharmacology All India Institute of Medical Sciences (AIIMS) Bibinagar, Hyderabad Telangana, India
| | - Gerard Marshall Raj
- Department of Pharmacology All India Institute of Medical Sciences (AIIMS) Bibinagar, Hyderabad Telangana, India
| | - Rekha Priyadarshini
- Department of Pharmacology All India Institute of Medical Sciences (AIIMS) Bibinagar, Hyderabad Telangana, India
| | - Gandham Ravi
- Department of Pharmacology All India Institute of Medical Sciences (AIIMS) Bibinagar, Hyderabad Telangana, India
| | - Debasis Bisoi
- Department of Pharmacology All India Institute of Medical Sciences (AIIMS) Bibinagar, Hyderabad Telangana, India
| | | |
Collapse
|
20
|
Kerr L, Cadegiani FA, Baldi F, Lobo RB, Assagra WLO, Proença FC, Kory P, Hibberd JA, Chamie-Quintero JJ. Ivermectin Prophylaxis Used for COVID-19: A Citywide, Prospective, Observational Study of 223,128 Subjects Using Propensity Score Matching. Cureus 2022; 14:e21272. [PMID: 35070575 PMCID: PMC8765582 DOI: 10.7759/cureus.21272] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Ivermectin has demonstrated different mechanisms of action that potentially protect from both coronavirus disease 2019 (COVID-19) infection and COVID-19-related comorbidities. Based on the studies suggesting efficacy in prophylaxis combined with the known safety profile of ivermectin, a citywide prevention program using ivermectin for COVID-19 was implemented in Itajaí, a southern city in Brazil in the state of Santa Catarina. The objective of this study was to evaluate the impact of regular ivermectin use on subsequent COVID-19 infection and mortality rates. Materials and methods: We analyzed data from a prospective, observational study of the citywide COVID-19 prevention with ivermectin program, which was conducted between July 2020 and December 2020 in Itajaí, Brazil. Study design, institutional review board approval, and analysis of registry data occurred after completion of the program. The program consisted of inviting the entire population of Itajaí to a medical visit to enroll in the program and to compile baseline, personal, demographic, and medical information. In the absence of contraindications, ivermectin was offered as an optional treatment to be taken for two consecutive days every 15 days at a dose of 0.2 mg/kg/day. In cases where a participating citizen of Itajaí became ill with COVID-19, they were recommended not to use ivermectin or any other medication in early outpatient treatment. Clinical outcomes of infection, hospitalization, and death were automatically reported and entered into the registry in real time. Study analysis consisted of comparing ivermectin users with non-users using cohorts of infected patients propensity score-matched by age, sex, and comorbidities. COVID-19 infection and mortality rates were analyzed with and without the use of propensity score matching (PSM). Results: Of the 223,128 citizens of Itajaí considered for the study, a total of 159,561 subjects were included in the analysis: 113,845 (71.3%) regular ivermectin users and 45,716 (23.3%) non-users. Of these, 4,311 ivermectin users were infected, among which 4,197 were from the city of Itajaí (3.7% infection rate), and 3,034 non-users (from Itajaí) were infected (6.6% infection rate), with a 44% reduction in COVID-19 infection rate (risk ratio [RR], 0.56; 95% confidence interval (95% CI), 0.53-0.58; p < 0.0001). Using PSM, two cohorts of 3,034 subjects suffering from COVID-19 infection were compared. The regular use of ivermectin led to a 68% reduction in COVID-19 mortality (25 [0.8%] versus 79 [2.6%] among ivermectin non-users; RR, 0.32; 95% CI, 0.20-0.49; p < 0.0001). When adjusted for residual variables, reduction in mortality rate was 70% (RR, 0.30; 95% CI, 0.19-0.46; p < 0.0001). There was a 56% reduction in hospitalization rate (44 versus 99 hospitalizations among ivermectin users and non-users, respectively; RR, 0.44; 95% CI, 0.31-0.63; p < 0.0001). After adjustment for residual variables, reduction in hospitalization rate was 67% (RR, 0.33; 95% CI, 023-0.66; p < 0.0001). Conclusion: In this large PSM study, regular use of ivermectin as a prophylactic agent was associated with significantly reduced COVID-19 infection, hospitalization, and mortality rates.
Collapse
|
21
|
Blaylock RL. Covid-19 pandemic: What is the truth? Surg Neurol Int 2021; 12:591. [PMID: 34992908 PMCID: PMC8720447 DOI: 10.25259/sni_1008_2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
The ongoing “pandemic” involving the severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2) has several characteristics that make it unique in the history of pandemics. This entails not only the draconian measures that some countries and individual states within the United States and initiated and made policy, most of which are without precedent or scientific support, but also the completely unscientific way the infection has been handled. For the 1st time in medical history, major experts in virology, epidemiology, infectious diseases, and vaccinology have not only been ignored, but are also demonized, marginalized and in some instances, become the victim of legal measures that can only be characterized as totalitarian. Discussions involving various scientific opinions have been eliminated, top scientists have been frightened into silence by threats to their careers, physicians have lost their licenses, and the concept of early treatment has been virtually eliminated. Hundreds of thousands of people have died needlessly as a result of, in my opinion and the opinion of others, poorly designed treatment protocols, mostly stemming from the Center for Disease Control and Prevention, which have been rigidly enforced among all hospitals. The economic, psychological, and institutional damage caused by these unscientific policies is virtually unmeasurable. Whole generations of young people will suffer irreparable damage, both physical and psychological, possibly forever. The truth must be told.
Collapse
|
22
|
Zaheer T, Pal K, Abbas RZ, Torres MDPR. COVID-19 and Ivermectin: Potential threats associated with human use. J Mol Struct 2021; 1243:130808. [PMID: 34149064 PMCID: PMC8195608 DOI: 10.1016/j.molstruc.2021.130808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/01/2021] [Accepted: 05/29/2021] [Indexed: 12/24/2022]
Abstract
Drugs re-purposing due to COVID-19 virus has declared a number of useful candidates for treatment and prevention of the virus. Ivermectin (IVM) has gained much popularity due to a strong background of magical applications against a broad spectrum of pathogens. The in- vitro studies of ivermectin have shown promise, the thorough clinical trials of its efficacy in the treatment and prevention of SARS-CoV-2 are still warranted. Useful strategies for analyzing projected use of IVM in human coronaviruses might be developed. It may be done by concluding ongoing clinical trials and culturing lessons from IVM usage in veterinary practice. The potential toxicity and careful dosage analyses are urgently required before declaring it as an anti-SARS-CoV-2 drug candidate. This manuscript overviews the background and potential threats associated with the off-label use of IVM as prophylactic drug or treatment option against COVID-19 virus.
Collapse
Affiliation(s)
- Tean Zaheer
- Chemotherapy Laboratory, Department of Parasitology, University of Agriculture, Faisalabad- 38040, Pakistan
| | - Kaushik Pal
- Laboratório de Biopolímeros e Sensores, Instituto de Macromoléculas, Universidade Federal do Rio de Janeiro (LABIOS/IMA/UFRJ), Cidade Universitária, Rio de Janeiro 21941-90, Brazil
| | - Rao Zahid Abbas
- Chemotherapy Laboratory, Department of Parasitology, University of Agriculture, Faisalabad- 38040, Pakistan
| | - María Del Pilar Rodríguez Torres
- Laboratorio de Ondas de Choque (LOCH),Centro de Física Aplicada y Tecnología Avanzada, (CFATA),Universidad Nacional Autónoma de México, Campus UNAM Juriquilla Boulevard, Juriquilla no. 3001, Santiago de Querétaro, Qro., C.P. 76230, Mexico
| |
Collapse
|
23
|
Holford P, Carr AC, Zawari M, Vizcaychipi MP. Vitamin C Intervention for Critical COVID-19: A Pragmatic Review of the Current Level of Evidence. Life (Basel) 2021; 11:1166. [PMID: 34833042 PMCID: PMC8624950 DOI: 10.3390/life11111166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Severe respiratory infections are characterized by elevated inflammation and generation of reactive oxygen species (ROS) which may lead to a decrease in antioxidants such as vitamin C and a higher requirement for the vitamin. Administration of intravenous vitamin C to patients with pneumonia and sepsis appears to decrease the severity of the disease and potentially improve survival rate. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes pneumonia, sepsis and acute respiratory distress syndrome (ARDS) in severe cases, and is referred to as coronavirus disease 2019 (COVID-19). Patients with COVID-19 infection also appear to have depleted vitamin C status and require additional supplementation of vitamin C during the acute phase of the disease. To date there have been 12 vitamin C and COVID-19 trials published, including five randomised controlled trials (RCTs) and seven retrospective cohort studies. The current level of evidence from the RCTs suggests that intravenous vitamin C intervention may improve oxygenation parameters, reduce inflammatory markers, decrease days in hospital and reduce mortality, particularly in the more severely ill patients. High doses of oral vitamin C supplementation may also improve the rate of recovery in less severe cases. No adverse events have been reported in published vitamin C clinical trials in COVID-19 patients. Upcoming findings from larger RCTs will provide additional evidence on vitamin supplementation in COVID-19 patients.
Collapse
Affiliation(s)
- Patrick Holford
- Founder of Institute for Optimum Nutrition, Ambassador House, Richmond TW9 1SQ, UK
| | - Anitra C. Carr
- Nutrition in Medicine Research Group, Department of Pathology & Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (A.C.C.); (M.Z.)
| | - Masuma Zawari
- Nutrition in Medicine Research Group, Department of Pathology & Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (A.C.C.); (M.Z.)
| | - Marcela P. Vizcaychipi
- Faculty of Medicine, Imperial College, London SW7 2AZ, UK;
- Intensive Care Medicine, Chelsea & Westminster Hospital, London SW10 9NH, UK
| |
Collapse
|
24
|
Azeez TA, Lakoh S, Adeleke AA, Balogun OT, Olanipekun BJ, Olusola FI. Chemoprophylaxis against COVID-19 among health-care workers using Ivermectin in low- and middle-income countries: A systematic review and meta-analysis. Indian J Pharmacol 2021; 53:493-498. [PMID: 34975139 PMCID: PMC8764977 DOI: 10.4103/ijp.ijp_117_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/19/2021] [Accepted: 11/26/2021] [Indexed: 11/15/2022] Open
Abstract
Coronavirus disease-2019 (COVID-19) is a novel viral infectious disease that the World Health Organization (WHO) has announced to be a pandemic. This meta-analysis was aimed at providing evidence for the use of ivermectin to prevent COVID-19 among hospital workers in low-resource countries. Medical databases including African Journals online, Google Scholar, PubMed, Cochrane library, EMBASE, COVID-19 research database (WHO), Clinicaltrials.gov, and SCOPUS were searched for studies on Ivermectin as a chemoprophylactic drug against COVID-19 among hospital personnel in settings with limited resources. Preprint servers such as bioRxiv and medRxiv as well as the gray literature were also searched. Studies adjudged to be eligible were identified using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses algorithm. Statistical analyses were done using Stata version 14.3. Seven studies were selected for the meta-analysis. The total sample size was 2652. There were two randomized controlled trials and five nonrandomized studies. Some studies dosed Ivermectin daily while some dosed it weekly. However, one of the studies dosed it monthly. The studies reported variable clinical benefits. I2 statistic was 92%, and random effect model was used. The pooled odd ratio was 0.11 (95% confidence interval 0.09-0.13). This implies that 89% of the participants benefited from taking Ivermectin as a form of preexposure chemoprophylaxis. Ivermectin has a significant clinical benefit as a preventive drug against COVID-19 for hospital personnel in settings with limited resources.
Collapse
Affiliation(s)
- Taoreed Adegoke Azeez
- Department of Medicine, Endocrinology Unit, University College Hospital, Ibadan, Nigeria
| | - Sulaiman Lakoh
- Department of Medicine, Infectious Diseases Unit, College of Medicine and Allied Health Sciences, Freetown, Sierra Leone
| | | | | | | | | |
Collapse
|
25
|
Francés-Monerris A, García-Iriepa C, Iriepa I, Hognon C, Miclot T, Barone G, Monari A, Marazzi M. Microscopic interactions between ivermectin and key human and viral proteins involved in SARS-CoV-2 infection. Phys Chem Chem Phys 2021; 23:22957-22971. [PMID: 34636373 DOI: 10.1039/d1cp02967c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The identification of chemical compounds able to bind specific sites of the human/viral proteins involved in the SARS-CoV-2 infection cycle is a prerequisite to design effective antiviral drugs. Here we conduct a molecular dynamics study with the aim to assess the interactions of ivermectin, an antiparasitic drug with broad-spectrum antiviral activity, with the human Angiotensin-Converting Enzyme 2 (ACE2), the viral 3CLpro and PLpro proteases, and the viral SARS Unique Domain (SUD). The drug/target interactions have been characterized in silico by describing the nature of the non-covalent interactions found and by measuring the extent of their time duration along the MD simulation. Results reveal that the ACE2 protein and the ACE2/RBD aggregates form the most persistent interactions with ivermectin, while the binding with the remaining viral proteins is more limited and unspecific.
Collapse
Affiliation(s)
- Antonio Francés-Monerris
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France. .,Departament de Química Física, Universitat de València, 46100 Burjassot, Spain.
| | - Cristina García-Iriepa
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares (Madrid), Spain. .,Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28871 Alcalá de Henares (Madrid), Spain
| | - Isabel Iriepa
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares (Madrid), Spain. .,Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares (Madrid), Spain
| | - Cécilia Hognon
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France.
| | - Tom Miclot
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France. .,Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceuticche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Giampaolo Barone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceuticche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France. .,Université de Paris and CNRS, ITODYS, F-75006, Paris, France
| | - Marco Marazzi
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares (Madrid), Spain. .,Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28871 Alcalá de Henares (Madrid), Spain
| |
Collapse
|
26
|
Abd‐Elsalam S, Noor RA, Badawi R, Khalaf M, Esmail ES, Soliman S, Abd El Ghafar MS, Elbahnasawy M, Moustafa EF, Hassany SM, Medhat MA, Ramadan HK, Eldeen MAS, Alboraie M, Cordie A, Esmat G. Clinical study evaluating the efficacy of ivermectin in COVID-19 treatment: A randomized controlled study. J Med Virol 2021; 93:5833-5838. [PMID: 34076901 PMCID: PMC8242425 DOI: 10.1002/jmv.27122] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/25/2022]
Abstract
Researchers around the world are working at record speed to find the best ways to treat and prevent coronavirus disease 2019 (COVID-19). This study aimed to evaluate the efficacy of ivermectin for the treatment of hospitalized mild to moderate COVID-19 infected patients. This was a randomized open-label controlled study that included 164 patients with COVID-19. Patients were randomized into two groups where Group 1 (Ivermectin group) included patients who received ivermectin 12 mg once daily for 3 days with standard care and Group 2 (control group) included patients who received standard protocol of treatment alone for 14 days. The main outcomes were mortality, the length of hospital stay, and the need for mechanical ventilation. All patients were followed up for 1 month. Overall, 82 individuals were randomized to receive ivermectin plus standard of care and 82 to receive standard of care alone. Patients in the ivermectin group had a shorter length of hospital stay (8.82 ± 4.94 days) than the control group (10.97 ± 5.28 days), but this was not statistically significant (p = 0.085). Three patients (3.7%) in each group required mechanical ventilation (p = 1.00). The death rate was three patients in the ivermectin group (3.7%) versus four patients (4.9%) in the control group without any significant difference between the two groups (p = 1.00). Although there was no statistically significant difference in any endpoints by ivermectin doses (12 mg/day for 3 days); there was an observed trend to reducing hospital stay in the ivermectin-treated group.
Collapse
Affiliation(s)
- Sherief Abd‐Elsalam
- Department of Tropical Medicine and Infectious diseases, Faculty of MedicineTanta UniversityTantaEgypt
| | - Rasha A. Noor
- Department of Internal Medicine, Faculty of MedicineTanta UniversityTantaEgypt
| | - Rehab Badawi
- Department of Tropical Medicine and Infectious diseases, Faculty of MedicineTanta UniversityTantaEgypt
| | - Mai Khalaf
- Department of Tropical Medicine and Infectious diseases, Faculty of MedicineTanta UniversityTantaEgypt
| | - Eslam S. Esmail
- Department of Tropical Medicine and Infectious diseases, Faculty of MedicineTanta UniversityTantaEgypt
| | - Shaimaa Soliman
- Department of Public health and Community Medicine, Faculty of MedicineMenoufia UniversityMenoufiaEgypt
| | - Mohamed S. Abd El Ghafar
- Department of Anesthesia, Surgical Intensive Care, and Pain Medicine, Faculty of MedicineTanta UniversityTantaEgypt
| | - Mohamed Elbahnasawy
- Department of Emergency Medicine and traumatology, Faculty of MedicineTanta UniversityTantaEgypt
| | - Ehab F. Moustafa
- Department of Tropical Medicine and Gastroenterology, Faculty of MedicineAssiut UniversityAssiutEgypt
| | - Sahar M. Hassany
- Department of Tropical Medicine and Gastroenterology, Faculty of MedicineAssiut UniversityAssiutEgypt
| | - Mohammed A. Medhat
- Department of Tropical Medicine and Gastroenterology, Faculty of MedicineAssiut UniversityAssiutEgypt
| | - Haidi Karam‐Allah Ramadan
- Department of Tropical Medicine and Gastroenterology, Faculty of MedicineAssiut UniversityAssiutEgypt
| | | | | | - Ahmed Cordie
- Department of Endemic Medicine, Kasr Alainy School of MedicineCairo UniversityCairoEgypt
| | - Gamal Esmat
- Department of Endemic Medicine, Kasr Alainy School of MedicineCairo UniversityCairoEgypt
| |
Collapse
|
27
|
Behera P, Patro BK, Padhy BM, Mohapatra PR, Bal SK, Chandanshive PD, Mohanty RR, Ravikumar SR, Singh A, Singh SR, Pentapati SSK, Nair J, Batmanbane G. Prophylactic Role of Ivermectin in Severe Acute Respiratory Syndrome Coronavirus 2 Infection Among Healthcare Workers. Cureus 2021; 13:e16897. [PMID: 34513470 PMCID: PMC8417612 DOI: 10.7759/cureus.16897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 11/05/2022] Open
Abstract
Introduction Healthcare workers (HCWs) are vulnerable to getting infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Preventing HCWs from getting infected is a priority to maintain healthcare services. The therapeutic and preventive role of ivermectin in coronavirus disease 2019 (COVID-19) is being investigated. Based on promising results of in vitro studies of oral ivermectin, this study was conducted with the aim to demonstrate the prophylactic role of oral ivermectin in preventing SARS-CoV-2 infection among HCWs at the All India Institute of Medical Sciences (AIIMS) Bhubaneswar. Methods A prospective cohort study was conducted at AIIMS Bhubaneswar, which has been providing both COVID and non-COVID care since March 2020. All employees and students of the institute who provided written informed consent participated in the study. The uptake of two doses of oral ivermectin (300 μg/kg/dose at a gap of 72 hours) was considered as exposure. The primary outcome of the study was COVID-19 infection in the following month of ivermectin consumption, diagnosed as per Government of India testing criteria (real-time reverse transcriptase polymerase chain reaction [RT-PCR]) guidelines. The log-binomial model was used to estimate adjusted relative risk (ARR), and the Kaplan-Meier failure plot was used to estimate the probability of COVID-19 infection with follow-up time. Results Of 3892 employees, 3532 (90.8%) participated in the study. The ivermectin uptake was 62.5% and 5.3% for two doses and single dose, respectively. Participants who took ivermectin prophylaxis had a lower risk of getting symptoms suggestive of SARS-CoV-2 infection (6% vs 15%). HCWs who had taken two doses of oral ivermectin had a significantly lower risk of contracting COVID-19 infection during the following month (ARR 0.17; 95% CI, 0.12-0.23). Females had a lower risk of contracting COVID-19 than males (ARR 0.70; 95% CI, 0.52-0.93). The absolute risk reduction of SARS-CoV-2 infection was 9.7%. Only 1.8% of the participants reported adverse events, which were mild and self-limiting. Conclusion Two doses of oral ivermectin (300 μg/kg/dose given 72 hours apart) as chemoprophylaxis among HCWs reduced the risk of COVID-19 infection by 83% in the following month. Safe, effective, and low-cost chemoprophylaxis has relevance in the containment of pandemic alongside vaccine.
Collapse
Affiliation(s)
- Priyamadhaba Behera
- Community Medicine and Family Medicine, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar, IND
| | - Binod K Patro
- Community Medicine and Family Medicine, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar, IND
| | - Biswa M Padhy
- Pharmacology, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar, IND
| | - Prasanta R Mohapatra
- Pulmonary Medicine and Critical Care, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar, IND
| | - Shakti K Bal
- Pulmonary Medicine and Critical Care, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar, IND
| | - Pradnya D Chandanshive
- Community Medicine and Family Medicine, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar, IND
| | - Rashmi R Mohanty
- General Medicine, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar, IND
| | - S R Ravikumar
- Community Medicine and Family Medicine, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar, IND
| | - Arvind Singh
- Community Medicine and Family Medicine, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar, IND
| | - Sudipta R Singh
- Forensic Medicine, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar, IND
| | | | - Jyolsna Nair
- Community Medicine and Family Medicine, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar, IND
| | | |
Collapse
|
28
|
Stricker RB, Fesler MC. Hydroxychloroquine Pre-Exposure Prophylaxis for COVID-19 in Healthcare Workers from India: A Meta-Analysis. J Infect Public Health 2021; 14:1161-1163. [PMID: 34391171 PMCID: PMC8340552 DOI: 10.1016/j.jiph.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/12/2021] [Accepted: 08/01/2021] [Indexed: 12/05/2022] Open
Abstract
To date, the COVID-19 pandemic has resulted in more than 200 million cases of SARS-CoV-2 infection and more than four million deaths world-wide. 1 Although novel COVID-19 vaccines have become clinically available, the safety and efficacy of these vaccines remains open to question. 2 Alternate approaches to prevention of disease have received little attention, and one medication, hydroxychloroquine (HCQ), has been attacked and dismissed based on flawed studies and political controversy that obscured the value of this treatment as pre-exposure prophylaxis (PrEP) for SARS-CoV-2 infection.
Collapse
|
29
|
Morgenstern J, Redondo JN, Olavarria A, Rondon I, Roca S, De Leon A, Canela J, Tavares J, Minaya M, Lopez O, Castillo A, Placido A, Cruz R, Merette Y, Toribio M, Francisco J. Ivermectin as a SARS-CoV-2 Pre-Exposure Prophylaxis Method in Healthcare Workers: A Propensity Score-Matched Retrospective Cohort Study. Cureus 2021; 13:e17455. [PMID: 34513523 PMCID: PMC8405705 DOI: 10.7759/cureus.17455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Ivermectin is a drug that has been shown to be active against coronavirus disease 19 (COVID-19) in previous studies. Healthcare personnel are highly exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Therefore, we decided to offer them ivermectin as a pre-exposure prophylaxis (PrEP) method. PURPOSE Primary outcome was to measure the number of healthcare workers with symptomatic SARS-CoV-2 infection and a positive reverse transcription polymerase chain reaction (RT-PCR) COVID-19 test in the ivermectin group and in the control group. Secondary outcome was to measure the number of sick healthcare workers with a positive RT-PCR COVID-19 test whose condition deteriorated and required hospitalization and/or an Intensive Care Unit (ICU), or who died, in the ivermectin group and in the control group. MATERIAL AND METHODS This observational and retrospective cohort study was carried out in two medical centers, Centro Medico Bournigal (CMBO) in Puerto Plata and Centro Medico Punta Cana (CMPC) in Punta Cana, Dominican Republic. The study began on June 29, 2020, and ended on July 26, 2020. A Statistical Package for Social Sciences (SPSS) Propensity Score Matching procedure was applied in a 1:1 ratio to homogeneously evaluate 271 healthcare personnel that adhered to a PrEP program with ivermectin at a weekly oral (PO) dose of 0.2 mg/kg, and 271 healthcare personnel who did not adhere to the program were assigned as a control group. RESULTS In 28 days of follow-up, significant protection of ivermectin preventing the infection from SARS-CoV-2 was observed: 1.8% compared to those who did not take it (6.6%; p-value = 0.006), with a risk reduction of 74% (HR 0.26, 95% CI [0.10,0.71]). Conclusions: These results suggest that compassionate use of weekly ivermectin could be an option as a preventive method in healthcare workers and as an adjunct to immunizations, while further well-designed randomized controlled trials are developed to facilitate scientific consensus.
Collapse
Affiliation(s)
| | | | | | | | | | - Albida De Leon
- Anesthesiology, Centro Medico Punta Cana, Punta Cana, DOM
| | - Juan Canela
- Obstetrics and Gynecology, Centro Medico Canela, La Romana, DOM
| | | | | | - Oscar Lopez
- Emergency Department, Centro Medico Bournigal, Puerto Plata, DOM
| | - Ana Castillo
- Emergency Department, Centro Medico Bournigal, Puerto Plata, DOM
| | - Ana Placido
- Emergency Department, Centro Medico Punta Cana, Punta Cana, DOM
| | - Rafael Cruz
- Critical Care, Centro Medico Bournigal, Puerto Plata, DOM
| | | | | | - Juan Francisco
- Critical Care, Centro Medico Punta Cana, Punta Cana, DOM
| |
Collapse
|
30
|
Ben-Zuk N, Dechtman ID, Henn I, Weiss L, Afriat A, Krasner E, Gal Y. Potential Prophylactic Treatments for COVID-19. Viruses 2021; 13:1292. [PMID: 34372498 PMCID: PMC8310088 DOI: 10.3390/v13071292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023] Open
Abstract
The World Health Organization declared the SARS-CoV-2 outbreak a Public Health Emergency of International Concern at the end of January 2020 and a pandemic two months later. The virus primarily spreads between humans via respiratory droplets, and is the causative agent of Coronavirus Disease 2019 (COVID-19), which can vary in severity, from asymptomatic or mild disease (the vast majority of the cases) to respiratory failure, multi-organ failure, and death. Recently, several vaccines were approved for emergency use against SARS-CoV-2. However, their worldwide availability is acutely limited, and therefore, SARS-CoV-2 is still expected to cause significant morbidity and mortality in the upcoming year. Hence, additional countermeasures are needed, particularly pharmaceutical drugs that are widely accessible, safe, scalable, and affordable. In this comprehensive review, we target the prophylactic arena, focusing on small-molecule candidates. In order to consolidate a potential list of such medications, which were categorized as either antivirals, repurposed drugs, or miscellaneous, a thorough screening for relevant clinical trials was conducted. A brief molecular and/or clinical background is provided for each potential drug, rationalizing its prophylactic use as an antiviral or inflammatory modulator. Drug safety profiles are discussed, and current medical indications and research status regarding their relevance to COVID-19 are shortly reviewed. In the near future, a significant body of information regarding the effectiveness of drugs being clinically studied for COVID-19 is expected to accumulate, in addition to information regarding the efficacy of prophylactic treatments.
Collapse
Affiliation(s)
- Noam Ben-Zuk
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel-Aviv 61909, Israel; (N.B.-Z.); (I.H.); (L.W.)
| | - Ido-David Dechtman
- The Israel Defense Force Medical Corps, Tel Hashomer, Military Post 02149, Israel;
- Pulmonology Department, Edith Wolfson Medical Center, 62 Halochamim Street, Holon 5822012, Israel
| | - Itai Henn
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel-Aviv 61909, Israel; (N.B.-Z.); (I.H.); (L.W.)
| | - Libby Weiss
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel-Aviv 61909, Israel; (N.B.-Z.); (I.H.); (L.W.)
| | - Amichay Afriat
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Esther Krasner
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel-Aviv 61909, Israel; (N.B.-Z.); (I.H.); (L.W.)
| | - Yoav Gal
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel-Aviv 61909, Israel; (N.B.-Z.); (I.H.); (L.W.)
- Israel Institute for Biological Research, Ness-Ziona 76100, Israel
| |
Collapse
|
31
|
Mathachan SR, Sardana K, Khurana A. Current Use of Ivermectin in Dermatology, Tropical Medicine, and COVID-19: An Update on Pharmacology, Uses, Proven and Varied Proposed Mechanistic Action. Indian Dermatol Online J 2021; 12:500-514. [PMID: 34430453 PMCID: PMC8354388 DOI: 10.4103/idoj.idoj_298_21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/16/2021] [Indexed: 12/22/2022] Open
Abstract
Ivermectin is a broad-spectrum antiparasitic drug with anti-inflammatory, anti-viral, anti-bacterial, and anti-tumor effects. In this review, we discuss the history, pharmacology, multimodal actions, indications in dermatology and tropical medicine, therapeutic and prophylactic use of ivermectin in COVID-19, safety, adverse effects, special considerations, and drug interactions of ivermectin.
Collapse
Affiliation(s)
- Sinu Rose Mathachan
- Departments of Dermatology, Venereology and Leprosy, ABVIMS and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Kabir Sardana
- Departments of Dermatology, Venereology and Leprosy, ABVIMS and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Ananta Khurana
- Departments of Dermatology, Venereology and Leprosy, ABVIMS and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
32
|
Bryant A, Lawrie TA, Dowswell T, Fordham EJ, Mitchell S, Hill SR, Tham TC. Ivermectin for Prevention and Treatment of COVID-19 Infection: A Systematic Review, Meta-analysis, and Trial Sequential Analysis to Inform Clinical Guidelines. Am J Ther 2021. [PMID: 34145166 DOI: 10.31219/osf.io/dzs2v] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Repurposed medicines may have a role against the SARS-CoV-2 virus. The antiparasitic ivermectin, with antiviral and anti-inflammatory properties, has now been tested in numerous clinical trials. AREAS OF UNCERTAINTY We assessed the efficacy of ivermectin treatment in reducing mortality, in secondary outcomes, and in chemoprophylaxis, among people with, or at high risk of, COVID-19 infection. DATA SOURCES We searched bibliographic databases up to April 25, 2021. Two review authors sifted for studies, extracted data, and assessed risk of bias. Meta-analyses were conducted and certainty of the evidence was assessed using the GRADE approach and additionally in trial sequential analyses for mortality. Twenty-four randomized controlled trials involving 3406 participants met review inclusion. THERAPEUTIC ADVANCES Meta-analysis of 15 trials found that ivermectin reduced risk of death compared with no ivermectin (average risk ratio 0.38, 95% confidence interval 0.19-0.73; n = 2438; I2 = 49%; moderate-certainty evidence). This result was confirmed in a trial sequential analysis using the same DerSimonian-Laird method that underpinned the unadjusted analysis. This was also robust against a trial sequential analysis using the Biggerstaff-Tweedie method. Low-certainty evidence found that ivermectin prophylaxis reduced COVID-19 infection by an average 86% (95% confidence interval 79%-91%). Secondary outcomes provided less certain evidence. Low-certainty evidence suggested that there may be no benefit with ivermectin for "need for mechanical ventilation," whereas effect estimates for "improvement" and "deterioration" clearly favored ivermectin use. Severe adverse events were rare among treatment trials and evidence of no difference was assessed as low certainty. Evidence on other secondary outcomes was very low certainty. CONCLUSIONS Moderate-certainty evidence finds that large reductions in COVID-19 deaths are possible using ivermectin. Using ivermectin early in the clinical course may reduce numbers progressing to severe disease. The apparent safety and low cost suggest that ivermectin is likely to have a significant impact on the SARS-CoV-2 pandemic globally.
Collapse
Affiliation(s)
- Andrew Bryant
- Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | | | | | - Scott Mitchell
- Emergency Department, Princess Elizabeth Hospital, Guernsey, United Kingdom; and
| | - Sarah R Hill
- Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Tony C Tham
- Division of Gastroenterology, Ulster Hospital, Dundonald, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
33
|
Bryant A, Lawrie TA, Dowswell T, Fordham EJ, Mitchell S, Hill SR, Tham TC. Ivermectin for Prevention and Treatment of COVID-19 Infection: A Systematic Review, Meta-analysis, and Trial Sequential Analysis to Inform Clinical Guidelines. Am J Ther 2021; 28:e434-e460. [PMID: 34145166 PMCID: PMC8248252 DOI: 10.1097/mjt.0000000000001402] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Repurposed medicines may have a role against the SARS-CoV-2 virus. The antiparasitic ivermectin, with antiviral and anti-inflammatory properties, has now been tested in numerous clinical trials. AREAS OF UNCERTAINTY We assessed the efficacy of ivermectin treatment in reducing mortality, in secondary outcomes, and in chemoprophylaxis, among people with, or at high risk of, COVID-19 infection. DATA SOURCES We searched bibliographic databases up to April 25, 2021. Two review authors sifted for studies, extracted data, and assessed risk of bias. Meta-analyses were conducted and certainty of the evidence was assessed using the GRADE approach and additionally in trial sequential analyses for mortality. Twenty-four randomized controlled trials involving 3406 participants met review inclusion. THERAPEUTIC ADVANCES Meta-analysis of 15 trials found that ivermectin reduced risk of death compared with no ivermectin (average risk ratio 0.38, 95% confidence interval 0.19-0.73; n = 2438; I2 = 49%; moderate-certainty evidence). This result was confirmed in a trial sequential analysis using the same DerSimonian-Laird method that underpinned the unadjusted analysis. This was also robust against a trial sequential analysis using the Biggerstaff-Tweedie method. Low-certainty evidence found that ivermectin prophylaxis reduced COVID-19 infection by an average 86% (95% confidence interval 79%-91%). Secondary outcomes provided less certain evidence. Low-certainty evidence suggested that there may be no benefit with ivermectin for "need for mechanical ventilation," whereas effect estimates for "improvement" and "deterioration" clearly favored ivermectin use. Severe adverse events were rare among treatment trials and evidence of no difference was assessed as low certainty. Evidence on other secondary outcomes was very low certainty. CONCLUSIONS Moderate-certainty evidence finds that large reductions in COVID-19 deaths are possible using ivermectin. Using ivermectin early in the clinical course may reduce numbers progressing to severe disease. The apparent safety and low cost suggest that ivermectin is likely to have a significant impact on the SARS-CoV-2 pandemic globally.
Collapse
Affiliation(s)
- Andrew Bryant
- Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom;
| | | | | | | | - Scott Mitchell
- Emergency Department, Princess Elizabeth Hospital, Guernsey, United Kingdom; and
| | - Sarah R. Hill
- Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom;
| | - Tony C. Tham
- Division of Gastroenterology, Ulster Hospital, Dundonald, Belfast, Northern Ireland, United Kingdom.
| |
Collapse
|
34
|
Alhadrami HA, Sayed AM, Al-Khatabi H, Alhakamy NA, Rateb ME. Scaffold Hopping of α-Rubromycin Enables Direct Access to FDA-Approved Cromoglicic Acid as a SARS-CoV-2 M Pro Inhibitor. Pharmaceuticals (Basel) 2021; 14:541. [PMID: 34198933 PMCID: PMC8229550 DOI: 10.3390/ph14060541] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/23/2022] Open
Abstract
The COVID-19 pandemic is still active around the globe despite the newly introduced vaccines. Hence, finding effective medications or repurposing available ones could offer great help during this serious situation. During our anti-COVID-19 investigation of microbial natural products (MNPs), we came across α-rubromycin, an antibiotic derived from Streptomyces collinus ATCC19743, which was able to suppress the catalytic activity (IC50 = 5.4 µM and Ki = 3.22 µM) of one of the viral key enzymes (i.e., MPro). However, it showed high cytotoxicity toward normal human fibroblasts (CC50 = 16.7 µM). To reduce the cytotoxicity of this microbial metabolite, we utilized a number of in silico tools (ensemble docking, molecular dynamics simulation, binding free energy calculation) to propose a novel scaffold having the main pharmacophoric features to inhibit MPro with better drug-like properties and reduced/minimal toxicity. Nevertheless, reaching this novel scaffold synthetically is a time-consuming process, particularly at this critical time. Instead, this scaffold was used as a template to explore similar molecules among the FDA-approved medications that share its main pharmacophoric features with the aid of pharmacophore-based virtual screening software. As a result, cromoglicic acid (aka cromolyn) was found to be the best hit, which, upon in vitro MPro testing, was 4.5 times more potent (IC50 = 1.1 µM and Ki = 0.68 µM) than α-rubromycin, with minimal cytotoxicity toward normal human fibroblasts (CC50 > 100 µM). This report highlights the potential of MNPs in providing unprecedented scaffolds with a wide range of therapeutic efficacy. It also revealed the importance of cheminformatics tools in speeding up the drug discovery process, which is extremely important in such a critical situation.
Collapse
Affiliation(s)
- Hani A. Alhadrami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia; (H.A.A.); (H.A.-K.)
- Molecular Diagnostic Lab, King Abdulaziz University Hospital, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Heba Al-Khatabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia; (H.A.A.); (H.A.-K.)
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mostafa E. Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| |
Collapse
|
35
|
Bhowmick S, Dang A, Vallish BN, Dang S. Safety and Efficacy of Ivermectin and Doxycycline Monotherapy and in Combination in the Treatment of COVID-19: A Scoping Review. Drug Saf 2021; 44:635-644. [PMID: 33864232 PMCID: PMC8051548 DOI: 10.1007/s40264-021-01066-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION AND OBJECTIVE Ivermectin (IVM) and doxycycline (DOXY) have demonstrated in-vitro activity against SARS-CoV-2, and have a reasonable safety profile. The objective of this systematic review was to explore the evidence in the literature on the safety and efficacy of their use as monotherapy and combination therapy in COVID-19 management. METHODS After prospectively registering the study protocol with the Open Science Framework, we searched PubMed, Google Scholar, clinicaltrials.gov, various pre-print servers and reference lists for relevant records published until 16 February, 2021 using appropriate search strategies. Baseline features and data pertaining to efficacy and safety outcomes were extracted separately for IVM monotherapy, DOXY monotherapy, and IVM + DOXY combination therapy. Methodological quality was assessed based on the study design. RESULTS Out of 200 articles screened, 19 studies (six retrospective cohort studies, seven randomised controlled trials, five non-randomised trials, one case series) with 8754 unique patients with multiple stages of COVID-19 were included; four were pre-prints and one was an unpublished clinicaltrials.gov document. The comparator was standard care and 'hydroxychloroquine + azithromycin' in seven and three studies respectively, and two studies were placebo controlled; six studies did not have a comparator. IVM monotherapy, DOXY monotherapy and IVM + DOXY were explored in eight, five and five studies, respectively; one study compared IVM monotherapy and IVM + DOXY with placebo. While all studies described efficacy, the safety profile was described in only six studies. Efficacy outcomes were mixed with some studies concluding in favour of the intervention and some studies displaying no significant benefit; barring one study that described 9/183 patients with erosive esophagitis and non-ulcer dyspepsia with IVM + DOXY (without causality assessment details), there were no new safety signals of concern with any of the three interventions considered. The quality of studies varied widely, with five studies having a 'good' methodological quality. CONCLUSIONS Evidence is not sufficiently strong to either promote or refute the efficacy of IVM, DOXY, or their combination in COVID-19 management. SYSTEMATIC REVIEW PROTOCOL REGISTRATION DETAILS Open Science Framework: https://osf.io/n7r2j .
Collapse
Affiliation(s)
| | - Amit Dang
- MarksMan Healthcare Communications and KYT Adhere, H. No 9-1-67, Plot no. 67, TNGO’s colony, Behind Q City, Financial District, Hyderabad, Telangana 500032 India
| | - B. N. Vallish
- Medical Writing and Biostatistics, MarksMan Healthcare Communications, Hyderabad, India
| | - Sumit Dang
- Department of Pediatrics, University of Kentucky, Lexington, KY USA
| |
Collapse
|
36
|
Domingo-Echaburu S, Orive G, Lertxundi U. Ivermectin & COVID-19: Let's keep a One Health perspective. SUSTAINABLE CHEMISTRY AND PHARMACY 2021; 21:100438. [PMID: 33898692 PMCID: PMC8053244 DOI: 10.1016/j.scp.2021.100438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 05/08/2023]
Abstract
Despite uncertainty about its clinical benefit, ivermectin has been used for COVID 19, even in prophylaxis. The European Medicines Agency (EMA) has advised against its use for the prevention or treatment of COVID-19 outside randomised clinical trials. Although the potential negative environmental effects of ivermectin have been widely recognised when used in veterinary medicine, scarce attention has been devoted to the potential ecotoxicological impact of human use. We believe is time to include One Health's philosophy in our daily practice. In the specific case of ivermectin & COVID 19, environmental aspects should also be on the table.
Collapse
Affiliation(s)
- Saioa Domingo-Echaburu
- Pharmacy Service. Alto Deba-Integrated Health Care Organization, Arrasate, Gipuzkoa, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de La Universidad 7, Vitoria-Gasteiz, 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Unax Lertxundi
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, C/Alava 43, 01006, Vitoria-Gasteiz, Alava, Spain
| |
Collapse
|
37
|
Kory P, Meduri GU, Varon J, Iglesias J, Marik PE. Review of the Emerging Evidence Demonstrating the Efficacy of Ivermectin in the Prophylaxis and Treatment of COVID-19. Am J Ther 2021; 28:e299-e318. [PMID: 34375047 PMCID: PMC8088823 DOI: 10.1097/mjt.0000000000001377] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND After COVID-19 emerged on U.S shores, providers began reviewing the emerging basic science, translational, and clinical data to identify potentially effective treatment options. In addition, a multitude of both novel and repurposed therapeutic agents were used empirically and studied within clinical trials. AREAS OF UNCERTAINTY The majority of trialed agents have failed to provide reproducible, definitive proof of efficacy in reducing the mortality of COVID-19 with the exception of corticosteroids in moderate to severe disease. Recently, evidence has emerged that the oral antiparasitic agent ivermectin exhibits numerous antiviral and anti-inflammatory mechanisms with trial results reporting significant outcome benefits. Given some have not passed peer review, several expert groups including Unitaid/World Health Organization have undertaken a systematic global effort to contact all active trial investigators to rapidly gather the data needed to grade and perform meta-analyses. DATA SOURCES Data were sourced from published peer-reviewed studies, manuscripts posted to preprint servers, expert meta-analyses, and numerous epidemiological analyses of regions with ivermectin distribution campaigns. THERAPEUTIC ADVANCES A large majority of randomized and observational controlled trials of ivermectin are reporting repeated, large magnitude improvements in clinical outcomes. Numerous prophylaxis trials demonstrate that regular ivermectin use leads to large reductions in transmission. Multiple, large "natural experiments" occurred in regions that initiated "ivermectin distribution" campaigns followed by tight, reproducible, temporally associated decreases in case counts and case fatality rates compared with nearby regions without such campaigns. CONCLUSIONS Meta-analyses based on 18 randomized controlled treatment trials of ivermectin in COVID-19 have found large, statistically significant reductions in mortality, time to clinical recovery, and time to viral clearance. Furthermore, results from numerous controlled prophylaxis trials report significantly reduced risks of contracting COVID-19 with the regular use of ivermectin. Finally, the many examples of ivermectin distribution campaigns leading to rapid population-wide decreases in morbidity and mortality indicate that an oral agent effective in all phases of COVID-19 has been identified.
Collapse
Affiliation(s)
- Pierre Kory
- Front-Line Covid-19 Critical Care Alliance, Madison, WI
| | - Gianfranco Umberto Meduri
- Memphis VA Medical Center—University of Tennessee Health Science Center, Pulmonary, Critical Care, and Research Services, Memphis, TN
| | - Joseph Varon
- University of Texas Health Science Center, Critical Care Service, Houston, TX
| | - Jose Iglesias
- Department of Medicine, Hackensack School of Medicine, Seton Hall, NJ; and
| | - Paul E. Marik
- Eastern Virginia Medical School, Division of Pulmonary and Critical Care, Norfolk, VA
| |
Collapse
|
38
|
Molento MB. Ivermectin against COVID-19: The unprecedented consequences in Latin America. One Health 2021; 13:100250. [PMID: 33880395 PMCID: PMC8050401 DOI: 10.1016/j.onehlt.2021.100250] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Marcelo Beltrão Molento
- Laboratory of Veterinary Clinical Parasitology, Department of Veterinary Medicine, Federal University of Paraná, R. dos Funcionários, 1540, Curitiba, PR, Brazil
| |
Collapse
|
39
|
Orfali R, Rateb ME, Hassan HM, Alonazi M, Gomaa MR, Mahrous N, GabAllah M, Kandeil A, Perveen S, Abdelmohsen UR, Sayed AM. Sinapic Acid Suppresses SARS CoV-2 Replication by Targeting Its Envelope Protein. Antibiotics (Basel) 2021; 10:420. [PMID: 33920366 PMCID: PMC8069661 DOI: 10.3390/antibiotics10040420] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022] Open
Abstract
SARS CoV-2 is still considered a global health issue, and its threat keeps growing with the emergence of newly evolved strains. Despite the success in developing some vaccines as a protective measure, finding cost-effective treatments is urgent. Accordingly, we screened a number of phenolic natural compounds for their in vitro anti-SARS CoV-2 activity. We found sinapic acid (SA) selectively inhibited the viral replication in vitro with an half-maximal inhibitory concentration (IC50) value of 2.69 µg/mL with significantly low cytotoxicity (CC50 = 189.3 µg/mL). Subsequently, we virtually screened all currently available molecular targets using a multistep in silico protocol to find out the most probable molecular target that mediates this compound's antiviral activity. As a result, the viral envelope protein (E-protein) was suggested as the most possible hit for SA. Further in-depth molecular dynamic simulation-based investigation revealed the essential structural features of SA antiviral activity and its binding mode with E-protein. The structural and experimental results presented in this study strongly recommend SA as a promising structural motif for anti-SARS CoV-2 agent development.
Collapse
Affiliation(s)
- Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (R.O.); (S.P.)
| | - Mostafa E. Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK;
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62513, Egypt
| | - Mona Alonazi
- Department of Biochemistry, Faculty of Science, King Saud University. P.O. Box 12372, Riyadh 11495, Saudi Arabia;
| | - Mokhtar R. Gomaa
- Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Centre, Giza 12622, Egypt; (M.R.G.); (N.M.); (M.G.); (A.K.)
| | - Noura Mahrous
- Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Centre, Giza 12622, Egypt; (M.R.G.); (N.M.); (M.G.); (A.K.)
| | - Mohamed GabAllah
- Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Centre, Giza 12622, Egypt; (M.R.G.); (N.M.); (M.G.); (A.K.)
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Centre, Giza 12622, Egypt; (M.R.G.); (N.M.); (M.G.); (A.K.)
| | - Shagufta Perveen
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (R.O.); (S.P.)
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| |
Collapse
|
40
|
Use of ivermectin in the treatment of Covid-19: A pilot trial. Toxicol Rep 2021; 8:505-510. [PMID: 33723507 PMCID: PMC7942165 DOI: 10.1016/j.toxrep.2021.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 01/12/2023] Open
Abstract
Ivermectin has an antiviral effect on DNA and RNA viral families. This pilot clinical trial demonstrated the antiviral effects and safety of ivermectin in patients with mild COVID-19. The antiviral effect of ivermectin appears to be dose-dependent. Larger clinical trials should be carried out to confirm its clinical efficacy for COVID-19.
Objectives In this randomized open-label trial pilot study we assessed the antiviral effects and safety of various doses of ivermectin in patients with mild clinical symptoms of COVID-19. Methods Patients were randomly assigned to receive standard of care (SOC) treatment at hospital admission; SOC plus ivermectin 100 mcg/kg; SOC plus ivermectin 200 mcg/kg; or SOC plus ivermectin 400 mcg/kg. The primary assessed endpoint was the proportion of patients who achieved two consecutive negative SARS-CoV-2 RT PCR tests within 7 days of the start of the dosing period. This study was registered at ClinicalTrials.gov (NCT04431466). Results A total of 32 patients were enrolled and randomized to treatment. SOC treatment together with ivermectin did not result in any serious adverse events. All patients exhibited a reduction in SARS-CoV-2 viral load within 7 days; however, those who received ivermectin had a more consistent decrease as compared to the SOC alone group, characterized by a shorter time for obtaining two consecutive negative SARS-CoV-2 RT PCR tests. Conclusions Ivermectin is safe in patients with SARS-CoV-2, reducing symptomatology and the SARS-CoV-2 viral load. This antiviral effect appears to depend on the dose used, and if confirmed in future studies, it suggests that ivermectin may be a useful adjuvant to the SOC treatment in patients with mild COVID-19 symptoms.
Collapse
|
41
|
Naik RR, Shakya AK. Therapeutic Strategies in the Management of COVID-19. Front Mol Biosci 2021; 7:636738. [PMID: 33614709 PMCID: PMC7890447 DOI: 10.3389/fmolb.2020.636738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Since December 2019, SARS-CoV-2 (COVID-19), novel corona virus has caused pandemic globally, with rise in the number of cases and death of the patients. Vast majority of the countries that are dealing with rise in the active cases and death of patients suffering from novel corona viruses COVID-19 are trying to content the virus by isolating the patients and treating them with the approved antiviral that have been previously used in treating SARS, MERS, and drugs that are used to treat other viral infections. Some of these are under clinical trials. At present there are no therapeutically effective antiviral present and there are no vaccines or drugs available that are clinically approved for treating the corona virus. The current strategy is to re-purpose the available drugs or antiviral that can minimise or reduce the burden of the health care emergencies. In this article the reuse of antiviral, US-FDA approved drugs, plant based therapeutic, anti-malarial, anti-parasitic, anti-HIV drugs and the traditional medicines that are being currently used in treating the symptoms of COVID-19 patients is discussed emphasis is also given on the treatment using monoclonal antibodies. The present article provides the therapeutic strategies that will qualify as one of the best available treatment for the better management of the COVID-19 patients in order to achieve medical benefits.
Collapse
Affiliation(s)
- Rajashri R. Naik
- Department of Biopharmaceutics and Clinical Pharmacy, Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman, Jordan
| | - Ashok K. Shakya
- Department of Pharmaceutical Sciences, Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
42
|
Singh A, Sheth P, Dhaneria S, Gupta D. Efficacy and safety of ivermectin for COVID-19: A systematic review and meta-analysis. ASIAN PAC J TROP MED 2021. [DOI: 10.4103/1995-7645.327070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|