1
|
Tao Y, Ghagre A, Molter CW, Clouvel A, Al Rahbani J, Brown CM, Nowrouzezahrai D, Ehrlicher AJ. Inferring cellular contractile forces and work using deep morphology traction microscopy. Biophys J 2024; 123:3217-3230. [PMID: 39033326 PMCID: PMC11427771 DOI: 10.1016/j.bpj.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 05/02/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024] Open
Abstract
Traction-force microscopy (TFM) has emerged as a widely used standard methodology to measure cell-generated traction forces and determine their role in regulating cell behavior. While TFM platforms have enabled many discoveries, their implementation remains limited due to complex experimental procedures, specialized substrates, and the ill-posed inverse problem whereby low-magnitude high-frequency noise in the displacement field severely contaminates the resulting traction measurements. Here, we introduce deep morphology traction microscopy (DeepMorphoTM), a deep-learning alternative to conventional TFM approaches. DeepMorphoTM first infers cell-induced substrate displacement solely from a sequence of cell shapes and subsequently computes cellular traction forces, thus avoiding the requirement of a specialized fiduciarily marked deformable substrate or force-free reference image. Rather, this technique drastically simplifies the overall experimental methodology, imaging, and analysis needed to conduct cell-contractility measurements. We demonstrate that DeepMorphoTM quantitatively matches conventional TFM results while offering stability against the biological variability in cell contractility for a given cell shape. Without high-frequency noise in the inferred displacement, DeepMorphoTM also resolves the ill-posedness of traction computation, increasing the consistency and accuracy of traction analysis. We demonstrate the accurate extrapolation across several cell types and substrate materials, suggesting robustness of the methodology. Accordingly, we present DeepMorphoTM as a capable yet simpler alternative to conventional TFM for characterizing cellular contractility in two dimensions.
Collapse
Affiliation(s)
- Yuanyuan Tao
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada; Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec, Canada
| | - Ajinkya Ghagre
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Clayton W Molter
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Anna Clouvel
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Jalal Al Rahbani
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Claire M Brown
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada; Advanced BioImaging Facility (ABIF), McGill University, Montreal, Quebec, Canada
| | - Derek Nowrouzezahrai
- Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec, Canada
| | - Allen J Ehrlicher
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada; Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada; Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, Quebec, Canada; Centre for Structural Biology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Ozu M, Galizia L, Alvear-Arias JJ, Fernández M, Caviglia A, Zimmermann R, Guastaferri F, Espinoza-Muñoz N, Sutka M, Sigaut L, Pietrasanta LI, González C, Amodeo G, Garate JA. Mechanosensitive aquaporins. Biophys Rev 2023; 15:497-513. [PMID: 37681084 PMCID: PMC10480384 DOI: 10.1007/s12551-023-01098-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/04/2023] [Indexed: 09/09/2023] Open
Abstract
Cellular systems must deal with mechanical forces to satisfy their physiological functions. In this context, proteins with mechanosensitive properties play a crucial role in sensing and responding to environmental changes. The discovery of aquaporins (AQPs) marked a significant breakthrough in the study of water transport. Their transport capacity and regulation features make them key players in cellular processes. To date, few AQPs have been reported to be mechanosensitive. Like mechanosensitive ion channels, AQPs respond to tension changes in the same range. However, unlike ion channels, the aquaporin's transport rate decreases as tension increases, and the molecular features of the mechanism are unknown. Nevertheless, some clues from mechanosensitive ion channels shed light on the AQP-membrane interaction. The GxxxG motif may play a critical role in the water permeation process associated with structural features in AQPs. Consequently, a possible gating mechanism triggered by membrane tension changes would involve a conformational change in the cytoplasmic extreme of the single file region of the water pathway, where glycine and histidine residues from loop B play a key role. In view of their transport capacity and their involvement in relevant processes related to mechanical forces, mechanosensitive AQPs are a fundamental piece of the puzzle for understanding cellular responses.
Collapse
Affiliation(s)
- Marcelo Ozu
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Luciano Galizia
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan José Alvear-Arias
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, 2360102 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
| | - Miguel Fernández
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, 2360102 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
| | - Agustín Caviglia
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rosario Zimmermann
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Florencia Guastaferri
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Present Address: Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario, Argentina
| | - Nicolás Espinoza-Muñoz
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, 2360102 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
| | - Moira Sutka
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lorena Sigaut
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina
- Instituto de Física de Buenos Aires (IFIBA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lía Isabel Pietrasanta
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina
- Instituto de Física de Buenos Aires (IFIBA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carlos González
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
- Present Address: Molecular Bioscience Department, University of Texas, Austin, TX 78712 USA
| | - Gabriela Amodeo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - José Antonio Garate
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, 2360102 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia y Vida, Universidad San Sebastián, 7750000 Santiago, Chile
| |
Collapse
|
3
|
McGowan SE. Discoidin domain receptor-2 enhances secondary alveolar septation in mice by activating integrins and modifying focal adhesions. Am J Physiol Lung Cell Mol Physiol 2023; 324:L307-L324. [PMID: 36719983 PMCID: PMC9988528 DOI: 10.1152/ajplung.00169.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 02/02/2023] Open
Abstract
The extracellular matrix (ECM) of the pulmonary parenchyma must maintain the structural relationships among resident cells during the constant distortion imposed by respiration. This dictates that both the ECM and cells adapt to changes in shape, while retaining their attachment. Membrane-associated integrins and discoidin domain receptors (DDR) bind collagen and transmit signals to the cellular cytoskeleton. Although the contributions of DDR2 to collagen deposition and remodeling during osseous development are evident, it is unclear how DDR2 contributes to lung development. Using mice (smallie, Slie/Slie, DDR2Δ) bearing a spontaneous inactivating deletion within the DDR2 coding region, we observed a decrease in gas-exchange surface area and enlargement of alveolar ducts. Compared with fibroblasts isolated from littermate controls, DDR2Δ fibroblasts, spread more slowly, developed fewer lamellipodia, and were less responsive to the rigidity of neighboring collagen fibers. Activated β1-integrin (CD29) was reduced in focal adhesions (FA) of DDR2Δ fibroblasts, less phospho-zyxin localized to and fewer FA developed over ventral actin stress fibers, and the adhesions had a lower aspect ratio compared with controls. However, DDR2 deletion did not reduce cellular displacement of the ECM. Our findings indicate that DDR2, in concert with collagen-binding β1-integrins, regulates the timing and location of focal adhesion formation and how lung fibroblasts respond to ECM rigidity. Reduced rigidity sensing and mechano-responsiveness may contribute to the distortion of alveolar ducts, where the fiber cable-network is enriched and tensile forces are concentrated. Strategies targeting DDR2 could help guide fibroblasts to locations where tensile forces organize parenchymal repair.
Collapse
Affiliation(s)
- Stephen E McGowan
- Department of Veterans Affairs Research Service, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| |
Collapse
|
4
|
Helmprobst F, Hupfer A, Lauth M, Pagenstecher A. Electron Microscopy of Cells Grown on Polyacrylamide Hydrogels. Curr Protoc 2022; 2:e524. [PMID: 35943400 PMCID: PMC12016465 DOI: 10.1002/cpz1.524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The composition of the cell culture environment profoundly affects cultured cells. Standard cell culture equipment such as plastic and glass provide extremely stiff surfaces compared to physiological cell environments (i.e., tissue). A growing body of evidence documents the artificial behavior and morphology of cells cultured on supraphysiologically stiff surfaces, such as glass (elastic modulus ca. 70,000 MPA) or plastic (e.g., polystyrol ca. 3300 MPA). Therefore, polymer-based hydrogels are increasingly employed as more physiologically appropriate (<100 kPA) supports for 2D or 3D culture. Since multiple properties that influence the cultured cells may be easily adjusted, hydrogels have become versatile tools for studying cells in a more native in vitro environment. Polyacrylamide-based hydrogels can be used as culture substrates for a broad variety of adherent cells and are easy to handle in most downstream biological assays, such as immunohistochemistry or molecular biology methods. We faced, however, serious difficulties with processing high stiffness polyacrylamide-based hydrogels for electron microscopy. To overcome this problem, we developed a simple protocol for embedding and processing cells grown on high stiffness polyacrylamide hydrogels that do not require modifications of routine embedding protocols. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Embedding of polyacrylamide-based hydrogels for transmission electron microscopy Alternate Protocol 1: Procedure for detached hydrogels Alternate Protocol 2: Procedure for attached hydrogels.
Collapse
Affiliation(s)
- Frederik Helmprobst
- Philipps University MarburgInstitute of NeuropathologyMarburgGermany
- Philipps University MarburgCore Facility for Mouse Pathology and Electron MicroscopyMarburgGermany
| | - Anna Hupfer
- Philipps University MarburgCenter for Tumor and Immune Biology, Clinic for Gastroenterology, Endocrinology and MetabolismMarburgGermany
| | - Matthias Lauth
- Philipps University MarburgCenter for Tumor and Immune Biology, Clinic for Gastroenterology, Endocrinology and MetabolismMarburgGermany
| | - Axel Pagenstecher
- Philipps University MarburgInstitute of NeuropathologyMarburgGermany
- Philipps University MarburgCore Facility for Mouse Pathology and Electron MicroscopyMarburgGermany
| |
Collapse
|
5
|
Dieterle MP, Husari A, Rolauffs B, Steinberg T, Tomakidi P. Integrins, cadherins and channels in cartilage mechanotransduction: perspectives for future regeneration strategies. Expert Rev Mol Med 2021; 23:e14. [PMID: 34702419 PMCID: PMC8724267 DOI: 10.1017/erm.2021.16] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Articular cartilage consists of hyaline cartilage, is a major constituent of the human musculoskeletal system and has critical functions in frictionless joint movement and articular homoeostasis. Osteoarthritis (OA) is an inflammatory disease of articular cartilage, which promotes joint degeneration. Although it affects millions of people, there are no satisfying therapies that address this disease at the molecular level. Therefore, tissue regeneration approaches aim at modifying chondrocyte biology to mitigate the consequences of OA. This requires appropriate biochemical and biophysical stimulation of cells. Regarding the latter, mechanotransduction of chondrocytes and their precursor cells has become increasingly important over the last few decades. Mechanotransduction is the transformation of external biophysical stimuli into intracellular biochemical signals, involving sensor molecules at the cell surface and intracellular signalling molecules, so-called mechano-sensors and -transducers. These signalling events determine cell behaviour. Mechanotransducing ion channels and gap junctions additionally govern chondrocyte physiology. It is of great scientific and medical interest to induce a specific cell behaviour by controlling these mechanotransduction pathways and to translate this knowledge into regenerative clinical therapies. This review therefore focuses on the mechanotransduction properties of integrins, cadherins and ion channels in cartilaginous tissues to provide perspectives for cartilage regeneration.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Ayman Husari
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
- Department of Orthodontics, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Bernd Rolauffs
- Department of Orthopedics and Trauma Surgery, G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center – Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79085Freiburg im Breisgau, Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| |
Collapse
|