1
|
Michel K, Ioerger NM, Ake AM, Hettenbach SM, Olds C, Pendell DL, Stack J, Higgs S, Vanlandingham DL. Understanding the Burden of Agriculturally Significant Vector-Borne and Parasitic Diseases in Kansas. Vector Borne Zoonotic Dis 2025. [PMID: 40285460 DOI: 10.1089/vbz.2025.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025] Open
Abstract
Background: The state of Kansas (KS) has been called the "agricultural heartland" of the United States. Vector-borne and parasitic diseases (VBPD) have a major impact on the production of livestock, such as cattle, swine, goats and sheep, as well as crops, such as wheat, corn, and sorghum. The purpose of this review is to educate agricultural professionals in the state of KS about VBPD of current or potential concern and to inform the public about the challenges faced by the agricultural community. Methods: This review describes and discusses the endemic VBPD that currently impact agricultural production in KS and foreign VBPD of concern. In addition, we outline the major arthropod vectors of VBPD in KS, including ticks, mites, and various insects. In the context of this review, parasites are strictly limited to arthropod ectoparasites that negatively impact livestock production. Modern agricultural data for the state of KS were mostly sourced from the USDA National Agricultural Statistics Service, and current KS VBPD data were mostly sourced from the KS State Veterinary Diagnostic Laboratory. Conclusion: These VBPD have a large economic impact on the state and country, and we have concluded there is a need for updated estimates regarding the economic burden of VBPD in KS and throughout the United States to make better animal and crop health investment decisions.
Collapse
Affiliation(s)
- Kristin Michel
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, Kansas, USA
| | - Nicole M Ioerger
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Ashlie M Ake
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Susan M Hettenbach
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Cassandra Olds
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, Kansas, USA
| | - Dustin L Pendell
- Department of Agricultural Economics, College of Agriculture, Kansas State University, Manhattan, Kansas, USA
| | - James Stack
- Department of Plant Pathology, College of Agriculture, Kansas State University, Manhattan, Kansas, USA
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Dana L Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
2
|
Valdez K, Aguilar PV, Fernandez D, Bamunuarachchi G, Boon ACM, Morrill JC, Palermo PM, Watts DM. Surveillance for Serological Evidence of Bourbon and Heartland Virus Infection in White-Tailed Deer and Feral Swine in Texas. Vector Borne Zoonotic Dis 2025; 25:295-302. [PMID: 40104894 DOI: 10.1089/vbz.2024.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Background: The tick-borne pathogens, Bourbon virus (BRBV) and Heartland virus (HRTV) are the cause of febrile illnesses that may progress to severe and fatal diseases. Materials and Methods: As a preliminary effort to determine if these viruses were enzootic in Texas, ticks and blood samples were collected from feral swine (Sus scrofa) and white-tailed deer (Odocoileus virginianus) (WTD) killed by gunning as part of an abatement program during 2019-2021 in Travis County, Texas. Ticks were collected from these animals by hand and blood samples were obtained by cardiac puncture using 22-gauge needles and 5 mL syringes. Information was recorded for each animal, including date, sex, and location. The species of ticks were identified morphologically using a taxonomic key, and serum samples were tested for neutralizing antibodies to BRBV and HRTV. Results: A total of 83 Ixodes scapularis and 58 Amblyomma americanum ticks were collected from feral swine, and 196 I. scapularis and 11 Dermacentor albipictus from WTD. Although A. americanum, the implicated vector of both viruses was collected from feral swine, neutralizing antibody was not detected to BRBV, but 12% (9/75) had antibody to HRTV as evidence of a previous infection. Of the serum samples obtained from WTD, all were negative for BRBV neutralizing antibody, but 6.6%% (5/75) were positive for HRTV antibody. Conclusion: These preliminary results indicated that HRTV was enzootic in Travis, County, Texas and further studies are warranted to determine the specific tick vectors and the possible role of WTD and feral swine in the maintenance and transmission cycle of this virus.
Collapse
Affiliation(s)
- Karen Valdez
- Oak Ridge Institute for Science and Education (ORISE), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Patricia V Aguilar
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Diana Fernandez
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Gayan Bamunuarachchi
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - John C Morrill
- Orion Research and Management Services, Gatesville, Texas, USA
| | - Pedro M Palermo
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Douglas M Watts
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| |
Collapse
|
3
|
Eisen L. Seasonal activity patterns of Ixodes scapularis and Ixodes pacificus in the United States. Ticks Tick Borne Dis 2025; 16:102433. [PMID: 39764925 DOI: 10.1016/j.ttbdis.2024.102433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 02/08/2025]
Abstract
Knowledge of seasonal activity patterns of human-biting life stages of tick species serving as vectors of human disease agents provides basic information on when during the year humans are most at risk for tick bites and tick-borne diseases. Although there is a wealth of published information on seasonal activity patterns of Ixodes scapularis and Ixodes pacificus in the United States, a critical review of the literature for these important tick vectors is lacking. The aims of this paper were to: (i) review what is known about the seasonal activity patterns of I. scapularis and I. pacificus in different parts of their geographic ranges in the US, (ii) provide a synthesis of the main findings, and (iii) outline key knowledge gaps and methodological pitfalls that limit our understanding of variability in seasonal activity patterns. Based on ticks collected while questing or from wild animals, the seasonal activity patterns were found to be similar for I. pacificus in the Far West and I. scapularis in the Southeast, with synchronous activity of larvae and nymphs, peaking in spring (April to June) in the Far West and from spring to early summer (April to July) in the Southeast, and continuous activity of adults from fall through winter and spring with peak activity from fall through winter (November/December to March). In the colder climates of the Upper Midwest and Northeast, I. scapularis adults have a bimodal seasonal pattern, with activity peaks in fall (October to November) and spring (April to May). The seasonal activity patterns for immatures differ between the Upper Midwest, synchronous for larvae and nymphs with peak activity in spring and summer (May to August), and the Northeast, where the peak activity of nymphs in spring and early summer (May to July) precedes that of larvae in summer (July to September). Seasonality of human tick encounters also is influenced by changes over the year in the level of outdoor activities in tick habitat. Studies on the seasonality of ticks infesting humans have primarily focused on the coastal Northeast and the Pacific Coast states, with fewer studies in the Southeast, inland parts of the Northeast, and the Upper Midwest. Discrepancies between seasonal patterns for peak tick questing activity and peak human infestation appear to occur primarily for the adult stages of I. scapularis and I. pacificus. Study design and data presentation limitations of the published literature are discussed. Scarcity of data for seasonal activity patterns of I. pacificus outside of California and for I. scapularis from parts of the Southeast, Northeast, and Upper Midwest is a key knowledge gap. In addition to informing the public of when during the year the risk for tick bites is greatest, high-quality studies describing current seasonal activity patterns also will generate the data needed for robust model-based projections of future climate-driven change in the seasonal activity patterns and provide the baseline needed to empirically determine in the future if the projections were accurate.
Collapse
Affiliation(s)
- Lars Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States.
| |
Collapse
|
4
|
Haridevamuthu B, Raj D, Arshad A, Arockiaraj J. Comprehensive review of Argulus infestations in aquaculture: Biological impacts and advanced management strategies. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109851. [PMID: 39173980 DOI: 10.1016/j.fsi.2024.109851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
The aquaculture industry is hindered by various factors. One of the most noticeable factors is infection by parasites and pathogens. Argulus stands out as a prominent and economically significant ectoparasite in freshwater aquaculture. Argulus infestation causes severe immunomodulatory effects on its hosts by promoting argulosis, causing inflammation, extensive tissue damage, and death. Indian aquaculture sector faced a loss of 62.5 million USD due to Argulus infection. However, current control methods, such as pesticides, cause serious environmental damage. Herbal treatment methods are ineffective and have limitations. Hence, a more efficient and cost-effective control method is needed. In recent years, vaccine development has emerged as a promising avenue of research. Understanding the effect of the host-parasite relationship in the host immune system is essential to develop strategies for prevention, control, and management of argulosis. These interactions provide insights into the co-evolutionary dynamics between hosts and parasites. This review provides an overview of the current knowledge on the host-searching behaviour of Argulus, host-parasite interaction and control strategies. This review also highlights the need for further research and the development of sustainable control measures for Argulus infection.
Collapse
Affiliation(s)
- B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - David Raj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Aziz Arshad
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
5
|
Alkishe A, Cobos ME, Peterson AT. Broad-scale ecological niches of pathogens vectored by the ticks Ixodes scapularis and Amblyomma americanum in North America. PeerJ 2024; 12:e17944. [PMID: 39193518 PMCID: PMC11348911 DOI: 10.7717/peerj.17944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Environmental dimensions, such as temperature, precipitation, humidity, and vegetation type, influence the activity, survival, and geographic distribution of tick species. Ticks are vectors of various pathogens that cause disease in humans, and Ixodes scapularis and Amblyomma americanum are among the tick species that transmit pathogens to humans across the central and eastern United States. Although their potential geographic distributions have been assessed broadly via ecological niche modeling, no comprehensive study has compared ecological niche signals between ticks and tick-borne pathogens. We took advantage of National Ecological Observatory Network (NEON) data for these two tick species and associated bacteria pathogens across North America. We used two novel statistical tests that consider sampling and absence data explicitly to perform these explorations: a univariate analysis based on randomization and resampling, and a permutational multivariate analysis of variance. Based on univariate analyses, in Amblyomma americanum, three pathogens (Borrelia lonestari, Ehrlichia chaffeensis, and E. ewingii) were tested; pathogens showed nonrandom distribution in at least one environmental dimension. Based on the PERMANOVA test, the null hypothesis that the environmental position and variation of pathogen-positive samples are equivalent to those of A. americanum could not be rejected for any of the pathogens, except for the pathogen E. ewingii in maximum and minimum vapor pressure and minimum temperature. For Ixodes scapularis, six pathogens (A. phagocytophilum, Babesia microti, Borrelia burgdorferi sensu lato, B. mayonii, B. miyamotoi, and Ehrlichia muris-like) were tested; only B. miyamotoi was not distinct from null expectations in all environmental dimensions, based on univariate tests. In the PERMANOVA analyses, the pathogens departed from null expectations for B. microti and B. burgdorferi sensu lato, with smaller niches in B. microti, and larger niches in B. burgdorferi sensu lato, than the vector. More generally, this study shows the value of large-scale data resources with consistent sampling methods, and known absences of key pathogens in particular samples, for answering public health questions, such as the relationship of presence and absence of pathogens in their hosts respect to environmental conditions.
Collapse
Affiliation(s)
- Abdelghafar Alkishe
- Department of Ecology and Evolutionary Biology & Biodiversity Institute, University of Kansas, Lawrence, KS, United States of America
- Zoology Department/Faculty of Science, University of Tripoli, Tripoli, Libya
- Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Marlon E. Cobos
- Department of Ecology and Evolutionary Biology & Biodiversity Institute, University of Kansas, Lawrence, KS, United States of America
| | - A. Townsend Peterson
- Department of Ecology and Evolutionary Biology & Biodiversity Institute, University of Kansas, Lawrence, KS, United States of America
| |
Collapse
|
6
|
Ng’eno E, Alkishe A, Romero-Alvarez D, Sundstrom K, Cobos ME, Belgum H, Chitwood A, Grant A, Keck A, Kloxin J, Letterman B, Lineberry M, McClung K, Nippoldt S, Sharum S, Struble S, Thomas B, Ghosh A, Brennan R, Little S, Peterson AT. Phenology of five tick species in the central Great Plains. PLoS One 2024; 19:e0302689. [PMID: 38722854 PMCID: PMC11081307 DOI: 10.1371/journal.pone.0302689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/09/2024] [Indexed: 05/13/2024] Open
Abstract
The states of Kansas and Oklahoma, in the central Great Plains, lie at the western periphery of the geographic distributions of several tick species. As the focus of most research on ticks and tick-borne diseases has been on Lyme disease which commonly occurs in areas to the north and east, the ticks of this region have seen little research attention. Here, we report on the phenology and activity patterns shown by tick species observed at 10 sites across the two states and explore factors associated with abundance of all and life specific individuals of the dominant species. Ticks were collected in 2020-2022 using dragging, flagging and carbon-dioxide trapping techniques, designed to detect questing ticks. The dominant species was A. americanum (24098, 97%) followed by Dermacentor variabilis (370, 2%), D. albipictus (271, 1%), Ixodes scapularis (91, <1%) and A. maculatum (38, <1%). Amblyomma americanum, A. maculatum and D. variabilis were active in Spring and Summer, while D. albipictus and I. scapularis were active in Fall and Winter. Factors associated with numbers of individuals of A. americanum included day of year, habitat, and latitude. Similar associations were observed when abundance was examined by life-stage. Overall, the picture is one of broadly distributed tick species that shows seasonal limitations in the timing of their questing activity.
Collapse
Affiliation(s)
- Eric Ng’eno
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| | - Abdelghafar Alkishe
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| | - Daniel Romero-Alvarez
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
- Faculty of Health Sciences, Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity Research Group, Universidad Internacional SEK (UISEK), Quito, Ecuador
| | - Kellee Sundstrom
- College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Marlon E. Cobos
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| | - Hallee Belgum
- Department of Biology, Pittsburg State University, Pittsburg, Kansas, United States of America
| | - Abigail Chitwood
- Department of Biology, University of Central Oklahoma, Edmond, Oklahoma, United States of America
| | - Amber Grant
- College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Alex Keck
- Department of Biology, University of Central Oklahoma, Edmond, Oklahoma, United States of America
| | - Josiah Kloxin
- Department of Biology, University of Central Oklahoma, Edmond, Oklahoma, United States of America
| | - Brayden Letterman
- Department of Biology, Pittsburg State University, Pittsburg, Kansas, United States of America
| | - Megan Lineberry
- College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Kristin McClung
- College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Sydney Nippoldt
- Department of Biology, Pittsburg State University, Pittsburg, Kansas, United States of America
| | - Sophia Sharum
- Department of Biology, University of Central Oklahoma, Edmond, Oklahoma, United States of America
| | - Stefan Struble
- College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Breanne Thomas
- Department of Biology, University of Central Oklahoma, Edmond, Oklahoma, United States of America
| | - Anuradha Ghosh
- Department of Biology, Pittsburg State University, Pittsburg, Kansas, United States of America
| | - Robert Brennan
- Department of Biology, University of Central Oklahoma, Edmond, Oklahoma, United States of America
| | - Susan Little
- College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - A. Townsend Peterson
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
7
|
Chakraborty S, Kopsco H, Evans C, Mateus-Pinilla N, Smith R. Assessing knowledge gaps and empowering Extension workers in Illinois with information on ticks and tickborne diseases through KAP surveys. Heliyon 2024; 10:e25789. [PMID: 38352775 PMCID: PMC10862665 DOI: 10.1016/j.heliyon.2024.e25789] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Tickborne diseases (TBDs) are increasingly prevalent in Illinois and the Upper Midwest region. People who work in occupations that require time outdoors in agricultural or natural settings, such as some Extension workers, are at risk of tick bites and TBDs. Additionally, Extension workers are often a primary source of information about ticks and TBDs in rural communities. However, there is limited information on the level of awareness about ticks and TBDs in the Extension community. The goals of this study were to sequentially i) determine the baseline awareness of Extension workers in Illinois about ticks and TBDs using a knowledge, attitudes, and practices (KAP) survey tool, ii) provide comprehensive training on ticks and TBDs to this demographic, and iii) measure the uptake of knowledge after the training intervention through a post-training survey. The study period was from June 2022 until May 2023. We received 233 pre-training and 93 paired post-training survey responses. Most survey respondents were Extension volunteers, identified as women, and were over 50 years old. Knowledge about ticks and TBDs varied. We identified several gaps in their current tick awareness, most importantly, in tick prevention measures, tick identification, and TBDs in general. TBD knowledge, attitude, and practice scores all significantly improved after training (p < 0.001), with a mean difference of 10.47, 1.49, and 2.64 points, respectively. Additionally, both Extension professionals (79.2 %) and Extension volunteers (66.7 %) were more likely to feel confident in engaging with their stakeholders on ticks and TBDs after participating in training. Poisson models revealed that higher attitude and practice scores and greater self-reported knowledge were the factors most significantly associated with higher TBD knowledge. We found that greater concern for ticks and TBD (attitudes) and adherence to science-based prevention and management methods (practices) were also associated with higher knowledge scores. To our knowledge, this is the first study in Illinois to capture Extension workers' awareness of ticks and TBDs. The results highlight Extension workers' interest in filling knowledge gaps through learning, and the importance of training Extension workers to disseminate reliable and updated information on ticks and TBDs to their constituents, a critical step in preventing TBDs.
Collapse
Affiliation(s)
- S. Chakraborty
- Program in Ecology, Evolution & Conservation Biology, University of Illinois, Urbana Champaign, 505 S Goodwin Avenue, Urbana, IL, 61801, USA
| | - H. Kopsco
- Department of Ecology, Evolution and Environmental Biology, Columbia University, 10th floor Schermerhorn Ext., 1200 Amsterdam Ave, New York, NY, 10027, USA
- Prairie Research Institute, Illinois Natural History Survey, University of Illinois, Urbana Champaign, 1816 S Oak, Champaign, IL, 61820, USA
| | - C. Evans
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana Champaign, 354 State Highway 145 N, Simpson, IL, 62985, USA
| | - N. Mateus-Pinilla
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana Champaign, 354 State Highway 145 N, Simpson, IL, 62985, USA
- Prairie Research Institute, Illinois Natural History Survey, University of Illinois, Urbana Champaign, 1816 S Oak, Champaign, IL, 61820, USA
| | - R.L. Smith
- Department of Pathobiology, University of Illinois, Urbana Champaign, 2001 S Lincoln Ave, Urbana, IL, 61802, USA
| |
Collapse
|
8
|
Johnson CR, Ponnusamy L, Richards AL, Apperson CS. Analyses of Bloodmeal Hosts and Prevalence of Rickettsia parkeri in the Gulf Coast Tick Amblyomma maculatum (Acari: Ixodidae) From a Reconstructed Piedmont Prairie Ecosystem, North Carolina. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1382-1393. [PMID: 35489062 DOI: 10.1093/jme/tjac033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Host feeding patterns and the prevalence of infection with Rickettsia parkeri were determined for the primary vector, Amblyomma maculatum Koch as well as sympatric tick species A. americanum (Linnaeus) and Dermacentor variabilis (Say) collected from a reconstructed prairie in the Piedmont region of North Carolina during 2011 and 2012. The occurrence of R. parkeri among A. maculatum adults and nymphs was 36.9% (45/122) and 33.3% (2/6), respectively. Rickettsia parkeri was detected in a single male A. americanum 2.3% (1/43). A PCR-reverse line blot hybridization assay of a 12S rDNA fragment amplified from remnant larval and nymphal bloodmeals of host-seeking ticks was used to identify bloodmeal hosts. Of the tick samples tested, bloodmeal host identification was successful for 29.3% (12/41) of adult A. americanum and 39.2% (20/51) of adult D. variabilis. For A. maculatum, bloodmeal host identification was successful for 50% (61/122) of adults collected from vegetation and 100% (4/4) of nymphs removed from cotton rats (Sigmodon hispidus Say and Ord). The cotton rat was the most common bloodmeal host with 59.0% (36/61) identified for adult A. maculatum. No statistically significant association was observed, however, between bloodmeal host and pathogen prevalence for any tick species. While the cotton rat was an important bloodmeal host for A. maculatum nymphs, this vertebrate did not appear to be the primary source of R. parkeri infection for A. maculatum.
Collapse
Affiliation(s)
- Connie R Johnson
- Department of Entomology and Plath Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Loganathan Ponnusamy
- Department of Entomology and Plath Pathology, North Carolina State University, Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695USA
| | - Allen L Richards
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Charles S Apperson
- Department of Entomology and Plath Pathology, North Carolina State University, Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695USA
| |
Collapse
|
9
|
Noden BH, Dubie TR, Henriquez BE, Gilliland M, Talley JL. Seasonality of Ticks and Prevalence of Rickettsiae Species in Dermacentor variabilis and Amblyomma maculatum Across Oklahoma Pastures. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1033-1041. [PMID: 35289851 DOI: 10.1093/jme/tjac028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Tick-borne diseases are an increasing concern for people and companion animals in the United States, but there is a need for continued vigilance regarding livestock in pasture systems. The south-central United States has some of the highest incidences of tick-borne diseases, and there is a need to re-examine the ecology of tick vectors in relation to pasture systems and livestock. The objective of this study was to establish a baseline of seasonal activity for tick species in diverse regional Oklahoma pastures and screen for important pathogens in Dermacentor variabilis (Say) and Amblyomma maculatum Koch group that may impact livestock and human health. Between 2015 and 2017, transects in five pastures across Oklahoma were visited each month. DNA extracted from adult D. variabilis and A. maculatum group was tested for the presence of bacterial pathogens. We found that tick communities in pastures across Oklahoma differ by season, abundance, and bacterial presence and prevalence. The peak abundance of Amblyomma americanum (L.) adults and nymphs occurred a month earlier over the 2 yr of the study compared with historical studies in the same regions. Additionally, we observed notable differences in peak activity between A. americanum adults and nymphs collected in pastures in central Oklahoma (April) versus pastures in northern part of the state (May). We detected Rickettsia parkeri, R. bellii, and Anaplasma sp. DNA in D. variabilis from pastures across the state. These results potentially have important ramifications for human and livestock risk of encountering infected ticks in pastures across the southern Great Plains.
Collapse
Affiliation(s)
- Bruce H Noden
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Trisha R Dubie
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Brandon E Henriquez
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Meghan Gilliland
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Justin L Talley
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
10
|
Unexpected winter questing activity of ticks in the Central Midwestern United States. PLoS One 2021; 16:e0259769. [PMID: 34762706 PMCID: PMC8584693 DOI: 10.1371/journal.pone.0259769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 10/26/2021] [Indexed: 12/02/2022] Open
Abstract
Unexpected questing activity of ticks was noted during the winter months of January and February in the Central Midwestern states of Kansas, Missouri, Oklahoma, and Arkansas. From nine geographically distinct locations, four species of ticks were collected using the flagging method, of which the lone star tick, Amblyomma americanum, was most abundant, followed by the American dog tick, Dermacentor variabilis, the Gulf coast tick, Amblyomma maculatum, and the Black legged tick, Ixodes scapularis. More A. americanum nymphs were caught questing than male or female adults. The winter activity of these medically important ticks in this region poses concern for public health and offers an insight into future tick activity in light of ongoing climate change. More studies on the seasonality of these tick species, and how different climate parameters affect their seasonal activity in this region are warranted and would be expected to benefit for both human and veterinary medicine.
Collapse
|