1
|
Lorico A, Santos MF, Karbanová J, Corbeil D. Extracellular membrane particles en route to the nucleus - exploring the VOR complex. Biochem Soc Trans 2025:BST20253005. [PMID: 40366329 DOI: 10.1042/bst20253005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025]
Abstract
Intercellular communication is an essential hallmark of multicellular organisms for their development and adult tissue homeostasis. Over the past two decades, attention has been focused on communication mechanisms based on various membrane structures, as illustrated by the burst of scientific literature in the field of extracellular vesicles (EVs). These lipid bilayer-bound nano- or microparticles, as vehicle-like devices, act as regulators in various biological and physiological processes. When EVs are internalized by recipient cells, their membrane and cytoplasmic cargoes can interfere with cellular activities, affecting pathways that regulate cell proliferation, differentiation, and migration. In cancer, EVs can transfer oncogenic factors, stimulate neo-angiogenesis and immunosuppression, reprogram stromal cells, and confer drug resistance traits, thereby remodeling the surrounding microenvironment. Although the mechanisms underlying EV biogenesis and uptake are now better understood, little is known about the spatiotemporal mechanism(s) of their actions after internalization. In this respect, we have shown that a fraction of endocytosed EVs reaches the nuclear compartment via the VOR (VAP-A-ORP3-Rab7) complex-mediated docking of late endosomes to the outer nuclear membrane in the nucleoplasmic reticulum, positioning and facilitating the transfer of EV cargoes into the nucleoplasm via nuclear pores. Here, we highlight the EV heterogeneity, the cellular pathways governing EV release and uptake by donor and recipient cells, respectively, and focus on a novel intracellular pathway leading to the nuclear transfer of EV cargoes. We will discuss how to intercept it, which could open up new avenues for clinical applications in which EVs and other small extracellular particles (e.g., retroviruses) are implicated.
Collapse
Affiliation(s)
- Aurelio Lorico
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, U.S.A
| | - Mark F Santos
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, U.S.A
| | - Jana Karbanová
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Saxony, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Saxony, Germany
| | - Denis Corbeil
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Saxony, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Saxony, Germany
| |
Collapse
|
2
|
Hamaï A, Drin G. Specificity of lipid transfer proteins: An in vitro story. Biochimie 2024; 227:85-110. [PMID: 39304019 DOI: 10.1016/j.biochi.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Lipids, which are highly diverse, are finely distributed between organelle membranes and the plasma membrane (PM) of eukaryotic cells. As a result, each compartment has its own lipid composition and molecular identity, which is essential for the functional fate of many proteins. This distribution of lipids depends on two main processes: lipid synthesis, which takes place in different subcellular regions, and the transfer of these lipids between and across membranes. This review will discuss the proteins that carry lipids throughout the cytosol, called LTPs (Lipid Transfer Proteins). More than the modes of action or biological roles of these proteins, we will focus on the in vitro strategies employed during the last 60 years to address a critical question: What are the lipid ligands of these LTPs? We will describe the extent to which these strategies, combined with structural data and investigations in cells, have made it possible to discover proteins, namely ORPs, Sec14, PITPs, STARDs, Ups/PRELIs, START-like, SMP-domain containing proteins, and bridge-like LTPs, which compose some of the main eukaryotic LTP families, and their lipid ligands. We will see how these approaches have played a central role in cell biology, showing that LTPs can connect distant metabolic branches, modulate the composition of cell membranes, and even create new subcellular compartments.
Collapse
Affiliation(s)
- Amazigh Hamaï
- Université Côte d'Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des lucioles, 06560, Valbonne Sophia Antipolis, France
| | - Guillaume Drin
- Université Côte d'Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des lucioles, 06560, Valbonne Sophia Antipolis, France.
| |
Collapse
|
3
|
Carbone D, Santos MF, Corbeil D, Vistoli G, Parrino B, Karbanová J, Cascioferro S, Pecoraro C, Bauson J, Eliwat W, Aalam F, Cirrincione G, Lorico A, Diana P. Triazole derivatives inhibit the VOR complex-mediated nuclear transport of extracellular particles: Potential application in cancer and HIV-1 infection. Bioorg Chem 2024; 150:107589. [PMID: 38941696 DOI: 10.1016/j.bioorg.2024.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024]
Abstract
Extracellular vesicles (EVs) appear to play an important role in intercellular communication in various physiological processes and pathological conditions such as cancer. Like enveloped viruses, EVs can transport their contents into the nucleus of recipient cells, and a new intracellular pathway has been described to explain the nuclear shuttling of EV cargoes. It involves a tripartite protein complex consisting of vesicle-associated membrane protein-associated protein A (VAP-A), oxysterol-binding protein (OSBP)-related protein-3 (ORP3) and late endosome-associated Rab7 allowing late endosome entry into the nucleoplasmic reticulum. Rab7 binding to ORP3-VAP-A complex can be blocked by the FDA-approved antifungal drug itraconazole. Here, we design a new series of smaller triazole derivatives, which lack the dioxolane moiety responsible for the antifungal function, acting on the hydrophobic sterol-binding pocket of ORP3 and evaluate their structure-activity relationship through inhibition of VOR interactions and nuclear transfer of EV and HIV-1 cargoes. Our investigation reveals that the most effective compounds that prevent nuclear transfer of EV cargo and productive infection by VSV-G-pseudotyped HIV-1 are those with a side chain between 1 and 4 carbons, linear or branched (methyl) on the triazolone region. These potent chemical drugs could find clinical applications either for nuclear transfer of cancer-derived EVs that impact metastasis or viral infection.
Collapse
Affiliation(s)
- Daniela Carbone
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| | - Mark F Santos
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA.
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany; Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany.
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
| | - Barbara Parrino
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| | - Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany; Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany.
| | - Stella Cascioferro
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| | - Camilla Pecoraro
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| | - Jodi Bauson
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA.
| | - Waleed Eliwat
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA.
| | - Feryal Aalam
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA.
| | - Girolamo Cirrincione
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| | - Aurelio Lorico
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA.
| | - Patrizia Diana
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| |
Collapse
|
4
|
Olkkonen VM, Ikonen E. Getting to Grips with the Oxysterol-Binding Protein Family - a Forty Year Perspective. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241273598. [PMID: 39210909 PMCID: PMC11359446 DOI: 10.1177/25152564241273598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
This review discusses how research around the oxysterol-binding protein family has evolved. We briefly summarize how this protein family, designated OSBP-related (ORP) or OSBP-like (OSBPL) proteins, was discovered, how protein domains highly conserved among family members between taxa paved the way for understanding their mechanisms of action, and how insights into protein structural and functional features help to understand their versatility as lipid transporters. We also discuss questions and future avenues of research opened by these findings. The investigations on oxysterol-binding protein family serve as a real-life example of the notion that science often advances as a collective effort of multiple lines of enquiry, including serendipitous routes. While original articles invariably explain the motivation of the research undertaken in rational terms, the actual paths to findings may be less intentional. Fortunately, this does not reduce the impact of the discoveries made. Besides hopefully providing a useful account of ORP family proteins, we aim to convey this message.
Collapse
Affiliation(s)
- Vesa M. Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Elina Ikonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Faculty of Medicine, Dept of Anatomy and Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Wang X, Liu J, Azoitei A, Eiseler T, Meessen S, Jiang W, Zheng X, Makori AW, Eckstein M, Hartmann A, Stilgenbauer S, Elati M, Hohwieler M, Kleger A, John A, Zengerling F, Wezel F, Bolenz C, Günes C. Loss of ORP3 induces aneuploidy and promotes bladder cancer cell invasion through deregulated microtubule and actin dynamics. Cell Mol Life Sci 2023; 80:299. [PMID: 37740130 PMCID: PMC10516806 DOI: 10.1007/s00018-023-04959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023]
Abstract
We have recently shown that loss of ORP3 leads to aneuploidy induction and promotes tumor formation. However, the specific mechanisms by which ORP3 contributes to ploidy-control and cancer initiation and progression is still unknown. Here, we report that ORP3 is highly expressed in ureter and bladder epithelium while its expression is downregulated in invasive bladder cancer cell lines and during tumor progression, both in human and in mouse bladder cancer. Moreover, we observed an increase in the incidence of N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced invasive bladder carcinoma in the tissue-specific Orp3 knockout mice. Experimental data demonstrate that ORP3 protein interacts with γ-tubulin at the centrosomes and with components of actin cytoskeleton. Altering the expression of ORP3 induces aneuploidy and genomic instability in telomerase-immortalized urothelial cells with a stable karyotype and influences the migration and invasive capacity of bladder cancer cell lines. These findings demonstrate a crucial role of ORP3 in ploidy-control and indicate that ORP3 is a bona fide tumor suppressor protein. Of note, the presented data indicate that ORP3 affects both cell invasion and migration as well as genome stability through interactions with cytoskeletal components, providing a molecular link between aneuploidy and cell invasion and migration, two crucial characteristics of metastatic cells.
Collapse
Affiliation(s)
- Xue Wang
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Junnan Liu
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Anca Azoitei
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, University Hospital, Ulm, Germany
| | - Sabine Meessen
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Division of Hepatology, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Wencheng Jiang
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Xi Zheng
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Department of Urology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
- Institute of Urology, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Arika W Makori
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Markus Eckstein
- Institute of Pathology, Friedrich-Alexander University, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University, Erlangen, Germany
| | | | - Mohamed Elati
- CANTHER, ONCOLille Institute, University of Lille, CNRS UMR 1277, Inserm U9020, 59045, Lille Cedex, France
| | - Meike Hohwieler
- Institute of Mol. Oncology and Stem Cell Biology, University Hospital, Ulm, Germany
| | - Alexander Kleger
- Institute of Mol. Oncology and Stem Cell Biology, University Hospital, Ulm, Germany
| | - Axel John
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Friedemann Zengerling
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Felix Wezel
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Christian Bolenz
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Cagatay Günes
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany.
| |
Collapse
|
6
|
Hempelmann P, Lolicato F, Graziadei A, Brown RDR, Spiegel S, Rappsilber J, Nickel W, Höglinger D, Jamecna D. The sterol transporter STARD3 transports sphingosine at ER-lysosome contact sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.557036. [PMID: 37790546 PMCID: PMC10542139 DOI: 10.1101/2023.09.18.557036] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Sphingolipids are important structural components of membranes. Additionally, simple sphingolipids such as sphingosine are highly bioactive and participate in complex subcellular signaling. Sphingolipid deregulation is associated with many severe diseases including diabetes, Parkinson's and cancer. Here, we focus on how sphingosine, generated from sphingolipid catabolism in late endosomes/lysosomes, is reintegrated into the biosynthetic machinery at the endoplasmic reticulum (ER). We characterized the sterol transporter STARD3 as a sphingosine transporter acting at lysosome-ER contact sites. Experiments featuring crosslinkable sphingosine probes, supported by unbiased molecular dynamics simulations, exposed how sphingosine binds to the lipid-binding domain of STARD3. Following the metabolic fate of pre-localized lysosomal sphingosine showed the importance of STARD3 and its actions at contact sites for the integration of sphingosine into ceramide in a cellular context. Our findings provide the first example of interorganellar sphingosine transfer and pave the way for a better understanding of sphingolipid - sterol co-regulation.
Collapse
Affiliation(s)
- Pia Hempelmann
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Andrea Graziadei
- Institute for Biotechnology, Technical University Berlin, Gustav Mayer Allee 25, 13355 Berlin
| | - Ryan D R Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Juri Rappsilber
- Institute for Biotechnology, Technical University Berlin, Gustav Mayer Allee 25, 13355 Berlin
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg
| | - Doris Höglinger
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg
| | - Denisa Jamecna
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg
| |
Collapse
|
7
|
Eisenreichova A, Klima M, Anila MM, Koukalova A, Humpolickova J, Różycki B, Boura E. Crystal Structure of the ORP8 Lipid Transport ORD Domain: Model of Lipid Transport. Cells 2023; 12:1974. [PMID: 37566053 PMCID: PMC10417380 DOI: 10.3390/cells12151974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023] Open
Abstract
ORPs are lipid-transport proteins belonging to the oxysterol-binding protein family. They facilitate the transfer of lipids between different intracellular membranes, such as the ER and plasma membrane. We have solved the crystal structure of the ORP8 lipid transport domain (ORD8). The ORD8 exhibited a β-barrel fold composed of anti-parallel β-strands, with three α-helices replacing β-strands on one side. This mixed alpha-beta structure was consistent with previously solved structures of ORP2 and ORP3. A large cavity (≈1860 Å3) within the barrel was identified as the lipid-binding site. Although we were not able to obtain a lipid-bound structure, we used computer simulations based on our crystal structure to dock PS and PI4P molecules into the putative lipid-binding site of the ORD8. Comparative experiments between the short ORD8ΔLid (used for crystallography) and the full-length ORD8 (lid containing) revealed the lid's importance for stable lipid binding. Fluorescence assays revealed different transport efficiencies for PS and PI4P, with the lid slowing down transport and stabilizing cargo. Coarse-grained simulations highlighted surface-exposed regions and hydrophobic interactions facilitating lipid bilayer insertion. These findings enhance our comprehension of ORD8, its structure, and lipid transport mechanisms, as well as provide a structural basis for the design of potential inhibitors.
Collapse
Affiliation(s)
- Andrea Eisenreichova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague, Czech Republic; (A.E.); (M.K.); (A.K.); (J.H.)
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague, Czech Republic; (A.E.); (M.K.); (A.K.); (J.H.)
| | - Midhun Mohan Anila
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland; (M.M.A.); (B.R.)
| | - Alena Koukalova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague, Czech Republic; (A.E.); (M.K.); (A.K.); (J.H.)
| | - Jana Humpolickova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague, Czech Republic; (A.E.); (M.K.); (A.K.); (J.H.)
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland; (M.M.A.); (B.R.)
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague, Czech Republic; (A.E.); (M.K.); (A.K.); (J.H.)
| |
Collapse
|
8
|
Singh RP, Poh YP, Sinha SD, Wideman JG. Evolutionary History of Oxysterol-Binding Proteins Reveals Complex History of Duplication and Loss in Animals and Fungi. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564221150428. [PMID: 37366416 PMCID: PMC10243569 DOI: 10.1177/25152564221150428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 06/28/2023]
Abstract
Cells maintain the specific lipid composition of distinct organelles by vesicular transport as well as non-vesicular lipid trafficking via lipid transport proteins. Oxysterol-binding proteins (OSBPs) are a family of lipid transport proteins that transfer lipids at various membrane contact sites (MCSs). OSBPs have been extensively investigated in human and yeast cells where 12 have been identified in Homo sapiens and 7 in Saccharomyces cerevisiae. The evolutionary relationship between these well-characterized OSBPs is still unclear. By reconstructing phylogenies of eukaryote OSBPs, we show that the ancestral Saccharomycotina had four OSBPs, the ancestral fungus had five OSBPs, and the ancestral animal had six OSBPs, whereas the shared ancestor of animals and fungi as well as the ancestral eukaryote had only three OSBPs. Our analyses identified three undescribed ancient OSBP orthologues, one fungal OSBP (Osh8) lost in the lineage leading to yeast, one animal OSBP (ORP12) lost in the lineage leading to vertebrates, and one eukaryotic OSBP (OshEu) lost in both the animal and fungal lineages.
Collapse
Affiliation(s)
- Rohan P. Singh
- Center for Mechanisms of Evolution, Biodesign Institute,
School of Life Sciences, Arizona State University, Tempe, USA
| | - Yu-Ping Poh
- Center for Mechanisms of Evolution, Biodesign Institute,
School of Life Sciences, Arizona State University, Tempe, USA
| | - Savar D. Sinha
- Center for Mechanisms of Evolution, Biodesign Institute,
School of Life Sciences, Arizona State University, Tempe, USA
| | - Jeremy G. Wideman
- Center for Mechanisms of Evolution, Biodesign Institute,
School of Life Sciences, Arizona State University, Tempe, USA
| |
Collapse
|
9
|
Balla T, Gulyas G, Mandal A, Alvarez-Prats A, Niu Y, Kim YJ, Pemberton J. Roles of Phosphatidylinositol 4-Phosphorylation in Non-vesicular Cholesterol Trafficking. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:327-352. [PMID: 36988887 PMCID: PMC11135459 DOI: 10.1007/978-3-031-21547-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Cholesterol (Chol) is an essential component of all eukaryotic cell membranes that affects the function of numerous peripheral as well as integral membrane proteins. Chol is synthesized in the ER, but it is selectively enriched within the plasma membrane (PM) and other endomembranes, which requires Chol to cross the aqueous phase of the cytoplasm. In addition to the classical vesicular trafficking pathways that are known to facilitate the bulk transport of membrane intermediates, Chol is also transported via non-vesicular lipid transfer proteins that work primarily within specialized membrane contact sites. Some of these transport pathways work against established concentration gradients and hence require energy. Recent studies highlight the unique role of phosphoinositides (PPIns), and phosphatidylinositol 4-phosphate (PI4P) in particular, for the control of non-vesicular Chol transport. In this chapter, we will review the emerging connection between Chol, PPIns, and lipid transfer proteins that include the important family of oxysterol-binding protein related proteins, or ORPs.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA.
| | | | - Amrita Mandal
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | | | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Arora A, Taskinen JH, Olkkonen VM. Coordination of inter-organelle communication and lipid fluxes by OSBP-related proteins. Prog Lipid Res 2022; 86:101146. [PMID: 34999137 DOI: 10.1016/j.plipres.2022.101146] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/10/2021] [Accepted: 01/03/2022] [Indexed: 12/31/2022]
Abstract
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute one of the largest families of lipid-binding/transfer proteins (LTPs) in eukaryotes. The current view is that many of them mediate inter-organelle lipid transfer over membrane contact sites (MCS). The transfer occurs in several cases in a 'counter-current' fashion: A lipid such as cholesterol or phosphatidylserine (PS) is transferred against its concentration gradient driven by transport of a phosphoinositide in the opposite direction. In this way ORPs are envisioned to maintain the distinct organelle lipid compositions, with impacts on multiple organelle functions. However, the functions of ORPs extend beyond lipid homeostasis to regulation of processes such as cell survival, proliferation and migration. Important expanding areas of mammalian ORP research include their roles in viral and bacterial infections, cancers, and neuronal function. The yeast OSBP homologue (Osh) proteins execute multifaceted functions in sterol and glycerophospholipid homeostasis, post-Golgi vesicle transport, phosphatidylinositol-4-phosphate, sphingolipid and target of rapamycin (TOR) signalling, and cell cycle control. These observations identify ORPs as lipid transporters and coordinators of signals with an unforeseen variety of cellular processes. Understanding their activities not only enlightens the biology of the living cell but also allows their employment as targets of new therapeutic approaches for disease.
Collapse
Affiliation(s)
- Amita Arora
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
11
|
Jean S, Nassari S. Regulation of Endosomal Sorting and Maturation by ER-Endosome Contact Sites. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2022; 5:25152564221106046. [PMID: 37366507 PMCID: PMC10243584 DOI: 10.1177/25152564221106046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Endosomes are a heterogeneous population of intracellular organelles responsible for sorting, recycling, or transporting internalized materials for degradation. Endosomal sorting and maturation are controlled by a complex interplay of regulators, with RAB GTPases and phosphoinositides playing key roles. In this decade, another layer of regulation surfaced with the role played by membrane contact sites between the endoplasmic reticulum (ER) and endosomes. Specific regulators of ER-endosome contact sites or proteins localized at these sites are emerging as modulators of this complex endosomal ballet. In particular, lipid transfer or recruitment of various complexes and enzymes at ER-endosome contact sites play an active role in endosome sorting, scission, and maturation. In this short review, we focus on studies describing ER-endosome contact sites in these three endosomal processes.
Collapse
Affiliation(s)
- Steve Jean
- Faculté de médecine et des sciences de la santé,
Département d’immunologie et de biologie cellulaire, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sonya Nassari
- Faculté de médecine et des sciences de la santé,
Département d’immunologie et de biologie cellulaire, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
12
|
Egea PF. Mechanisms of Non-Vesicular Exchange of Lipids at Membrane Contact Sites: Of Shuttles, Tunnels and, Funnels. Front Cell Dev Biol 2021; 9:784367. [PMID: 34912813 PMCID: PMC8667587 DOI: 10.3389/fcell.2021.784367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic cells are characterized by their exquisite compartmentalization resulting from a cornucopia of membrane-bound organelles. Each of these compartments hosts a flurry of biochemical reactions and supports biological functions such as genome storage, membrane protein and lipid biosynthesis/degradation and ATP synthesis, all essential to cellular life. Acting as hubs for the transfer of matter and signals between organelles and throughout the cell, membrane contacts sites (MCSs), sites of close apposition between membranes from different organelles, are essential to cellular homeostasis. One of the now well-acknowledged function of MCSs involves the non-vesicular trafficking of lipids; its characterization answered one long-standing question of eukaryotic cell biology revealing how some organelles receive and distribute their membrane lipids in absence of vesicular trafficking. The endoplasmic reticulum (ER) in synergy with the mitochondria, stands as the nexus for the biosynthesis and distribution of phospholipids (PLs) throughout the cell by contacting nearly all other organelle types. MCSs create and maintain lipid fluxes and gradients essential to the functional asymmetry and polarity of biological membranes throughout the cell. Membrane apposition is mediated by proteinaceous tethers some of which function as lipid transfer proteins (LTPs). We summarize here the current state of mechanistic knowledge of some of the major classes of LTPs and tethers based on the available atomic to near-atomic resolution structures of several "model" MCSs from yeast but also in Metazoans; we describe different models of lipid transfer at MCSs and analyze the determinants of their specificity and directionality. Each of these systems illustrate fundamental principles and mechanisms for the non-vesicular exchange of lipids between eukaryotic membrane-bound organelles essential to a wide range of cellular processes such as at PL biosynthesis and distribution, lipid storage, autophagy and organelle biogenesis.
Collapse
Affiliation(s)
- Pascal F. Egea
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|