1
|
Monteiro HF, Hoyos-Jaramillo A, Garzon A, Fritz HM, Miramontes CC, Matos IM, Lehenbauer TW, Aly S, Lima FS, Pereira RV. Antibiograms for use on dairy cattle for bovine respiratory disease: Longitudinally evaluating clinical cases for factors associated with bacterial pathogen identification and predicting bacterial recovery using machine learning. J Dairy Sci 2025:S0022-0302(25)00248-6. [PMID: 40250618 DOI: 10.3168/jds.2024-26205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/12/2025] [Indexed: 04/20/2025]
Abstract
Effective isolation of bacterial pathogens for bovine respiratory disease (BRD) is a critical step for accurate diagnosis of the agent associated with this disease on the dairy. Limited information is available on factors associated with herd-level bacterial pathogen recovery for BRD clinical cases, which are important data to help identify strategies to support the successful collection of a minimum number of each organism over time to generate cumulative antibiogram susceptibility testing reports. Our objective was to evaluate factors associated with the recovery of common pathobionts (Pasteurella multocida and Mannheimia haemolytica) in BRD clinical cases from preweaning calves, heifers, and cows at 3 California dairy farms over 2 yr. A second objective was to test the predictability of isolating these organisms in BRD clinical cases using the factors evaluated in the first objective utilizing machine learning (ML). During monthly herd visits, deep nasopharyngeal samples were collected from calves, heifers, and cows diagnosed with BRD over 2 yr. Samples were cultured in aerobic conditions, and pathogens were isolated through colony morphology and validated with MALDI-TOF MS. Evaluation of factors influencing bacterial recovery was initially tested for independence, followed by a logistic regression model and a stepwise logistic feature selection in SAS, and ML classifiers with leave-one-out cross-validation in Python packages. For our study, samples were collected from a total of 301 BRD clinical cases: 152 samples with a culture-positive for P. multocida, 63 samples with a culture-positive for M. haemolytica, and 3 samples with a culture-positive for Histophilus somni. For factors associated with the culture-positive of P. multocida in BRD clinical cases, an interaction between age and season was identified, where cows had overall lower odds of being culture-positive independently of the season when compared with calves in the spring and summer and heifers in the fall and winter. For factors associated with the culture-positive of M. haemolytica in BRD clinical cases, an interaction was also observed between age and season, but the farm further played a role in the odds of being culture-positive, with one farm having considerably greater odds than the remaining ones. Machine learning models with cross-validation showed a weak ability to distinguish positive from negative cases when using age, season, and farm for all scenarios according to F1-scores and receiver operating characteristic analysis. Differences in predictive abilities, factor importance, and the still limited number of predictors in these ML analyses further indicate a potential for building more robust future models once datasets are expanded and more robust algorithms are considered. Overall, correctly identifying factors that may be associated with the prevalence of BRD pathogens and, therefore, recovery of these pathogens is critical for the development of antibiogram programs for evaluation of the antimicrobial susceptibility of BRD pathogens.
Collapse
Affiliation(s)
- Hugo F Monteiro
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616.
| | - Alejandro Hoyos-Jaramillo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Adriana Garzon
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Heather M Fritz
- California Animal Health and Food Safety Laboratory, University of California, Davis, CA 95616
| | - Craig C Miramontes
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Isabelle M Matos
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Terry W Lehenbauer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616; Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, CA 93274
| | - Sharif Aly
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616; Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, CA 93274
| | - Fabio S Lima
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Richard V Pereira
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616.
| |
Collapse
|
2
|
Chen X, Li C, Fang T, Yao J, Gu X. Impact of prenatal heat tolerance in holstein dry cows on their calves' thermoregulation and immunity. J Therm Biol 2025; 127:104015. [PMID: 39681066 DOI: 10.1016/j.jtherbio.2024.104015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 12/18/2024]
Abstract
This study examines the impact of Holstein dry cows' prenatal heat tolerance (n = 180) on their calves' thermoregulation and immunity. Holstein cows (body condition score 3.29 ± 0.39, parity 2.64 ± 0.79) were monitored for body temperature (BT), respiratory rate (RR), and microenvironmental temperature and humidity twice daily for seven days during heat stress. Mixed-effects model and cluster method identified heat-tolerant (n = 68) and heat-sensitive (n = 114) dry cows. Once cows gave birth, the RR and BT of 2-day-old calves were recorded every 2 h for two days, totaling five measurements per day, to assess thermoregulatory responses using generalized linear mixed models. Calves in the heat-tolerant group had a better thermoregulatory response than the heat-sensitive group, RR of heat-tolerant calves was significantly higher than the heat-sensitive calves (P = 0.02). Plasma indicators were analyzed to assess calf immunity. Heat-tolerant calves had significantly lower plasma cortisol, tumor necrosis factor-alpha, interleukin 2, interleukin 4, interleukin 6, and interleukin 10 concentrations compared to heat-sensitive calves (P < 0.05). In both cows and calves, plasma cortisol concentrations in the heat-tolerant groups were lower than those in heat-sensitive groups. In comparison, plasma heat shock protein 70 and heat shock protein 90 concentrations were higher (P < 0.05). In conclusion, calves born to heat-tolerant cows had higher thermoregulation and immunity than calves born to heat-sensitive cows when exposed to heat stress.
Collapse
Affiliation(s)
- Xiaoyang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science and Technology, Northwest A&F University, Shanxi 712100, China
| | - Chenyang Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tingting Fang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Shanxi 712100, China
| | - Xianhong Gu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Laporta J, Khatib H, Zachut M. Review: Phenotypic and molecular evidence of inter- and trans-generational effects of heat stress in livestock mammals and humans. Animal 2024; 18 Suppl 2:101121. [PMID: 38531705 DOI: 10.1016/j.animal.2024.101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
Internal and external factors can change an individual's phenotype. A significant external threat to humans and livestock is environmental heat load, a combination of high ambient temperatures and humidity. A heat stress response occurs when an endothermal animal is exposed to a heat load that challenges its' thermoregulation capacity. With the ongoing climate change trends, the incidence of chronically elevated temperatures causing heat stress is expected to rise, posing an even greater risk to the health and survival of all species. Heat stress is generally related to adverse effects on food intake, health, and performance in mammal livestock species and humans. Evidence from epidemiological and experimental studies of humans and livestock demonstrated that exposing pregnant females to heat stress affects the phenotype of the newborn in various ways. For instance, in utero heat stress is related to lower BW at birth and changes in metabolic and immune functions in the newborn. In cows, the effects of heat stress on the performance of the offspring last for three or four generations, suggesting intergenerational effects. The molecular mechanism orchestrating these effects of heat stress may be epigenetic regulation, as various epigenetic mechanisms control genome reprogramming. Epigenetic modifications are attached to DNA and histone proteins and can influence how specific genes are expressed, resulting in phenotypic changes. Epigenetic modifications can be triggered in response to environmental heat stress without altering the DNA sequence. Heat stress insults during critical periods of organ development (i.e., fetal exposure) can trigger epigenetic modifications that impact health and productivity across generations. Thus, epigenetic changes caused by extreme temperatures can be passed down to the offspring if the mother is exposed to the insult during pregnancy. Understanding the phenotypic and molecular consequences of maternal heat stress, including the carry-over lingering effects on the resulting progeny, is necessary to develop effective mitigation strategies and gain translational knowledge about the fundamental processes leading to intergenerational and transgenerational inheritance. This review examines the phenotypic and molecular evidence of how maternal exposure to extreme heat can affect future generations in several species, including humans, swine, sheep, goats, and cattle. The current knowledge of the molecular mechanisms involved in intergenerational and transgenerational epigenetic inheritance will also be presented and discussed.
Collapse
Affiliation(s)
- J Laporta
- Department of Animal and Dairy Sciences, The University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - H Khatib
- Department of Animal and Dairy Sciences, The University of Wisconsin-Madison, Madison, WI 53705, USA
| | - M Zachut
- Department of Ruminant Science, Institute of Animal Science, Volcani Institute, Rishon LeZion 7505101, Israel
| |
Collapse
|
4
|
Riesgraf KA, Akins MS, Laporta J, Weigel KA. Long-term growth, feed efficiency, enteric methane emission, and blood metabolite responses to in utero hyperthermia in Holstein heifers. J Dairy Sci 2024; 107:6358-6370. [PMID: 38608943 DOI: 10.3168/jds.2023-24417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/07/2024] [Indexed: 04/14/2024]
Abstract
Dairy producers are experiencing production and animal welfare pressures from the increasing frequency and severity of heat stress events due to global climate change. Offspring performance during the preweaning and lactating periods is compromised when exposed to heat stress during late gestation (in utero). However, knowledge of the lingering effects of in utero heat stress on yearling dairy heifers is limited. Herein, we investigated the long-term effects of in utero heat stress on heifer growth, feed efficiency, and enteric methane emissions in postpubertal heifers. During the last 56 d of gestation, 38 pregnant cows carrying heifer calves were exposed to either heat stress (IUHT; n = 17) or artificial cooling (IUCL; n = 21). At 18 ± 1 mo of age, the resulting IUCL and IUHT heifers were enrolled in the present 63-d study. Heifers were blocked by weight and randomly assigned to 3 pens with Calan gates. Body weights were recorded on 3 consecutive days at the start and end of the trial and used to calculate ADG. Body condition score, hip width, body length, and chest girth were measured at the start and end of the study. All heifers were fed a TMR comprised of 46.6% oatlage, 44.6% grass/alfalfa haylage, 7.7% male-sterile corn silage, 0.3% urea, and 0.8% mineral/vitamin supplement (on a DM basis). The TMR and refusal samples were obtained daily, composited weekly, and dried to calculate DMI. During the study, each pen had access to a GreenFeed unit for 8 ± 1d to measure CH4 and CO2 gas fluxes. During the last 3 d of measuring CH4 and CO2 fluxes, fecal samples were collected, composited by animal, dried, and analyzed to calculate NDF, OM, and DM digestibility. On the last day of fecal sampling, blood samples were also collected via coccygeal venipuncture, and GC time-of-flight MS analysis was performed. Residual feed intake (RFI; predicted DMI - observed DMI), and feed conversion efficiency (FCE; DMI/ADG) were calculated to estimate feed efficiency. No differences were found in initial or final BW, hip width, chest girth, or BCS; however, IUCL heifers were longer in body length compared with IUHT heifers. Dry matter intake, ADG, RFI, and FCE were similar between IUHT and IUCL heifers. In utero heat-stressed and IUCL heifers produced similar amounts of CH4 and CO2, and no differences were found in the number of GreenFeed visits or latency to approach the GreenFeed. The concentrations of 6 blood metabolites involved in lipogenic pathways were different between in utero treatments. In conclusion, in utero heat stress does not seem to have long-term effects on feed efficiency or methane emissions during the postpubertal growing phase; however, IUCL heifers maintained a body-length advantage over their IUHT counterparts and differed in concentrations of several candidate metabolites that encourage further exploration of their potential function in key organs, such as the liver and mammary gland.
Collapse
Affiliation(s)
- Kaylee A Riesgraf
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Matthew S Akins
- USDA-ARS Institute for Environmentally Integrated Dairy Management, Marshfield, WI 54449
| | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Kent A Weigel
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
5
|
Nawaz AH, Setthaya P, Feng C. Exploring Evolutionary Adaptations and Genomic Advancements to Improve Heat Tolerance in Chickens. Animals (Basel) 2024; 14:2215. [PMID: 39123741 PMCID: PMC11311085 DOI: 10.3390/ani14152215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Climate change poses a significant threat to the poultry industry, especially in hot climates that adversely affect chicken growth, development, and productivity through heat stress. This literature review evaluates the evolutionary background of chickens with the specific genetic characteristics that can help chickens to cope with hot conditions. Both natural selection and human interventions have influenced the genetic characteristics of the breeds used in the current poultry production system. The domestication of chickens from the Red junglefowl (Gallus gallus) has resulted in the development of various breeds with distinct genetic differences. Over the past few years, deliberate breeding for desirable traits (such as meat production and egg quality) in chickens has resulted in the emergence of various economically valuable breeds. However, this selective breeding has also caused a decrease in the genetic diversity of chickens, making them more susceptible to environmental stressors like heat stress. Consequently, the chicken breeds currently in use may possess a limited ability to adapt to challenging conditions, such as extreme heat. This review focuses on evaluating potential genes and pathways responsible for heat tolerance, including heat shock response, antioxidant defense systems, immune function, and cellular homeostasis. This article will also discuss the physiological and behavioral responses of chicken varieties that exhibit genetic resistance to heat, such as the naked neck and dwarf traits in different indigenous chickens. This article intends to review the current genomic findings related to heat tolerance in chickens that used methods such as the genome-wide association study (GWAS) and quantitative trait loci (QTL) mapping, offering valuable insights for the sustainability of poultry in the face of global warming.
Collapse
Affiliation(s)
- Ali Hassan Nawaz
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Phatthawin Setthaya
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chungang Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
6
|
McNeil BK, Renaud DL, Steele MA, Cangiano LR, Olmeda MF, Villot C, Chevaux E, Yu J, Hernandez LL, Frizzarini WS, DeVries TJ. Effects of weaning and inactivated Lactobacillus helveticus supplementation on dairy calf behavioral and physiological indicators of affective state. J Dairy Sci 2024:S0022-0302(24)01029-4. [PMID: 39067749 DOI: 10.3168/jds.2023-24581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
The objectives of this study were to determine if weaning would induce behavioral and physiological indicators of a negative affective state, and if supplementation of inactivated Lactobacillus helveticus (ILH) to dairy calves would reduce those indicators of negative affect during weaning. Male Holstein calves (n = 23) were enrolled in the study on d 1 of life. The calves were housed in individual pens in 1 of 4 rooms for the 42 d study. Calves began a stepdown weaning from 9 L/d of milk replacer (MR), at 150 g of MR powder/L, on d 35 and received 6 L/d on d 35 - 36, 3 L/d on d 37 - 38, and 0.4 L/d on d 39 - 42. The MR was divided between 3 meals/d until the last 0.4 L/d phase which was divided between 2 meals/d. Calves had ad libitum water access throughout the study and calf starter from d 28 onwards. Within room, calves were assigned to 1 of 2 treatments: 1) control (CON; n = 11) and 2) 5 g of ILH/d split over and mixed into the 0800 h and 2000 h milk feedings from d 3-42 (ILH; n = 12). Lying behavior was recorded using HOBO data loggers from d 21-41. On d 33, 37 and 41, infrared eye images were taken to determine maximum eye temperature (MET), saliva samples were collected to determine cortisol concentration, and play assessments were conducted to quantify play behavior. On d 34, 38, and 42, blood samples were collected to determine blood serotonin concentration, whereas on d 38 and 39, calves were tested with a cognitive task. A subset of calves (n = 5/treatment) were euthanized to collect gut and brain tissue samples for serotonin concentration on d 43. Weaning resulted in fewer (d 37-41, tendency: d 36), but longer (d 38-41, tendency: d 37), lying bouts and reduced play (d 41), although no changes in lying time, MET, saliva cortisol, nor blood serotonin were detected with initiation of weaning. Supplementation of ILH was associated with lower lying time throughout the study, and reduced play duration and higher salivary cortisol and MET during weaning. No differences in lying bouts, play count, blood and tissue (colon, ileum, prefrontal cortex and brain stem) serotonin concentration, and time to complete the cognitive task were detected between the treatments. Overall, weaning induced behavioral changes indicative of negative affective state, and some behavioral differences were observed with ILH supplementation both before and during weaning, with some physiological changes observed during weaning.
Collapse
Affiliation(s)
- B K McNeil
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - D L Renaud
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - M A Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - L R Cangiano
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - M F Olmeda
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - C Villot
- Lallemand SAS, F-31702 Blagnac, France
| | - E Chevaux
- Lallemand SAS, F-31702 Blagnac, France
| | - J Yu
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - L L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - W S Frizzarini
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - T J DeVries
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
7
|
dos Santos FCR, Santarosa BP, Dal Más FE, da Silva KN, Guirro ÉCBDP, Gomes V. Effects of dam metabolic profile and seasonality (Spring vs. Winter) on their offspring' metabolism, health, and immunity: maternal factors in dairy calves' analytes. Front Vet Sci 2024; 11:1424960. [PMID: 39076303 PMCID: PMC11285391 DOI: 10.3389/fvets.2024.1424960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/14/2024] [Indexed: 07/31/2024] Open
Abstract
Maternal status during the transition period can significantly impact the health and performance of Holstein dairy calves, with lasting effects on various variables. However, the relationship between maternal late gestation metabolic status, seasonality, and their impact on offspring remains unclear. This study aimed to assess the influence of maternal variables at calving on the performance, metabolism, and immunity of 28 dairy calves during their first month of life. Blood samples were collected from 28 Holstein cows at calving. Median results for maternal variables including non-esterified fatty acids (NEFA), β-hydroxybutyrate (BHB), glucose, total protein (TP), albumin, triglycerides (TG), total cholesterol (TC), haptoglobin (Hp), body weight (BW), and body condition score (BCS) were determined. These median values served as a basis for categorizing the offspring into two groups based on their dams' high or low degree of each maternal variable. Additionally, calves were categorized by the season of birth (Spring vs. Winter), with 14 in each. Blood samples were collected from the calves at birth and on days 1, 7, 14, and 28 to assess IgG, biochemical parameters, and haptoglobin concentration. Reactive oxygen species (ROS) production by polymorphonuclear cells stimulated by various agents was also evaluated. Clinical assessments were conducted for diarrhea and bovine respiratory disease frequencies. Despite the overall health of the cows, differences were observed in the calves between maternal groups. Heavier cows with high maternal BCS tended to have larger offspring, while high maternal BCS was associated with increased diarrhea prevalence. Low maternal BCS resulted in a stronger innate immune response, indicated by higher ROS production. Calves from cows experiencing metabolic changes during calving displayed elevated Hp concentrations. Spring-born calves were larger but had lower serum IgG concentration and reduced innate immune response compared to winter-born calves. Additionally, spring-born calves exhibited higher Hp and increased diarrhea prevalence on day 28. These findings underscore the importance of the prenatal period in determining neonatal health and suggest further research to elucidate the long-term clinical implications of maternal effects on offspring health and growth. Investigating offspring constituents later in life can provide insight into the persistence of maternal effects over time.
Collapse
Affiliation(s)
| | - Bianca Paola Santarosa
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Felipe Eduardo Dal Más
- Departament of Veterinary Science, Federal University of Paraná, Palotina, Paraná State, Brazil
| | - Karen Nascimento da Silva
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Viviani Gomes
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Van Os J, Reuscher K, Dado-Senn B, Laporta J. Effects of thermal stress on calf welfare. JDS COMMUNICATIONS 2024; 5:253-258. [PMID: 38646580 PMCID: PMC11026917 DOI: 10.3168/jdsc.2023-0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/05/2023] [Indexed: 04/23/2024]
Abstract
Cold and heat stress present welfare challenges for dairy calves. The consequences of thermal stress on biological functioning have been well documented, and many housing and management strategies have been evaluated to mitigate those detrimental impacts. In cold weather, mitigation strategies have largely focused on nutritional interventions or limiting heat loss with resources such as bedding or jackets. In hot weather, heat abatement strategies such as supplemental shade, increased environmental air exchange through passive ventilation, and forced air movement through mechanical ventilation have been evaluated. Recently in Wisconsin's continental climate, our group evaluated how 2 aspects of calf welfare-the needs for thermal comfort and social contact (i.e., pair or group housing vs. individual housing)-may align or conflict in winter and summer, respectively. In both seasons, calves pair-housed in outdoor hutches preferred social proximity. When 2 calves shared a hutch, the heat load was greater than for a single calf, which may be beneficial for thermal comfort in winter. In summer, the potential detriments from the additional heat load of 2 calves was mitigated with passive hutch ventilation, which calves preferred. Nonetheless, knowledge gaps remain regarding the impacts of thermal stress on calves' affective states, and much remains unknown about their preferences and motivations for specific thermal stress mitigation resources. Future research to address these gaps could improve our understanding of calf welfare and inform best practices for calf management.
Collapse
Affiliation(s)
- Jennifer Van Os
- Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI 53706
| | | | | | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI 53706
| |
Collapse
|
9
|
Jurkovich V, Bakony M, Reiczigel J. A retrospective study of thermal events on the mortality rate of hutch-reared dairy calves. Front Vet Sci 2024; 11:1366254. [PMID: 38560627 PMCID: PMC10980180 DOI: 10.3389/fvets.2024.1366254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Heat stress in hutch-reared dairy calves (Bos taurus) is highly relevant due to its adverse effects on animal welfare, health, growth, and economic outcomes. This study aimed to provide arguments for protecting calves against heat stress. It was hypothesized that the thermal stress caused by high ambient temperature in summer months negatively affects the survival rate in preweaning calves. Methods In a retrospective study, we investigated how calf mortality varied by calendar month and between thermoneutral and heat stress periods on a large-scale Hungarian dairy farm (data of 46,899 calves between 1991 and 2015). Results The daily mortality rate was higher in the summer (8.7-11.9 deaths per 10,000 calf days) and winter months (10.7-12.5 deaths per 10,000 calf-days) than in the spring (6.8-9.2 deaths per 10,000 calf-days) and autumn months (7.1-9.5 deaths per 10,000 calf-days). The distribution of calf deaths per calendar month differed between the 0-14-day and 15-60-day age groups. The mortality risk ratio was highest in July (6.92). The mortality risk in the 0-14-day age group was twice as high in periods with a daily mean temperature above 22°C than in periods with a daily mean of 5-18°C. Conclusions Heat stress abatement is advised in outdoor calf rearing when the mean daily temperature reaches 22°C, which, due to global warming, will be a common characteristic of summer weather in a continental region.
Collapse
Affiliation(s)
- Viktor Jurkovich
- Centre for Animal Welfare, University of Veterinary Medicine, Budapest, Hungary
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, Budapest, Hungary
| | - Mikolt Bakony
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Jeno Reiczigel
- Department of Biostatistics, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
10
|
Pantoja MHDA, Novais FJD, Mourão GB, Mateescu RG, Poleti MD, Beline M, Monteiro CP, Fukumasu H, Titto CG. Exploring candidate genes for heat tolerance in ovine through liver gene expression. Heliyon 2024; 10:e25692. [PMID: 38370230 PMCID: PMC10869868 DOI: 10.1016/j.heliyon.2024.e25692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
Thermotolerance has become an essential factor in the prevention of the adverse effects of heat stress, but it varies among animals. Identifying genes related to heat adaptability traits is important for improving thermotolerance and for selecting more productive animals in hot environments. The primary objective of this research was to find candidate genes in the liver that play a crucial role in the heat stress response of Santa Ines sheep, which exhibit varying levels of heat tolerance. To achieve this goal, 80 sheep were selected based on their thermotolerance and placed in a climate chamber for 10 days, during which the average temperature was maintained at 36 °C from 10 a.m. to 4 p.m. and 28 °C from 4 p.m. to 10 a.m. A subset of 14 extreme animals, with seven thermotolerant and seven non-thermotolerant animals based on heat loss (rectal temperature), were selected for liver sampling. RNA sequencing and differential gene expression analysis were performed. Thermotolerant sheep showed higher expression of genes GPx3, RGS6, GPAT3, VLDLR, LOC101108817, and EVC. These genes were mainly related to the Hedgehog signaling pathway, glutathione metabolism, glycerolipid metabolism, and thyroid hormone synthesis. These enhanced pathways in thermotolerant animals could potentially mitigate the negative effects of heat stress, conferring greater heat resistance.
Collapse
Affiliation(s)
- Messy Hannear de Andrade Pantoja
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Francisco José de Novais
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Gerson Barreto Mourão
- Escola Superior de Agricultura Luiz de Queiroz, Universidade São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Raluca G. Mateescu
- Department of Animal Science, University of Florida, Gainesville, FL, United States
| | - Mirele Daiana Poleti
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Mariane Beline
- Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061-0002, United States
| | - Camylla Pedrosa Monteiro
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Heidge Fukumasu
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Cristiane Gonçalves Titto
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| |
Collapse
|
11
|
Scatà MC, Alhussien MN, Grandoni F, Reale A, Zampieri M, Hussen J, De Matteis G. Hyperthermia-induced changes in leukocyte survival and phagocytosis: a comparative study in bovine and buffalo leukocytes. Front Vet Sci 2024; 10:1327148. [PMID: 38322426 PMCID: PMC10844375 DOI: 10.3389/fvets.2023.1327148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 02/08/2024] Open
Abstract
Heat stress negatively affects health, welfare, and livestock productivity by impairing immune function, increasing disease incidence. In recent years, there has been increasing interest in understanding the immune system of water buffalo due to the growing economic impact of this species for the high quality and nutritional value of buffalo milk. While there are common responses across bovine and buffalo species, there are also some species-specific variations in the physiological responses to heat stress, mainly attributed to differences in metabolism and heat dissipation efficiency. At cellular level, the exposure to thermal stress induces several anomalies in cell functions. However, there is limited knowledge about the differential response of bovine and buffalo leucocytes to early and late exposure to different degrees of thermal exposure. The aim of this study was to compare the in vitro effect of hyperthermia on apoptosis and phagocytosis in leukocytes from bovine and buffalo species. For this, whole blood samples of six bovines and nine buffaloes were incubated at 39°C (mimicking normothermia condition) or 41°C (mimicking heat stress condition) for 1, 2, and 4 h. Two flow cytometric assays were then performed to evaluate apoptosis and determine functional capacity of phagocytic cells (neutrophils and monocytes). The results showed that the viability of bovine and buffalo leukocytes was differently affected by temperature and time of in vitro exposure. A higher percentage of apoptotic leukocytes was observed in bovines than in buffaloes at 39°C (3.19 vs. 1.51, p < 0.05) and 41°C (4.01 vs. 1.69, p < 0.05) and for all incubation time points (p < 0.05). In contrast, no difference was observed in the fraction of necrotic leukocytes between the two species. In both species, lymphocytes showed the highest sensitivity to hyperthermia, showing an increased apoptosis rates along with increased incubation time. In bovine, apoptotic lymphocytes increased from 5.79 to 12.7% at 39°C (p < 0.05), in buffalo, this population increased from 1.50 to 3.57% at 39°C and from 2.90 to 4.99% at 41°C (p < 0.05). Although no significant differences were found between the two species regarding the percentage of phagocytic neutrophils, lower phagocytosis capacity values (MFI, mean fluorescence intensity) were found in bovines compared with buffaloes at 41°C (27960.72 vs. 53676.45, p > 0.05). However, for monocytes, the differences between species were significant for both phagocytosis activity and capacity with lower percentages of bovine phagocytic monocytes after 2 h at 39°C and after 1 h at 41°C. The bovine monocytes showed lower MFI values for all temperature and time variations than buffaloes (37538.91 vs. 90445.47 at 39°C and 33752.91 vs. 70278.79 at 41°C, p < 0.05). In conclusion, the current study represents the first report on the comparative analysis of the effect of in vitro heat stress on bovine and buffalo leukocyte populations, highlighting that the leukocytes of buffalo exhibit relatively higher thermal adaptation than bovine cells.
Collapse
Affiliation(s)
- Maria Carmela Scatà
- Research Centre for Animal Production and Aquaculture, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Mohanned Naif Alhussien
- Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Francesco Grandoni
- Research Centre for Animal Production and Aquaculture, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Anna Reale
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| | - Michele Zampieri
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Giovanna De Matteis
- Research Centre for Animal Production and Aquaculture, Council for Agricultural Research and Economics (CREA), Rome, Italy
| |
Collapse
|
12
|
Kern J, Jorgensen MW, Boerman JP, Erasmus M, Johnson JS, Pempek JA. Effect of repeated HPA axis stimulation on hair cortisol concentration, growth, and behavior in preweaned dairy cattle. J Anim Sci 2024; 102:skae171. [PMID: 38898575 PMCID: PMC11287870 DOI: 10.1093/jas/skae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/19/2024] [Indexed: 06/21/2024] Open
Abstract
The study objective was to investigate the effect of repeated hypothalamic-pituitary-adrenal (HPA) axis stimulation using synthetic adrenocorticotropic hormone (ACTH) intramuscular injections on hair cortisol concentration, growth, and behavior in preweaned dairy calves. Twenty-seven Holstein calves were assigned to nine triads (based on sex and birth order) and randomly assigned to 1 of 3 treatments: 1) control (CON; 2 mL saline weekly); 2) moderate (MOD; alternating Cosyntropin [2 mcg/kg body weight (BW)] and saline weekly); or 3) frequent (FREQ; Cosyntropin [2 mcg/kg BW] weekly). Calves received their first injection on study day 0 (7 ± 1 d of age). Hair was collected from the tail switch between days -5 and -3 (baseline), 21, and 49 and analyzed for cortisol concentration. To verify the endogenous cortisol release by Cosyntropin during the treatment period, saliva was collected on days 0, 14, 28, and 42 before injection and every 15 min for 2 h after injection for analysis of salivary cortisol concentration. Calves were fitted with accelerometers to continuously monitor lying time, number of lying bouts, and lying bout duration throughout the study. Growth measures (BW, hip height, hip width) were recorded weekly. Data were analyzed using repeated measures ANOVA (SAS, Version 9.4), and models included the fixed effects of treatment, time (min or study day), and interaction between treatment and time. Temperature humidity index was included as a continuous covariate in all models. We observed a treatment × min interaction (P < 0.0001), whereby salivary cortisol concentration was lower in CON calves compared to MOD and FREQ calves 15 to 120 min postinjection. While hair cortisol concentration was not influenced by treatment, concentration decreased from day 21 (1.28 ± 0.03 ng/mL) to 49 (0.93 ± 0.03 ng/mL). Average BW was similar across treatments (CON [59.4 ± 1.09 kg], MOD [58.6 ± 0.98 kg], and FREQ [57.6 ± 0.96 kg]; P = 0.50). There was no evidence to suggest a difference in average daily lying time (CON [18.5 ± 0.23 h/d], MOD [18.6 ± 0.23 h/d], and FREQ [18.5 ± 0.23 h/d]; P = 0.99). These results suggest that repeated HPA axis stimulation through Cosyntropin administration increased salivary cortisol concentration, but did not influence hair cortisol concentration, growth, or behavior in preweaned dairy calves.
Collapse
Affiliation(s)
- Jessica Kern
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Jacquelyn P Boerman
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Marisa Erasmus
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jay S Johnson
- USDA-ARS, Livestock Behavior Research Unit, West Lafayette, IN 47907, USA
| | - Jessica A Pempek
- USDA-ARS, Livestock Behavior Research Unit, West Lafayette, IN 47907, USA
| |
Collapse
|
13
|
Oyebade AO, Lee S, Sultana H, Arriola K, Duvalsaint E, Nino De Guzman C, Fernandez Marenchino I, Marroquin Pacheco L, Amaro F, Ghedin Ghizzi L, Mu L, Guan H, Almeida KV, Rajo Andrade B, Zhao J, Tian P, Cheng C, Jiang Y, Driver J, Queiroz O, Ferraretto LF, Ogunade IM, Adesogan AT, Vyas D. Effects of direct-fed microbial supplementation on performance and immune parameters of lactating dairy cows. J Dairy Sci 2023; 106:8611-8626. [PMID: 37641244 DOI: 10.3168/jds.2022-22898] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/29/2023] [Indexed: 08/31/2023]
Abstract
We evaluated the effects of supplementing bacterial direct-fed microbial (DFM) on performance, apparent total-tract digestibility, rumen fermentation, and immune parameters of lactating dairy cows. One hundred fourteen multiparous Holstein cows (41 ± 7 DIM) were used in a randomized complete block design with an experiment comprising 14 d of a covariate (pre-experimental sample and data collection) and 91 d of an experimental period. Cows were blocked based on energy-corrected milk (ECM) yield during the covariate period and the following treatments were randomly assigned within each block: (1) control (CON), corn silage-based total mixed ration without DFM; (2) PRO-A, basal diet top-dressed with a mixture of Lactobacillus animalis and Propionibacterium freudenreichii at 3 × 109 cfu/d; and 3) PRO-B, basal diet top-dressed with a mixture of L. animalis, P. freudenreichii, Bacillus subtilis, and Bacillus licheniformis at 11.8 × 109 cfu/d. Milk yield, dry matter intake (DMI), and body weight were measured daily, while milk samples for component analysis were taken on 2 consecutive days of each week of data collection. Feces, urine, rumen, and blood samples were taken during the covariate period, wk 4, 7, 10, and 13 for estimation of digestibility, N-partitioning, rumen fermentation, plasma nutrient status and immune parameters. Treatments had no effect on DMI and milk yield. Fat-corrected milk (3.5% FCM) and milk fat yield were improved with PRO-B, while milk fat percent and feed efficiency (ECM/DMI) tended to increase with PRO-B compared with PRO-A and CON. Crude fat digestibility was greater with PRO-B compared with CON. Feeding CON and PRO-A resulted in higher total volatile fatty acid concentration relative to PRO-B. Percentage of neutrophils tended to be reduced with PRO-A compared with CON and PRO-B. The mean fluorescence intensity (MFI) of anti-CD44 antibody on granulocytes tended to be higher in PRO-B compared with CON. The MFI of anti-CD62L antibody on CD8+ T cells was lower in PRO-A than PRO-B, with PRO-A also showing a tendency to be lower than CON. This study indicates the potential of DFM to improve fat digestibility with consequential improvement in fat corrected milk yield, feed efficiency and milk fat yield by lactating dairy cows. The study findings also indicate that dietary supplementation with DFM may augment immune parameters or activation of immune cells, including granulocytes and T cells; however, the overall effects on immune parameters are inconclusive.
Collapse
Affiliation(s)
- A O Oyebade
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - S Lee
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - H Sultana
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - K Arriola
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - E Duvalsaint
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - C Nino De Guzman
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - I Fernandez Marenchino
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - L Marroquin Pacheco
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - F Amaro
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - L Ghedin Ghizzi
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - L Mu
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - H Guan
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - K V Almeida
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - B Rajo Andrade
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - J Zhao
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - P Tian
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - C Cheng
- College of Agriculture, Communities, and the Environment, Kentucky State University, Frankfort, KY 40601
| | - Y Jiang
- College of Agriculture, Communities, and the Environment, Kentucky State University, Frankfort, KY 40601
| | - J Driver
- MU Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211
| | - O Queiroz
- Chr. Hansen A/S, Animal Health and Nutrition, B⊘ge Allé 10-12, DK-2970 H⊘rsholm, Denmark
| | - L F Ferraretto
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI 53706
| | - I M Ogunade
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26506
| | - A T Adesogan
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - D Vyas
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611.
| |
Collapse
|
14
|
Li H, Chen H, Zhang S, Wang S, Zhang L, Li J, Gao S, Qi Z. Taurine alleviates heat stress-induced mammary inflammation and impairment of mammary epithelial integrity via the ERK1/2-MLCK signaling pathway. J Therm Biol 2023; 116:103587. [PMID: 37478580 DOI: 10.1016/j.jtherbio.2023.103587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 07/23/2023]
Abstract
Heat stress leads to milk production losses and mammary gland inflammation, which may be associated with mammary epithelium damage. Taurine is one of the most abundant free amino acids in mammals which has anti-inflammatory properties. This study aimed to explore the effect of taurine pretreatment on heat stress-induced mammary epithelial integrity disruption and inflammatory damage. In our first experiment on dairy cows our results showed that compared with animals under autumn thermoneutral condition (THI = 62.99 ± 0.71), summer heat stress (THI = 78.01 ± 0.39) significantly reduced milk yield and disrupted mammary epithelial integrity as revealed by increased concentrations of serotonin and lactose in plasma, and increased levels of SA and Na+/K+ in milk. In our second study, 36 lactating mice were randomly divided into three groups (n = 12) for a 9d experiment using a climate chamber to establish a heat stress model. Our findings suggest taurine pretreatment could attenuate heat stress-induced mammary histopathological impairment, inflammation response, and enhance mammary epithelium integrity, which was mainly achieved by promoting the secretion of ZO-1, Occludin, and Claudin-3 through inhibiting activation of the ERK1/2-MLCK signaling pathway in the mammary gland. Overall, our findings indicated that heat stress induced mammary epithelium dysfunction in dairy cows, and emphasized the protective effect of taurine on mammary health under heat stress conditions using a mouse model, which may be achieved by alleviating the mammary epithelium integrity damage and inflammation response.
Collapse
Affiliation(s)
- Han Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Shaobo Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengqi Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liwen Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingdu Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Si Gao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhili Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
15
|
Montevecchio AB, Frota W, Merenda VR, Martin JG, Chebel RC. A randomized trial on the effects of heat stress abatement on environmental conditions and growth, feed efficiency, and concentration of metabolites of pre-weaned female Holstein calves. Prev Vet Med 2023; 213:105863. [PMID: 36764217 DOI: 10.1016/j.prevetmed.2023.105863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/02/2023]
Abstract
Heat abatement strategies for pre-weaned calves are seldom adopted. Our objectives were to determine the effects of adding fans to barns on environmental conditions and growth, feed efficiency, concentration of metabolites and health of pre-weaned female Holstein calves. Calves born from July 15th to 30th of 2019 were eligible for enrollment. At birth (d 0), calves were assigned randomly to: SH (n = 125) - hutch under a barn with no cooling, SHF (n = 101) - hutch under a barn cooled through fans. Body weight (BW) and wither-height were measured at birth and d 68. Calves were evaluated thrice weekly (0700-1000 h) using the Calf Health Scoring Chart (UW-Madison). A sub-sample of hutches (SH = 26, SHF = 25) was evaluated for air velocity and temperature at 1000 and 1600 h thrice weekly and calves housed in these hutches were evaluated for rectal temperature (RT) at 1600 h and respiratory rate (RR) at 1000 and 1600 h. Calves were fed a liquid diet twice a day (d 2-18 = 5.56 L/d; d 19-49 = 7.58 L/d; d 50-56 = 3.84 L/d; d 57-63 = 1.64 L/d) and starter ad libitum starting on d 14. A sub-sample of calves (SH = 56, SHF = 44) had intakes of liquid feed and starter measured daily, BW and wither-height measured weekly from birth to d 68, and blood sampled on d 1, 14, 28, 42, 49, 52, 56, 58, 63 and 65 for the measurement of fatty acids, β-hydroxybutyrate, and glucose concentrations. The SHF treatment increased air velocity by 0.8 m/sec and reduced air temperature by 0.3 ºC. The SHF treatment reduced RT (38.70 ± 0.03 vs. 38.78 ± 0.02 °C) and the percentage of calves with hyperthermia (RT ≥ 39.2 °C; 20.6 ± 1.9 vs. 30.2 ± 2.0%) at 1000 h. Treatment did not affect feed efficiency (SH = 0.53 ± 0.01, SHF = 0.53 ± 0.01 g of BW gained/g of dry matter intake), nor did it affect BW (SH = 81.6 ± 0.7, SHF = 82.9 ± 0.8 kg) and wither-height (SH = 89.5 ± 0.3, SHF = 90.1 ± 0.3 cm) on d 68. Concentrations of metabolites were not affected by treatment. Cooling the environment through fans reduced RT and the risk of hyperthermia at 1000 h but it did not affect performance of pre-weaned Holstein calves.
Collapse
Affiliation(s)
- Ana B Montevecchio
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville 32610, USA
| | - Wilson Frota
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville 32610, USA
| | - Victoria R Merenda
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville 32610, USA
| | | | - Ricardo C Chebel
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville 32610, USA; Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32610, USA.
| |
Collapse
|
16
|
Campolina JP, Coelho SG, Belli AL, Neves LFM, Machado FS, Pereira LGR, Tomich TR, Carvalho WA, Daibert RMP, Reis DRL, Costa SF, Voorsluys AL, Jacob DV, Campos MM. Potential benefits of a blend of essential oils on metabolism, digestibility, organ development and gene expression of dairy calves. Sci Rep 2023; 13:3378. [PMID: 36854876 PMCID: PMC9974966 DOI: 10.1038/s41598-023-30088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
The objective of this study was to evaluate blood cells and metabolites, insulin-like growth factor-1 (IGF-1), digestibility, internal organs weight and histology, gene expression, and spleen cell proliferation of pre-weaned bull calves supplemented with a blend of essential oils in milk replacer (MR). Sixteen newborn Holstein × Gyr crossbred dairy bull calves, with body weight at birth of 33.3 ± 3.7 kg, were housed in individual sand bedded pens, blocked by genetic composition, and randomly assigned to 1 of 2 treatments in a randomized complete block design: Control (CON, n = 8) and blend of essential oils supplementation (BEO, n = 8, 1 g/day/calf, Apex Calf, Adisseo, China). The commercial blend was composed by plant extracts derived from anise, cinnamon, garlic, rosemary, and thyme. Animals were fed 5 L of MR/day reconstituted at 15% (dry matter basis), divided into two equal meals. Water and starter were provided ad libitum. ß-hydroxybutyrate, urea, and glucose were evaluated weekly, IGF-1 was evaluated biweekly, and total blood cell count was performed every four weeks until the end of the trial at eight weeks of age. Feed samples were collected three times a week and polled for weekly analysis. Apparent total nutrient digestibility was determined from d 56 to 60 of age. On d 60 ± 1, animals were euthanized for organ weight, histology, spleen cell proliferation, and intestinal gene expression analysis. Data were analyzed independently using linear mixed models using the REML method in the nlme package in R for continuous outcomes. A non-parametric test was used for ordered categorical outcomes using the Artools package in R. There were no differences between groups for blood evaluations, digestibility, gene expression, and a spleen cell proliferation assay. However, BEO calves presented a heavier pancreas, heavier intestines, bigger ileum villi, and higher cecum butyrate levels (P < 0.05), demonstrating that the EO supplementation helped intestinal development and symbiotic bacteria. It was also observed in CON animals' heavier respiratory tract and a higher eosinophil count (P < 0.05). Therefore, the organs where eosinophils are more active had a better response for BEO animals. No differences were found in the intestinal gene expression in the immune context. These results demonstrate that supplementing essential oils in MR could contribute to gut development and immune function. However, more research is needed to understand its impact on body development and define the best dosage and route of administration.
Collapse
Affiliation(s)
- Joana P. Campolina
- grid.8430.f0000 0001 2181 4888Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30161-970 Brazil
| | - Sandra Gesteira Coelho
- grid.8430.f0000 0001 2181 4888Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30161-970 Brazil
| | - Anna Luiza Belli
- grid.8430.f0000 0001 2181 4888Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30161-970 Brazil
| | - Luiz F. Martins Neves
- grid.8430.f0000 0001 2181 4888Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30161-970 Brazil
| | - Fernanda S. Machado
- grid.460200.00000 0004 0541 873XEmbrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Juiz de Fora, MG 36038-330 Brazil
| | - Luiz G. R. Pereira
- grid.460200.00000 0004 0541 873XEmbrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Juiz de Fora, MG 36038-330 Brazil
| | - Thierry R. Tomich
- grid.460200.00000 0004 0541 873XEmbrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Juiz de Fora, MG 36038-330 Brazil
| | - Wanessa A. Carvalho
- grid.460200.00000 0004 0541 873XEmbrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Juiz de Fora, MG 36038-330 Brazil
| | - Raquel M. P. Daibert
- grid.460200.00000 0004 0541 873XEmbrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Juiz de Fora, MG 36038-330 Brazil
| | - Daniele R. L. Reis
- grid.460200.00000 0004 0541 873XEmbrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Juiz de Fora, MG 36038-330 Brazil
| | - Suely F. Costa
- grid.411269.90000 0000 8816 9513Departmento de Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais Brazil
| | | | | | - Mariana M. Campos
- grid.460200.00000 0004 0541 873XEmbrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Juiz de Fora, MG 36038-330 Brazil
| |
Collapse
|
17
|
Izquierdo VS, Silva JVL, Ranches J, Santos GCM, Carroll JA, Burdick Sanchez NC, Bittar JHJ, Vendramini JMB, Moriel P. Removing maternal heat stress abatement during gestation modulated postnatal physiology and improved performance of Bos indicus-influenced beef offspring. J Anim Sci 2023; 101:skad250. [PMID: 37542727 PMCID: PMC10414138 DOI: 10.1093/jas/skad250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023] Open
Abstract
This study evaluated the growth and immune response of beef calves born from Bos indicus-influenced beef heifers provided pre- and postpartum heat abatement on pasture. On 83 ± 4 d prepartum (day 0), 64 Brangus crossbred beef heifers (~¼ B. indicus) were stratified by body weight (BW; 454 ± 37 kg) and body condition score (BCS; 6.3 ± 0.28; scale 1 to 9), and then allocated into 1 of 16 bahiagrass pastures (1 ha and 4 heifers per pasture). Treatments were randomly assigned to pastures (8 pastures per treatment) and consisted of heifers provided (SH) or not (NSH) access to artificial shade (4.5 m2 of shade area per heifer) from 83 d prepartum to 50 d postpartum (days 0 to 133). Heifers and calves were managed similarly from day 133 until the start of the breeding season (day 203). Calves were weaned on day 203 (at 119 ± 19 d of age), limit-fed the same drylot diet at 3.5% of BW (DM basis) days 209 to 268 (3 to 4 calves per pen; 8 pens per treatment) and vaccinated against respiratory disease pathogens on days 222 and 236. Heifer intravaginal temperatures from days 35 to 42 were lower (P ≤ 0.03) for NSH vs. SH heifers from 0000 to 0800 hours but greater (P ≤ 0.05) for NSH vs. SH heifers from 1100 to 1800 hours. Heifer intravaginal temperature from days 126 to 132 did not differ (P = 0.99) between NSH and SH heifers. Heifers assigned to NSH had greater respiration rates from days 20 to 96 (P ≤ 0.0007), greater plasma concentration of cortisol on days 35 (P = 0.07) and 55 (P = 0.02), less plasma concentration of insulin-like growth factor 1 (IGF-1) on days 35 (P = 0.10), 55, and 133 (P ≤ 0.05), and less BCS from days 55 to 203 (P ≤ 0.01) compared to SH heifers. Calves born from NSH heifers had less birth BW (P = 0.05), greater overall plasma haptoglobin concentrations (P = 0.05), greater seroconversion against bovine respiratory syncytial virus on day 222 (P = 0.02), tended to have greater ADG from days 209 to 268 (P = 0.07), and had greater BW on day 268 (P = 0.05) compared to SH offspring. Plasma concentrations of cortisol and serum titers against other respiratory disease pathogens did not differ (P ≥ 0.15) between NSH and SH offspring. Hence, removing maternal access to artificial shade: (1) increased prepartum intravaginal temperature and plasma concentrations of cortisol but reduced prepartum BCS and plasma concentrations of IGF-1 in grazing B. indicus-influenced beef heifers; and (2) increased post-weaning BW gain and had positive effects on humoral immune response of their offspring.
Collapse
Affiliation(s)
- Vinicius S Izquierdo
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - João V L Silva
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Juliana Ranches
- Eastern Oregon Agricultural Research Center, Oregon State University, Burns, OR 97720, USA
| | - Giovanna C M Santos
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | | | | | - João H J Bittar
- College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - João M B Vendramini
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Philipe Moriel
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| |
Collapse
|
18
|
Montevecchio AB, Frota W, Merenda VR, Jones KL, Martin JG, Ballou MA, Chebel RC. Heat abatement during the pre-weaning period: effects on growth, feed efficiency, metabolites, and insulin of male Holstein calves. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:2169-2181. [PMID: 36156136 DOI: 10.1007/s00484-022-02358-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/10/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
Heat stress abatement strategies for pre-weaned dairy calves are seldom evaluated. An experiment was conducted to evaluate the effects of housing calves under a barn and provision of fans to calves housed under a barn on calfhood performance. The experiment was conducted in a dairy in southern Georgia, USA. Male Holstein calves (n = 60; 0 to 68 day of age) were assigned randomly at birth (day 0) to 1 of 3 treatments: hutch outdoors with 50% of its area covered with plywood (control = 20), hutch in a barn with no cooling (SH = 21), and hutch in a barn with ceiling fans (SHF = 19). Body weight (BW) was measured at birth, and total serum protein and wither-height were measured 24 to 48 h after birth. A sub-set of hutches was evaluated for air speed and temperature, and rectal temperature (RT) and respiratory frequency (RF) of calves housed in these hutches were measured at 0900 and 1500 h. Intakes of liquid feed (days 14 to 63) and starter (days 14 to 68) were recorded daily, BW and wither-height were measured weekly, and feed efficiency was calculated weekly. Blood was sampled on days 1, 14, 28, 42, 49, 52, 56, 58, 63, and 65 for the measurement of fatty acids, β-hydroxybutyrate, glucose, and insulin. The SHF treatment resulted in air velocity 0.56 to 0.83 m/s greater (P < 0.01) than the control and SH treatments, respectively, whereas the control treatment resulted in air temperature 1.2 to 3.2 °C greater (P < 0.01) than the SH and SHF treatments, respectively. The RT of calves in the control treatment was 0.1 to 1.1 °C greater (P ≤ 0.03) than the SH and SHF treatments, respectively, and the control treatment resulted in RF 39.4 to 60.2 mov/min greater (P < 0.01) than the SH and SHF treatments, respectively. Treatment did not (P ≥ 0.27) affect feed efficiency and concentrations of metabolites and insulin, but calves in the control treatment were 2.6 cm shorter (P = 0.03) than calves in the SHF treatments at weaning. Provision of fans to calves housed under a barn reduced RT, RF, but only had a minute impact on wither-height.
Collapse
Affiliation(s)
- Ana B Montevecchio
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Wilson Frota
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Victoria R Merenda
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Kristi L Jones
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | | | - Michael A Ballou
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX, 79415, USA
| | - Ricardo C Chebel
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA.
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
19
|
Wathes DC. Developmental Programming of Fertility in Cattle-Is It a Cause for Concern? Animals (Basel) 2022; 12:2654. [PMID: 36230395 PMCID: PMC9558991 DOI: 10.3390/ani12192654] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cattle fertility remains sub-optimal despite recent improvements in genetic selection. The extent to which an individual heifer fulfils her genetic potential can be influenced by fetal programming during pregnancy. This paper reviews the evidence that a dam's age, milk yield, health, nutrition and environment during pregnancy may programme permanent structural and physiological modifications in the fetus. These can alter the morphology and body composition of the calf, postnatal growth rates, organ structure, metabolic function, endocrine function and immunity. Potentially important organs which can be affected include the ovaries, liver, pancreas, lungs, spleen and thymus. Insulin/glucose homeostasis, the somatotropic axis and the hypothalamo-pituitary-adrenal axis can all be permanently reprogrammed by the pre-natal environment. These changes may act directly at the level of the ovary to influence fertility, but most actions are indirect. For example, calf health, the timing of puberty, the age and body structure at first calving, and the ability to balance milk production with metabolic health and fertility after calving can all have an impact on reproductive potential. Definitive experiments to quantify the extent to which any of these effects do alter fertility are particularly challenging in cattle, as individual animals and their management are both very variable and lifetime fertility takes many years to assess. Nevertheless, the evidence is compelling that the fertility of some animals is compromised by events happening before they are born. Calf phenotype at birth and their conception data as a nulliparous heifer should therefore both be assessed to avoid such animals being used as herd replacements.
Collapse
Affiliation(s)
- D Claire Wathes
- Department for Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| |
Collapse
|
20
|
Grape seed extract supplementation in heat-stressed preweaning dairy calves: I. Effects on antioxidant status, inflammatory response, hematological and physiological parameters. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Field SL, Ouellet V, Sheftel CM, Hernandez LL, Laporta J. In vitro effects of 5-Hydroxy-L-tryptophan supplementation on primary bovine mammary epithelial cell gene expression under thermoneutral or heat shock conditions. Sci Rep 2022; 12:3820. [PMID: 35264606 PMCID: PMC8907223 DOI: 10.1038/s41598-022-07682-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
Serotonin (5-HT) is an autocrine-paracrine molecule within the mammary gland regulating homeostasis during lactation and triggering involution after milk stasis. Exposure of dairy cows to hyperthermia during the dry period alters mammary gland involution processes leading to reduced subsequent yields. Herein, primary bovine mammary epithelial cells (pBMEC) under thermoneutral (TN, 37 °C) or heat shock (HS, 41.5 °C) conditions were cultured with either 0, 50, 200, or 500 μM 5-Hydroxy-L-tryptophan (5-HTP; 5-HT precursor) for 8-, 12- or 24-h. Expression of 95 genes involved in 5-HT signaling, involution and tight junction regulation were evaluated using a Multiplex RT-qPCR BioMark Dynamic Array Circuit. Different sets of genes were impacted by 5-HTP or temperature, or by their interaction. All 5-HT signaling genes were downregulated after 8-h of HS and then upregulated after 12-h, relative to TN. After 24-h, apoptosis related gene, FASLG, was upregulated by all doses except TN-200 μM 5-HTP, and cell survival gene, FOXO3, was upregulated by HS-50, 200 and 500 μM 5-HTP, suggesting 5-HTP involvement in cell turnover under HS. Supplementing 5-HTP at various concentrations in vitro to pBMEC modulates the expression of genes that might aid in promoting epithelial cell turn-over during involution in dairy cattle under hyperthermia.
Collapse
Affiliation(s)
- Sena L Field
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Véronique Ouellet
- Department of Animal Sciences, Université Laval, Québec City, QC, Canada
| | - Celeste M Sheftel
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|