1
|
Luo J, Zhang Q, Wang S, Zheng L, Liu J, Zhang Y, Wang Y, Wang R, Xiao Z, Li Z. Comprehensive Pan-cancer Analysis of CMPK2 as Biomarker and Prognostic Indicator for Immunotherapy. Curr Cancer Drug Targets 2025; 25:209-229. [PMID: 38486392 DOI: 10.2174/0115680096281451240306062101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2025]
Abstract
BACKGROUND UMP-CMP kinase 2 (CMPK2) is involved in mitochondrial DNA synthesis, which can be oxidized and released into the cytoplasm in innate immunity. It initiates the assembly of NLRP3 inflammasomes and mediates various pathological processes such as human immunodeficiency virus infection and systemic lupus erythematosus. However, the role of CMPK2 in tumor progression and tumor immunity remains unclear. METHODS We identified CMPK2 expression patterns in the Genotype Tissue-Expression (GTEx), The Cancer Genome Atlas (TCGA), and the Cancer Cell Line Encyclopedia (CCLE) databases. Validation was performed using immunohistochemical staining data from the Human Protein Atlas (HPA) database and qPCR experiments. Receiver operating characteristic curve analysis and Kaplan-Meier survival analysis were conducted to assess the clinical relevance of CMPK2 expression. The Estimation of Stromal and Immune Cells in Malignant Tumor Tissues Using Expression Data (ESTIMATE) algorithm and the Tumor IMmune Estimation Resource (TIMER) database were used to evaluate the correlation between CMPK2 and immune infiltration in tumors. The Tumor Immune Syngeneic Mouse (TISMO) database and other public datasets were utilized to assess the impact of CMPK2 on immune therapy response. MEXPRESS and MethSurv databases were employed to investigate the effects of methylation on CMPK2 expression. RESULTS CMPK2 expression was elevated in 23 cancers and decreased in two cancers. Furthermore, CMPK2 expression had a high diagnostic value for 16 cancers. Elevated CMPK2 expression was associated with lower overall survival (OS), disease-specific survival (DSS), and progression- free interval (PFI) in four cancers. Immune microenvironment-related analysis revealed strong associations between CMPK2 expression and immune cell infiltration, as well as immune checkpoint expression across various tumors. Notably, in four mouse immunotherapy cohorts, CMPK2 expression in treated mouse tumors was higher post-treatment. In five clinical immunotherapy cohorts, patients with high CMPK2 expression show better responses to immunotherapy. Moreover, the methylation level of CMPK2 gene was closely correlated to its expression and tumor prognosis. Among these cancers, the clinical and immunological indications of skin cutaneous melanoma (SKCM) are particularly closely related to CMPK2 expression. CONCLUSION Our analysis preliminarily describes the complex function of CMPK2 in cancer progression and immune microenvironment, highlighting its potential as a diagnostic and therapeutic target for immunotherapy.
Collapse
Affiliation(s)
- Jingyuan Luo
- NHC Key Laboratory of Carcinogenesis, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Clinical Medicine, Xiangya School of Medicine of Central South University, Changsha, China
| | - Qianyue Zhang
- Department of Clinical Medicine, Xiangya School of Medicine of Central South University, Changsha, China
| | - Shutong Wang
- NHC Key Laboratory of Carcinogenesis, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Clinical Medicine, Xiangya School of Medicine of Central South University, Changsha, China
| | - Luojie Zheng
- NHC Key Laboratory of Carcinogenesis, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jie Liu
- NHC Key Laboratory of Carcinogenesis, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Clinical Medicine, Xiangya School of Medicine of Central South University, Changsha, China
| | - Yuchen Zhang
- NHC Key Laboratory of Carcinogenesis, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Clinical Medicine, Xiangya School of Medicine of Central South University, Changsha, China
| | - Yingchen Wang
- NHC Key Laboratory of Carcinogenesis, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Clinical Medicine, Xiangya School of Medicine of Central South University, Changsha, China
| | - Ranran Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhigang Xiao
- Department of General Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Zheng Li
- NHC Key Laboratory of Carcinogenesis, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Pervizaj-Oruqaj L, Selvakumar B, Ferrero MR, Heiner M, Malainou C, Glaser RD, Wilhelm J, Bartkuhn M, Weiss A, Alexopoulos I, Witte B, Gattenlöhner S, Vadász I, Morty RE, Seeger W, Schermuly RT, Vazquez-Armendariz AI, Herold S. Alveolar macrophage-expressed Plet1 is a driver of lung epithelial repair after viral pneumonia. Nat Commun 2024; 15:87. [PMID: 38167746 PMCID: PMC10761876 DOI: 10.1038/s41467-023-44421-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Influenza A virus (IAV) infection mobilizes bone marrow-derived macrophages (BMDM) that gradually undergo transition to tissue-resident alveolar macrophages (TR-AM) in the inflamed lung. Combining high-dimensional single-cell transcriptomics with complex lung organoid modeling, in vivo adoptive cell transfer, and BMDM-specific gene targeting, we found that transitioning ("regenerative") BMDM and TR-AM highly express Placenta-expressed transcript 1 (Plet1). We reveal that Plet1 is released from alveolar macrophages, and acts as important mediator of macrophage-epithelial cross-talk during lung repair by inducing proliferation of alveolar epithelial cells and re-sealing of the epithelial barrier. Intratracheal administration of recombinant Plet1 early in the disease course attenuated viral lung injury and rescued mice from otherwise fatal disease, highlighting its therapeutic potential.
Collapse
Affiliation(s)
- Learta Pervizaj-Oruqaj
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Balachandar Selvakumar
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), Buenos Aires, Argentina
| | - Maximiliano Ruben Ferrero
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), Buenos Aires, Argentina
| | - Monika Heiner
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Christina Malainou
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Rolf David Glaser
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Biomedical Informatics and Systems Medicine, Justus Liebig University, Giessen, Germany
| | - Jochen Wilhelm
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Marek Bartkuhn
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Biomedical Informatics and Systems Medicine, Justus Liebig University, Giessen, Germany
| | - Astrid Weiss
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ioannis Alexopoulos
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Biruta Witte
- Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen, Germany
| | | | - István Vadász
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Rory Edward Morty
- Department of Translational Pulmonology and the Translational Lung Research Center, University Hospital Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Werner Seeger
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), Buenos Aires, Argentina
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ralph Theo Schermuly
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ana Ivonne Vazquez-Armendariz
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- University of Bonn, Transdisciplinary Research Area Life and Health, Organoid Biology, Life & Medical Sciences Institute, Bonn, Germany
| | - Susanne Herold
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany.
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany.
| |
Collapse
|
3
|
Wang H, Peng W, Wang J, Zhang C, Zhao W, Ran Y, Yang X, Chen J, Li H. Human Cytomegalovirus UL23 Antagonizes the Antiviral Effect of Interferon-γ by Restraining the Expression of Specific IFN-Stimulated Genes. Viruses 2023; 15:v15041014. [PMID: 37112994 PMCID: PMC10145438 DOI: 10.3390/v15041014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Interferon-γ (IFN-γ) is a critical component of innate immune responses in humans to combat infection by many viruses, including human cytomegalovirus (HCMV). IFN-γ exerts its biological effects by inducing hundreds of IFN-stimulated genes (ISGs). In this study, RNA-seq analyses revealed that HCMV tegument protein UL23 could regulate the expression of many ISGs under IFN-γ treatment or HCMV infection. We further confirmed that among these IFN-γ stimulated genes, individual APOL1 (Apolipoprotein-L1), CMPK2 (Cytidine/uridine monophosphate kinase 2), and LGALS9 (Galectin-9) could inhibit HCMV replication. Moreover, these three proteins exhibited a synergistic effect on HCMV replication. UL23-deficient HCMV mutants induced higher expression of APOL1, CMPK2, and LGALS9, and exhibited lower viral titers in IFN-γ treated cells compared with parental viruses expressing full functional UL23. Thus, UL23 appears to resist the antiviral effect of IFN-γ by downregulating the expression of APOL1, CMPK2, and LGALS9. This study highlights the roles of HCMV UL23 in facilitating viral immune escape from IFN-γ responses by specifically downregulating these ISGs.
Collapse
Affiliation(s)
- Hankun Wang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Weijian Peng
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jialin Wang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Chunling Zhang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wangchun Zhao
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yanhong Ran
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiaoping Yang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jun Chen
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Guangzhou 510632, China
| | - Hongjian Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Guangzhou 510632, China
| |
Collapse
|
4
|
Pawlak JB, Hsu JCC, Xia H, Han P, Suh HW, Grove TL, Morrison J, Shi PY, Cresswell P, Laurent-Rolle M. CMPK2 restricts Zika virus replication by inhibiting viral translation. PLoS Pathog 2023; 19:e1011286. [PMID: 37075076 PMCID: PMC10150978 DOI: 10.1371/journal.ppat.1011286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 05/01/2023] [Accepted: 03/09/2023] [Indexed: 04/20/2023] Open
Abstract
Flaviviruses continue to emerge as global health threats. There are currently no Food and Drug Administration (FDA) approved antiviral treatments for flaviviral infections. Therefore, there is a pressing need to identify host and viral factors that can be targeted for effective therapeutic intervention. Type I interferon (IFN-I) production in response to microbial products is one of the host's first line of defense against invading pathogens. Cytidine/uridine monophosphate kinase 2 (CMPK2) is a type I interferon-stimulated gene (ISG) that exerts antiviral effects. However, the molecular mechanism by which CMPK2 inhibits viral replication is unclear. Here, we report that CMPK2 expression restricts Zika virus (ZIKV) replication by specifically inhibiting viral translation and that IFN-I- induced CMPK2 contributes significantly to the overall antiviral response against ZIKV. We demonstrate that expression of CMPK2 results in a significant decrease in the replication of other pathogenic flaviviruses including dengue virus (DENV-2), Kunjin virus (KUNV) and yellow fever virus (YFV). Importantly, we determine that the N-terminal domain (NTD) of CMPK2, which lacks kinase activity, is sufficient to restrict viral translation. Thus, its kinase function is not required for CMPK2's antiviral activity. Furthermore, we identify seven conserved cysteine residues within the NTD as critical for CMPK2 antiviral activity. Thus, these residues may form an unknown functional site in the NTD of CMPK2 contributing to its antiviral function. Finally, we show that mitochondrial localization of CMPK2 is required for its antiviral effects. Given its broad antiviral activity against flaviviruses, CMPK2 is a promising potential pan-flavivirus inhibitor.
Collapse
Affiliation(s)
- Joanna B. Pawlak
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jack Chun-Chieh Hsu
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Patrick Han
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hee-Won Suh
- Department of Biomedical Engineering, Yale University School of Engineering and Applied Science, New Haven, Connecticut, United States of America
| | - Tyler L. Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Juliet Morrison
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Maudry Laurent-Rolle
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
5
|
Pinto SM, Subbannayya Y, Kim H, Hagen L, Górna MW, Nieminen AI, Bjørås M, Espevik T, Kainov D, Kandasamy RK. Multi-OMICs landscape of SARS-CoV-2-induced host responses in human lung epithelial cells. iScience 2022; 26:105895. [PMID: 36590899 PMCID: PMC9794516 DOI: 10.1016/j.isci.2022.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
COVID-19 pandemic continues to remain a global health concern owing to the emergence of newer variants. Several multi-Omics studies have produced extensive evidence on host-pathogen interactions and potential therapeutic targets. Nonetheless, an increased understanding of host signaling networks regulated by post-translational modifications and their ensuing effect on the cellular dynamics is critical to expanding the current knowledge on SARS-CoV-2 infections. Through an unbiased transcriptomics, proteomics, acetylomics, phosphoproteomics, and exometabolome analysis of a lung-derived human cell line, we show that SARS-CoV-2 Norway/Trondheim-S15 strain induces time-dependent alterations in the induction of type I IFN response, activation of DNA damage response, dysregulated Hippo signaling, among others. We identified interplay of phosphorylation and acetylation dynamics on host proteins and its effect on the altered release of metabolites, especially organic acids and ketone bodies. Together, our findings serve as a resource of potential targets that can aid in designing novel host-directed therapeutic strategies.
Collapse
Affiliation(s)
- Sneha M. Pinto
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway,Corresponding author
| | - Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Hera Kim
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway,Proteomics and Modomics Experimental Core, PROMEC, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Maria W. Górna
- Structural Biology Group, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Anni I. Nieminen
- Institute for Molecular Medicine Finland, University of Helsinki, 00014Helsinki, Finland
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway,Department of Laboratory Medicine and Pathology, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA,Corresponding author
| |
Collapse
|
6
|
Arumugam P, Chauhan M, Rajeev T, Chakraborty R, Bisht K, Madan M, Shankaran D, Ramalingam S, Gandotra S, Rao V. The mitochondrial gene-CMPK2 functions as a rheostat for macrophage homeostasis. Front Immunol 2022; 13:935710. [PMID: 36451821 PMCID: PMC9702992 DOI: 10.3389/fimmu.2022.935710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/21/2022] [Indexed: 09/04/2024] Open
Abstract
In addition to their role in cellular energy production, mitochondria are increasingly recognized as regulators of the innate immune response of phagocytes. Here, we demonstrate that altering expression levels of the mitochondria-associated enzyme, cytidine monophosphate kinase 2 (CMPK2), disrupts mitochondrial physiology and significantly deregulates the resting immune homeostasis of macrophages. Both CMPK2 silenced and constitutively overexpressing macrophage lines portray mitochondrial stress with marked depolarization of their membrane potential, enhanced reactive oxygen species (ROS), and disturbed architecture culminating in the enhanced expression of the pro-inflammatory genes IL1β, TNFα, and IL8. Interestingly, the long-term modulation of CMPK2 expression resulted in an increased glycolytic flux of macrophages akin to the altered physiological state of activated M1 macrophages. While infection-induced inflammation for restricting pathogens is regulated, our observation of a total dysregulation of basal inflammation by bidirectional alteration of CMPK2 expression only highlights the critical role of this gene in mitochondria-mediated control of inflammation.
Collapse
Affiliation(s)
- Prabhakar Arumugam
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)- Human Resource Development Centre, Ghaziabad, India
| | - Meghna Chauhan
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)- Human Resource Development Centre, Ghaziabad, India
| | - Thejaswitha Rajeev
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Rahul Chakraborty
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)- Human Resource Development Centre, Ghaziabad, India
| | - Kanika Bisht
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)- Human Resource Development Centre, Ghaziabad, India
| | - Mahima Madan
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)- Human Resource Development Centre, Ghaziabad, India
| | - Deepthi Shankaran
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)- Human Resource Development Centre, Ghaziabad, India
| | - Sivaprakash Ramalingam
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Genomics and Molecular Medicine, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sheetal Gandotra
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)- Human Resource Development Centre, Ghaziabad, India
| | - Vivek Rao
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)- Human Resource Development Centre, Ghaziabad, India
| |
Collapse
|
7
|
Oelschlaegel D, Wensch-Dorendorf M, Kopke G, Jungnickel R, Waurich B, Rosner F, Döpfer D, Brenig B, Swalve HH. Functional Variants Associated With CMPK2 and in ASB16 Influence Bovine Digital Dermatitis. Front Genet 2022; 13:859595. [PMID: 35832195 PMCID: PMC9271848 DOI: 10.3389/fgene.2022.859595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine digital dermatitis (BDD) is an infectious disease of the hoof in cattle with multifactorial etiology and a polygenic influence on susceptibility. With our study, we identified genomic regions with the impact on occurrence and development of BDD. We used 5,040 genotyped animals with phenotype information based on the M-stage system for genome-wide association. Significant associations for single-nucleotide polymorphisms were found near genes CMPK2 (chromosome 11) and ASB16 (chromosome 19) both being implicated in immunological processes. A sequence analysis of the chromosomal regions revealed rs208894039 and rs109521151 polymorphisms as having significant influence on susceptibility to the disease. Specific genotypes were significantly more likely to be affected by BDD and developed chronic lesions. Our study provides an insight into the genomic background for a genetic predisposition related to the pathogenesis of BDD. Results might be implemented in cattle-breeding programs and could pave the way for the establishment of a BDD prescreening test.
Collapse
Affiliation(s)
- Diana Oelschlaegel
- Group Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Monika Wensch-Dorendorf
- Group Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Grit Kopke
- Group Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Roswitha Jungnickel
- Group Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Benno Waurich
- Group Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Frank Rosner
- Group Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Dörte Döpfer
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| | - Bertram Brenig
- Institute of Veterinary Medicine, Georg-August-University Göttingen, Göttingen, Germany
| | - Hermann H. Swalve
- Group Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- *Correspondence: Hermann H. Swalve,
| |
Collapse
|
8
|
Li X, Feng Y, Liu W, Tan L, Sun Y, Song C, Liao Y, Xu C, Ren T, Ding C, Qiu X. A Role for the Chicken Interferon-Stimulated Gene CMPK2 in the Host Response Against Virus Infection. Front Microbiol 2022; 13:874331. [PMID: 35633731 PMCID: PMC9132166 DOI: 10.3389/fmicb.2022.874331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022] Open
Abstract
Virus infection can lead to the production of interferon, which activates the JAK/STAT pathway and induces the expression of multiple downstream interferon-stimulated genes (ISGs) to achieve their antiviral function. Cytidine/uridine monophosphate kinase 2 (CMPK2) gene has been identified as an ISG in human and fish, and is also known as a rate-limiting enzyme in mitochondria to maintain intracellular UTP/CTP levels, which is necessary for de novo mitochondrial DNA synthesis. By mining previous microarray data, it was found that both Avian Influenza Virus (AIV) and Newcastle Disease Virus (NDV) infection can lead to the significant upregulation of chicken CMPK2 gene. However, little is known about the function of CMPK2 gene in chickens. In the present study, the open reading frame (ORF) of chicken CMPK2 (chCMPK2) was cloned from DF-1, a chicken embryo fibroblasts cell line, and subjected to further analysis. Sequence analysis showed that chCMPK2 shared high similarity in amino acid with CMPK2 sequences from all the other species, especially reptiles. A thymidylate kinase (TMK) domain was identified in the C-terminus of chCMPK2, which is highly conserved among all species. In vitro, AIV infection induced significant increases in chCMPK2 expression in DF-1, HD11, and the chicken embryonic fibroblasts (CEF), while obvious increase only detected in DF-1 cells and CEF cells after NDV infection. In vivo, the expression levels of chCMPK2 were up-regulated in several tissues from AIV infected chickens, especially the brain, spleen, bursa, kidney, intestine, heart and thymus, and notable increase of chCMPK2 was detected in the bursa, kidney, duodenum, lung, heart, and thymus during NDV infection. Here, using MDA5 and IFN-β knockdown cells, we demonstrated that as a novel ISG, chCMPK2 could be regulated by the MDA5/IFN-β pathway. The high expression level of exogenous chCMPK2 displayed inhibitory effects on AIV and NDV as well as reduced viral RNA in infected cells. We further demonstrated that Asp135, a key site on the TMK catalytic domain, was identified as critical for the antiviral activities of chCMPK2. Taken together, these data demonstrated that chCMPK2 is involved in the chicken immune system and may play important roles in host anti-viral responses.
Collapse
Affiliation(s)
- Xin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yiyi Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou, China
| | - Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chenggang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| |
Collapse
|